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ABSTRACT

In this paper, we consider the distributed parameter estimation
problem over sensor networks in the presence of quantized
data and directed communication links. We propose a two-
stage algorithm aiming at achieving the centralized sample
mean estimate in a distributed manner. The running aver-
age technique is utilized in the proposed algorithm to smear
out the randomness caused by the probabilistic quantization
scheme. It is shown that the centralized estimate can be
achieved in the mean square sense, which is not observed in
the conventional consensus algorithms. Simulation results
are presented to illustrate the effectiveness of the proposed
algorithm and highlight the improvements by using running
average technique.

Index Terms— Distributed estimation, probabilistic
quantization, running average, directed topology

1. INTRODUCTION

Ad hoc sensor networks, composed of a large number of sig-
nal processing devices (nodes), are massively distributed sys-
tems for sensing and processing of spatial data. A popular ap-
plication of sensor networks is decentralized estimation of un-
known parameters using samples collected from nodes [1–4].
In a typical estimation problem over networks, nodes make
noisy measurements of a scalar of interest. The main concern
is how to utilize the samples to produce a desired estimate by
only exchanging information between neighboring nodes.

Distributed estimation in ad hoc networks is usually based
on successive refinements of local estimates maintained at in-
dividual nodes. Often nodes are powered by batteries and thus
have limited computing and communication capabilities. An-
other aspect is bandwidth constraint, which renders the trans-
mission of real-valued data impractical. Thus data needs to
be quantized prior to transmission. However, this process
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introduces certain quantization errors which is accumulated
throughout the iterations, making the estimation process fluc-
tuating or even divergent [5].

Recently, much attention has been paid to the effect of
quantization on distributed consensus algorithms. For in-
stance, deterministic quantizers are used in [6–10], where
convergence can only be guaranteed up to a neighborhood of
the average of the initial states. Another thread is to adopt
probabilistic quantization schemes [6, 11]. It was shown that
almost surely consensus can be reached with a shift from the
desired average. In fact, even employing the decaying link
weights satisfying a persistence condition can not guarantee
the convergence to the desired average [12]. By exploring
the temporal information of the successive states, Ref. [13]
showed that the desired average can be obtained in the mean
square sense. All the above works assume symmetric com-
munication. Actually, in ad hod networks, communication
links between certain pairs of nodes may be directed, which
could be caused by non-homogeneous interference and so on.

To further address the residual issue of quantization, dy-
namic encoding/decoding schemes were proposed in [14, 15]
to ensure the convergence to the exact average value. A simi-
lar idea was adopted in [16] to design a progressive quantizer
such that the quantization intervals could be reduced progres-
sively during the convergence of the algorithm. Although the
dynamic quantizations perform well, some spectral proper-
ties of the Laplacian matrix of the underlying topology have
to be known in advance based on which the encoder-decoder
parameters are carefully chosen.

In this paper, we propose a two-stage distributed estima-
tion algorithm for ad hoc networks with quantized commu-
nication and directed topologies. The running average tech-
nique is utilized to limit the quantization effect on the esti-
mation process. Unlike [6–9, 11, 12, 17], our algorithm can
be run on any strongly connected graphs without any knowl-
edge of the out-neighbor information of nodes and the left
eigenvector of the corresponding Laplacian matrix. By defin-
ing a new quantity rather than the final state as the estimate,
we show that the centralized estimate can be achieved in the
mean square sense. This is the distinct feature of the aver-
aging based estimation algorithm that differs from the exist-
ing ones. The results extend the one in [13] from undirected
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graphs to directed graphs. Moreover, the simple probabilis-
tic quantizer is used in the proposed algorithm which does
not depend on the complicated design of dynamic encoder-
decoders as in [14–17].

2. PROBLEM FORMULATION

Consider the estimation problem in an ad hoc sensor network
consisting of N nodes, each making observations of an un-
known parameter θ ∈ R,

yi = θ + ni, i = 1, 2, . . . , N,

where ni are zero mean, i.i.d. Gaussian noises. In the cen-
tralized case, we know that the linear minimum mean square
error estimate can be computed using the sample mean esti-
mator θ̂ , 1

N

∑N
i=1 yi, which attains the Cramér-Rao lower

bound [18].
The distributed estimation problem consists in comput-

ing the centralized θ̂ at every node without requiring global
knowledge of {yi}Ni=1. We model the communication topol-
ogy over which information is exchanged as a weighted di-
graph G = (V, E ,A), where V = {1, 2, . . . , N}, E ⊂ V ×
V denotes all the communication links and A = [aij ]N×N
is composed of weights aij > 0 associated with each edge
(j, i) ∈ E . The directed edge (j, i) means that node i can re-
ceive data from node j. All these nodes are denoted as neigh-
bors Ni of node i. We assume that

(A1) The graph G is strongly connected, i.e., for any two
nodes i and j, there exists a directed path from i to j.

