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ABSTRACT

Distributed filtration of state-space models with sensor networks as-
sumes knowledge of a model of the data-generating process. How-
ever, this assumption is often violated in practice, as the conditions
vary from node to node and are usually only partially known. In
addition, the model may generally be too complicated, computation-
ally demanding or even completely intractable. In this contribution,
we propose a distributed filtration framework based on the novel ap-
proximate Bayesian computation (ABC) methods, which is able to
overcome these issues. In particular, we focus on filtration in dif-
fusion networks, where neighboring nodes share their observations
and posterior distributions.

Index Terms— Bayesian filtration, diffusion, distributed filtra-
tion, approximate Bayesian computation

1. INTRODUCTION

We address the problem of fully distributed filtration of unknown
states of state-space models from noisy observations by diffusion
networks, allowing communication of available (statistical) infor-
mation among nodes within one hop distance. The communication
protocol distinguishes between two phases: the adaptation, where
the observations are exchanged, and the combination phase, where
the nodes provide their estimates [1, 2, 3]. Unlike in the consensus
networks, both phases may occur at most once between two consec-
utive observations and any intermediate iterations are not allowed.
The diffusion methods require less communication and computation
resources, and yet, they can still outperform the consensus-based
methods [4]. We point out, however, that there are “consensus”
methods which, as the diffusion methods, operate with only one ex-
change between consecutive observations. They are known as run-
ning consensus methods [5, 6]. On some of their extensions, see
[7, 8].

The filtration task can be solved using the diffusion Kalman
filter originally proposed by Cattivelli and Sayed [1]. Their method
provides means for simplified covariance-independent combine
step, reducing the communication burden between nodes. Hu,
Xie and Zhang [9] propose an alternative covariance intersection-
based combine step, providing better estimation performance at the
cost of higher communication requirements. Recently, Dedecius
[10] formulated the state-space estimation problem in the Bayesian
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paradigm, providing a more general method with the previous two
filters as special cases.

Although Monte Carlo-based filtration of nonlinear state-space
models is a well established discipline in consensus networks, e.g.
Hlinka et al. [11, 12], the domain of diffusion algorithms was given
attention only recently by Bruno and Dias [13].

A common feature of the mentioned algorithms is their assump-
tion of a fully known model. The already disputable assumption of
this knowledge becomes even more problematic in the distributed
settings, where the nodes generally face more or less heterogeneous
conditions. For instance, this is the case of target tracking and
distributed image recognition when the observation model may be
known only partially, making the parameter (or state) inference with
usual methods complicated or even impossible. Another frequent
problem is that in many cases the models are highly complex or
even intractable, though it is still possible to sample from them.
We propose to resolve these issues by using a group of increasingly
popular Monte Carlo methods called approximate Bayesian compu-
tation (ABC) [14]. They consist in simulating pseudo-observations
using Monte Carlo samples of estimated states, plugged into the
(approximate) observation models. The samples leading to pseudo-
observations close to the true observations then represent the pos-
terior distribution of the inferred state. Besides for completely
intractable models, this approach is particularly appealing in set-
tings where it is easier to simulate from the model than to compute
the true observations likelihood.

The filtration of the state-space models via ABC has become
very promising since 2012 due to the seminal paper of Jasra et al.
[15], proposing a simple sequential Monte Carlo procedure for sam-
pling from the state space. According to the proposed method, the
samples used for simulation of pseudo-observations are either ac-
cepted or rejected based on their presence in a convex acceptance set
around the true observation. The problem of degenerate uniform im-
portance weights was resolved by Calvet and Czellar [16] via kernel-
based evaluation of these weights. Furthermore, Martin et al. [17]
propose ABC filter approaching the exact solutions via asymptotic
sufficiency. ABC-based smoothing was discussed by Martin et al. in
[18].

1.1. Contribution

Our main contribution consists in formulating the ABC filtering al-
gorithm for use in diffusion networks. We propose methods for (i)
adaptation, i.e. assimilation of observations from the neighboring
nodes and (ii) combination of posterior densities with low commu-
nication demands. A particular emphasis is put on generality of
the underlying principles, allowing ABC-based distributed filtration
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regardless of which particular Monte Carlo method is employed.
The simulation example, exploiting sequential importance sampling,
shows that the proposed diffusion filter is (even without tedious tun-
ing) close in performance to the more demanding particle filter (PF)
in terms of mean square error performance.

2. FILTRATION WITH ABC

We assume a discrete-time state-space model with measurement and
transition distributions in the form

Yt|Xt ∼ gt(yt|xt), (1)
Xt|Xt−1 ∼ qt(xt|xt−1),

where the likelihood (1) is either too complex to be evaluated ana-
lytically or numerically (but it is possible to sample from it), or it is
a rough approximation of the true model. Jasra et al. [15] propose
to infer its parameters via a sequential Monte Carlo-based ABC al-
gorithm replacing the posterior density

πt(x0:t|y1:t) ∝ π(x0)

t∏
τ=1

gτ (yτ |xτ )qτ (xτ |xτ−1)

by an approximate density represented with samples x
(j)
τ from

qτ (xτ |xτ−1), that produce pseudo-observations u(j)
τ ∼ gτ (yτ |x(j)

τ )
within some admissible set around the true yτ ,

πεt (x0:t|y1:t) = π(x0)

∫
πεt (x1:t, u1:t|y1:t)du1:t

∝ π(x0)

t∏
τ=1

[∫
g̃τ,ε(yτ , uτ )gτ (uτ |xτ )duτ

]
qτ (xτ |xτ−1), (2)

where the selection function g̃τ,ε(yτ , uτ ) determines this set. The
SMC samples x(j)

t after each ABC update in (2) have weights

W
(j)
t ∝W (j)

t−1g̃t,ε
(
yt, u

(j)
t

)
. (3)

Most of the ABC literature uses the characteristic function

g̃t,ε
(
yt, u

(j)
t

)
= 1Aε,yt

(
u

(j)
t

)
,

where
Aε,yt = {u : ρ(u, yt) < ε}.

The metric ρ(u, yt) measures the distance of the pseudo-observation
u from the true observation yt. The authors in [15] show that under
fixed ε the filter converges to a biased estimator as the number of
particles tends to infinity and that the bias itself tends to zero as ε
goes to zero.

The characteristic function in the role of g̃t,ε is rather inappro-
priate in dynamic scenarios, since the set Aε,yt may become empty
if the noise realization exceeds the set radius ε. Moreover, from
(3) it is obvious that this choice produces simplistic uniform particle
weights. In order to resolve this issue, we adhere to a kernel-based
g̃t,ε mentioned also by Jasra et al. [15] and only recently studied by
Calvet and Czellar [16] (currently in preprint). Some examples of
kernels are:

Rational quadratic kernel

g̃t,ε
(
yt, u

(j)
t

)
= 1− ||yt − u(j)

t ||2

||yt − u(j)
t ||2 + ε2

Exponential kernel

g̃t,ε
(
yt, u

(j)
t

)
= exp

(
−||yt − u

(j)
t ||

ε2

)

Gaussian kernel

g̃t,ε
(
yt, u

(j)
t

)
= exp

(
−||yt − u

(j)
t ||2

2ε2

)

Cauchy kernel

g̃t,ε
(
yt, u

(j)
t

)
=

(
1 +
||yt − u(j)

t ||2

ε2

)−1

Algorithm 1 summarizes a generic ABC sequential Monte Carlo
(SMC) filter.

Algorithm 1 ABC-SMC FILTERING ALGORITHM [15]

Initialize particles
{
x

(j)
0 ,W

(j)
0

}
j=1,...,J

by sampling from a suit-

able prior π(x0). For t = 1, 2, . . . do:

1. Obtain observation yt.
2. Propose x(j)

t ∼ qt
(
xt
∣∣x(j)
t−1

)
.

3. Simulate pseudo-observation u(j)
t ∼ gt

(
yt
∣∣x(j)
t

)
.

4. Update weights W
(j)
t ∝ W

(j)
t−1g̃t,ε

(
yt, u

(j)
t

)
such that∑J

j=1 W
(j)
t = 1.