In the case of limited communication rate between nodes,
each node needs to quantize the data prior to transmission.
We adopt the following estimation algorithm at each node i,

xi(t+ 1) = xi(t) + εi(t)

+α
∑
j∈Ni

aij [Q(xj(t) + εj(t))−Q(xi(t) + εi(t))],

(1)

with initial guess xi(0) = yi, where α > 0 is the weight,Q(·)
denotes the quantization operation and εi(t) is a correction
term to be designed latter.

Remark 1 For standard consensus algorithms in the absence
of quantized communication, it is known that the state xi(t)
will converge to the weighted average of xi(0) rather than
θ̂, if we set εi(t) = 0 [19]. The introduction of the correc-
tion term εi(t) 6= 0 in (1) is meant to regulate the weighted
average such that the desired sample mean can be achieved.

Each node is equipped with a probabilistic quantizer
Q(·) : R → S∆ , {k∆ : k ∈ Z}, where ∆ is the quantiza-
tion step-size. For any x ∈ R, it is quantized in a probabilistic
manner as follows

Q(x) =

{⌈
x
∆

⌉
∆, with probability p,⌊

x
∆

⌋
∆, with probability 1− p,

where p = x/∆ − bx/∆c, b·c and d·e denote the floor and
ceiling functions, respectively. We can prove that Q(x) is
an unbiased estimator of x with finite variance [6, 11], that
is, E{Q(x)} = x and E

{
(Q(x)− x)2

}
≤ ∆2/4. Further,

|Q(x) − x| ≤ ∆. Actually, the above quantization is equiv-
alent to a substractively dithered method [11, 20]. We make
the following natural assumption:

(A2) The quantization errors are independent from the
data and are temporally independent.

As discussed previously, the existing consensus algo-
rithms with quantized transmission can not achieve the exact
θ̂ even for undirected graphs. Motivated by a rule of thumb
in statistics, i.e., large samples have smoothing effects [21],
we use the following running average to smooth the samples

x̄i(K) ,
1

K

t0+K−1∑
t=t0

xi(t), ∀i ∈ V, (2)

where t0 ∈ Z≥1 is the starting point of the averaging. The
new quantity x̄i will be used as the estimate of node i, which
is different from those used for existing consensus algorithms.

3. DISTRIBUTED ESTIMATION ALGORITHM VIA
RUNNING AVERAGE

In this section, we describe the proposed two-stage algorithm:
At the first stage, we estimate the normalized left eigenvec-
tor ω of the Laplacian L , D − A corresponding to the
zero eigenvalue, i.e., ωTL = 0 and 1Tω = 1, where D ,
diag{d1, d2, . . . , dN} and di =

∑
j∈Ni aij denotes the in-

degree of node i; At the second stage, we design the correc-
tion term ε(t) in (1) by using the estimates of the left eigen-
vector obtained at the first stage.

3.1. Distributed estimation of the left eigenvector ω

At the first stage, each node i maintains a vector zi =
[zi1, zi2, . . . , ziN ]T ∈ RN to store the estimate of ω. At
each iteration, the nodes update their variables as follows:

zi(t+ 1) = zi(t) + α
∑
j∈Ni

aij
[
Q(zj(t))−Q(zi(t))

]
, (3)

with initial values zii(0) = 1, zij(0) = 0, ∀j 6= i, where
0 < α < 1

maxi di
and Q(·) is componentwise for vectors.

We apply the running average technique to the left eigen-
vector estimation problem, and adopt the running average
z̄i(t) = 1

t−k0+1

∑t
k=k0

zi(k) as the estimate of ω, where
k0 ∈ Z≥1. Algorithm 1 shows the distributed estimation
algorithm of the left eigenvector ω at the t-th iteration run by
node i. In the algorithm, we take zii(0) = Nκ with κ ≥ 0
instead of the original zii(0) = 1. One reason behind this
operation is that convergence of the original z̄ii to ωi is equiv-
alent to its convergence to Nκωi in the new scale. Actually,
we can choose different κi for each node.
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Algorithm 1 Distributed estimation of ω at node i

Input: α, N , κ, aij , k0.
Output: z̄i/Nκ.
1: Initialization: zii(0) = Nκ, zij(0) = 0, ∀j 6= i.
2: Receive data from neighbors: Q(zj(t)), j ∈ Ni.
3: Update the estimate of ω via (3).
4: if t < k0 then
5: z̄i(t) = zi(t).
6: else
7: Update the average z̄i(t):

z̄i(t+ 1) = t−k0+1
t−k0+2 z̄i(t) + 1

t−k0+2zi(t+ 1).
8: end if

The next result presents the mean square performance of
Algorithm 1, whose proof can be found in [22].