5. Resample if the effective sample size drops below a specified
threshold.

3. DIFFUSION FILTRATION WITH ABC

This section devises the approximate filtration in diffusion networks
consisting of nodes n = 1, . . . , N , taking uni- or multivariate obser-
vations yn,t [3]. These observations are driven by an underlying hid-
den Markov process with global states xt. Each node n exchanges
own observations (adaptation step) and estimates (combination step)
with its adjacent neighbors within one hop distance. These neighbors
form its neighborhood Qn; note that n ∈ Qn, too. The goal is to
concurrently estimate xt using the characterized ABC method.

3.1. Adaptation step

During the adaptation step the nodes n = 1, . . . , N incorpo-
rate the observations ym,t of their neighbors m ∈ Qn into their
own local statistical knowledge πεn,t−1(x1:t−1|ỹn,1:t−1) as in (2).
The term ỹn,t−1 has the meaning of the sequence of observa-
tions {ym,τ ;m ∈ Qn}τ=1,...,t−1. Instead of a sequential sim-
ulation of pseudo-observations for each measurement from the
neighbors we propose to surrogate all ym,t of m ∈ Qn by a
summary statistics Sn,ỹt ≡ S(ym,t, ∀m ∈ Qn), an approach com-
mon in the nonsequential ABC. Then, the selection function g̃t,ε
acts on (Sn,ỹt , u

(j)
n,t). For typical state-space models with zero-

centered additive measurement noise and without fixed parameters
the arithmetic mean is usually a good choice. An alternative method
for filtering of state-space models (with constant parameters) via
asymptotically sufficient summary statistics was recently proposed
by Martin et al. [17].
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3.2. Combination step

The goal of the combine step is twofold: first, it is necessary to de-
termine the mechanism of information exchange among nodes. Sec-
ond, it is necessary to merge the information provided by the neigh-
boring nodes in order to obtain their jointly-optimal representation.

Any exchange of posterior distributions in terms of raw particles
would be highly demanding. This issue is widely studied, e.g., in
[12, 19], where the posterior distribution (here πεn,t(xt|ỹ1:t)) rep-
resented by weighted particles is approximated by a K-component
Gaussian mixture (GM) or a normal distribution, respectively,

Gn,t(xt|·) =

K∑
k=1

αn,k,tN (µn,k,t,Σn,k,t). (4)

The exchange of GM parameters dramatically reduces the commu-
nication burden, of course at the cost of decreased estimation effi-
ciency and higher computational load.

We propose merging of the posterior distributions (or, for prac-
tical reasons their approximations by GMs) exploiting the Kullback-
Leibler divergence [20]. This divergence measures the dissimilarity
of two probability densities f and g (equivalent in the sense of com-
mon support) of a random variable x ∈ Rd. Its minimization with
one argument fixed corresponds to an approximation optimal in the
Kullback-Leibler sense. The reason for this particular choice is jus-
tified by an information-theoretic argument: the Kullback-Leibler
divergence can be interpreted in terms of the Shannon entropy.

The Kullback-Leibler divergence is defined as the nonnegative
functional

D(f ||g) = Ef
[
log

f(x)

g(x)

]
=

∫
Rd

f(x) log
f(x)

g(x)
dx

= H(f, g)−H(f).

Here H(f, g) and H(f) are the cross-entropy and the Shannon en-
tropy, respectively. Obviously, this divergence is a premetric: it is
asymmetric, does not satisfy the triangle inequality and is zero if the
arguments agree. The merging follows from the following theorem.

Theorem 1. Fix n. Let πεm,t ≡ πεm,t(xt|·) be the posterior densities
of nodes m ∈ Qn and anm the coefficients taking values in the unit
|Qn|-simplex. The approximate density π̃εn,t at node n optimal in
the Kullback-Leibler sense∑

m∈Qn

anmD
(
πεm,t

∣∣∣∣π̃εn,t)→ min

has the form
π̃εn,t =

∑
m∈Qn

anmπ
ε
m,t.

Proof. With the help of the definition of the Kullback-Leibler diver-
gence,

∑
m∈Qn

anmD
(
πεm,t

∣∣∣∣π̃εn,t) = D

( ∑
m∈Qn

anmπ
ε
m,t

∣∣∣∣∣
∣∣∣∣∣π̃εn,t

)

−
∑
m∈Qn

anmH
(
πεm,t

)
+H

( ∑
m∈Qn

anmπ
ε
m,t

)
.

Since both the entropies on the right-hand side are independent of
π̃εn,t, the minimum is attained if the arguments of the Kullback-
Leibler divergence agree.

The Kullback-Leibler optimal approximation of the neighbor-
hood’s statistical knowledge is hence a mixture density with mixing
coefficients anm. These may be uniform or not, if it is necessary
to discriminate among the neighbors, e.g. based on their degrees or
noise properties [2]. It is quite natural to expect that the components
significantly overlap, as the network nodes observe essentially the
same underlying process. More importantly, if each of the compo-
nents is a GM (as proposed above), the result is again a GM. This
intrinsic advantage of the method preserves computationally effec-
tive sampling of particles x(j)

n,t for the next time step. Additionally,
countermeasures can be applied to prevent particles depletion, e.g.,
the popular local random walk [21].

Algorithm 2 summarizes the resulting ABC filter for diffusion
networks.

4. DISCUSSION OF FILTER PROPERTIES

The thorough analysis of properties of the proposed diffusion filter
is, similarly to all ABC methods, quite challenging. In addition to
the free parameters ε (bandwidth or scaling parameter) and J (the
number of particles), it is necessary to reflect the possible hetero-
geneity of the network and the GM-based approximation properties.
At this point, we give only the following remarks:

Under the (hardly justifiable) assumption that the GM perfectly
fits the posterior:

• If the true observation models agree across the network and
the noises are zero-centered and symmetric, the adaptation
step coincides with the ordinary ABC methods and the es-
timator is asymptotically consistent [15] but biased if ε =
const. With ε→ 0 the asymptotic bias tends to zero.

• If the true observation models differ across the network, the
estimator is generally biased. However, under zero-centered
and symmetric additive noises, the above-given asymptotics
holds as the sum of related variables is again zero-centered.
Of course, this does not hold for other moments.

5. SIMULATION RESULTS

The aim of this section is to demonstrate the performance of the pro-
posed ABC diffusion filtering method and compare it to its particle
filtering counterpart. Both methods are adopted in their basic forms
without any tedious tuning, e.g., of the number of particles and/or
the kernel type.

We assume a diffusion network consisting of 15 nodes (depicted
in Fig. 1). The nodes process the nonlinear state-space models coop-
eratively. The models, popular in SMC literature [18, 22], are given
by

xi,t =
xi,t−1

2
+

25xi,t−1

1 + x2
i,t−1

+ 8 cos(1.2t) + vi,t, (5)

yn,i,t =
x2
i,t

20
+ wn,i,t, i = 1, 2, (6)

where n denotes the node number. The Markov process starts from
x0 = [0, 0]. The state vectors xt ∈ Rdx , yn,t ∈ Rdy , dx = dy = 2,
the independent identically distributed normal zero-mean noise vari-
ables vi,t ∼ N (0, σ2

x) with σ2
x = 1 and wn,i,t ∼ N (0, σ2

n,i,y) with
σ2
n,i,y = 0.4n2. The series have 100 samples. Each of the nodes

employs 1000 particles. The nodes do not know the (heterogeneous)
noise covariances and infer the states directly from equations (5) and
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Algorithm 2 DIFFUSION QUASI-BAYES ESTIMATION

Initialize nodes n = 1, . . . , N , initialize particles x
(j)
n,0, j =

1, . . . , J with uniform weights Wn,0 by sampling from a suitable
prior.

For t = 1, 2, . . . and each node n do:
Adaptation:

1. Obtain observations ym,t,m ∈ Qn and calculate their sum-
mary statistics Sn,ȳt .

2. Propose x(j)
n,t ∼ qt(xt|x

(j)
n,t−1).

3. Simulate pseudo-observation u(j)
n,t ∼ gt(yt|x

(j)
n,t).

4. Update weights W (j)
n,t ∝W

(j)
n,t−1g̃t,ε

(
Sn,ỹt , u

(j)
n,t

)
.

5. Approximate the posterior πεn,t represented by
{x(j)

n,t,W
(j)
n,t}j=1,...,J by a GM Gn,t(xt|·).

Combination:

1. Exchange mixtures Gm,t(xt|·), m ∈ Qn.
2. Sample new particles x(j)

n,t from the combined mixture and set
their weights uniform.

Remark: If the information exchange occurs every time instant t, the
posterior weightsW (j)

n,t ∝ g̃t,ε
(
Sn,ỹt , u

(j)
n,t

)
, hence there is no need

to initialize them.
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Fig. 1. Diffusion network.

(6) without the noise terms. We fit the posterior with a GM with two
components and the coefficients anm are uniform for neighboring
nodes and zero otherwise.

The summary statistic is the arithmetic mean. The selection
function is the rational quadratic kernel with a fixed scale param-
eter ε = 1.2. In order to prevent particle depletion, the posterior
GMs are evolved with a zero-centered random walk with variance
0.5. The initial population of particles is sampled from a normal dis-
tribution centered at the origin and with a diagonal covariance matrix
with 10 on the diagonal.

This (indeed tractable) model with multimodal state variables
is chosen in order to demonstrate the ability of the framework to
approach the properties of the basic PF. The PF is initialized in the
same way as the ABC filter. Unlike ABC, the particle filter requires
fully known observation model of all the neighboring nodes.

Both ABC and PF run two scenarios: (i) no cooperation, where
the node do not exchange any information, and (ii) cooperation with
the adapt-then-combine strategy. The boxplots of the resulting root

ABC no coop. PF no coop. ABC ATC PF ATC
2

3

4

5

6

7

8

R
M

S
E

Fig. 2. RMSEs of network nodes. The first two boxplots display
values for the ABC and particle filter (PF) without cooperation, the
third and fourth boxplots display values for the ABC and particle
filter with cooperation (adapt-then-combine, ATC).

mean square errors (RMSE) of the nodes are depicted in Fig. 2.
One observes, that the cooperation leads to less diffuse RMSEs and
smaller bias both in the diffusion ABC and PF cases. The ABC fil-
tration is generally less efficient than PF as expected; however, in the
adapt-then-combine scenario the performance of ABC is reasonably
close to PF that has perfect knowledge of the models. In addition,
the ABC diffusion filter has a much lower computational burden: no
exponentials nor matrix inverses are necessary. Furthermore, local
tuning of ε at individual nodes (even to fixed time-invariant values)
would probably lead to further improvements. This is postponed for
further research.

An important property of the considered distributed filtration
framework is its self-stabilization: if all the posterior particles of
some node have zero weights due to their location outside the ac-
ceptance region driven by g̃t,ε, other nodes contribute to their resur-
rection. This may especially happen if the noise distribution is very
heavy-tailed.

Our (unpublished) empirical results have shown convergence of
the ABC filter to PF if the Gaussian kernel is used. Indeed, this was
expected due to the similarity of the normal likelihood (PF) and the
Gaussian kernel with reasonable ε (ABC).

6. CONCLUSION

Distributed filtering with approximate Bayesian computations can
efficiently solve problems with intractable or unavailable likeli-
hoods. This may be the case of sensor networks deployed over
heterogeneous environment, where the true observation models
(likelihoods) are only partially known, or simulation from them is
easier than their direct computation. The employed framework is
independent of the underlying sampling mechanism and hence ap-
plicable to any SMC and MCMC algorithms. Numerical simulations
show, that the performance of the proposed algorithm is relatively
close to the more demanding particle filters.

Future work will focus on more elaborate cooperation, and adap-
tive setting of the kernel bandwidth during sampling in order to im-
prove convergence with a lower number of particles. The issue of
ABC filtration of state-space models with linear substructure (simi-
larly to marginalized particle filters) is currently under investigation.
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