Theorem 1 Suppose that (A1) and (A2) hold, then the run-
ning average z̄i(t) converges to the left eigenvector ω in mean
square for each node i ∈ V . And for all large t, the rate of
mean square convergence of Algorithm 1 is given by

E
{
‖z̄i(t)− ω‖22

}
= O

(
1

t

)
.

Moreover, for any constant 0 < η < 1, there exists tη ∈ Z≥0

such that

z̄ii(t) ≥ ηwi a.s. ∀t ∈ Z≥tη , i ∈ V.

Remark 2 Different from the standard consensus algorithm
[19,23], the averaging based method has a universal conver-
gence rate of O(t−1), independent of the network topology.
The possible effect of the network topology only lies in the
rate coefficient, which depends on α, N , L, ω and ∆.

3.2. Design of the correction term ε(t)

The second stage is concerned with the design of an appro-
priate correction term ε(t) in (1) to compensate the unidirec-
tional effect of the communication links.

Let τ ∈ Z≥1 be the integer triggering the estimation al-
gorithm (1). Motivated by the consensus algorithm proposed
in [24], we design the correction term εi(t) for each i ∈ V

εi(t) ,

{(
1

Nz̄ii(τ) − 1
)
xi(0), t = 0,(

1
Nz̄ii(t+τ) −

1
Nz̄ii(t+τ−1)

)
xi(0), t ∈ Z≥1.

(4)

One issue remaining before the implementation of the al-
gorithm is the well-definedness of εi(t), ∀i ∈ V . This is val-
idated by Theorem 1, which shows that the denominators of
ε(t) is almost surely non-zero for large t. As for implemen-
tation, we may choose τ = tη . In this case, we almost surely
have ε(t) > 0 for all t ∈ Z≥0. Actually, with the setup in
Algorithm 1, it is possible to choose a much smaller τ � tη .
This is verified by the simulation results in Section 4.

The proposed algorithm of the t-th iteration run by node i
at the second stage is shown in Algorithm 2. In the algorithm,
we modify the definition of the correction ε(t) to accommo-
date the setup in Algorithm 1 (see lines 1 and 4).

Algorithm 2 Distributed estimation algorithm with quantiza-
tion via running average at node i

Input: α, N , κ, aij , τ , t0, xi(0).
Output: x̄i.
1: Initialization: εi(0) =

(
Nκ−1

z̄ii(τ) − 1
)
xi(0).

2: Receive data from neighbors: Q(xj(t) + εj(t)), j ∈ Ni.
3: Update xi(t) via (1).
4: Compute the correction:
εi(t+ 1) = Nκ−1xi(0) z̄ii(t+τ)−z̄ii(t+τ+1)

z̄ii(t+τ)z̄ii(t+τ+1) .
5: if t ≥ t0 then
6: Update the average x̄i(K):

x̄i(K + 1) = K
K+1 x̄i(K) + 1

K+1xi(t).
7: end if

The following result summarizes the convergence result
of Algorithm 2. The proof is referred to [22].

Theorem 2 Suppose that (A1) and (A2) hold, then at each
node i ∈ V , the running average x̄i(K) converges to the cen-
tralized sample mean estimate θ̂ in the mean square. More-
over, the rate of convergence is given by

E
{

(x̄i(K)− θ̂)2
}

= O
(

ln(t0 + τ − 2 +K)

K

)
.

Remark 3 Note that ln(t0 + τ − 2 + K) ≈ lnK, for large
K, this means that we can start the averaging x̄(K) at any
time during the iteration. For example, at each stage, we can
initiate the original consensus algorithm to achieve a better
decaying rate, then start the running average to get higher
accuracy. This is exactly what we have done in Algorithm 2.

3.3. Summary of the algorithm

The proposed distributed estimation algorithm with quantized
data is composed of Algorithm 1 and Algorithm 2. We re-
mark that the adjustment of the initial values in line 1 of
Algorithm 1 has another consequence. It can be shown that
0 < ωi < 1 for all i = 1, 2, . . . , N , provided that Assumption
(A1) is satisfied [19]. And for certain topologies, some ωi’s
are rather close to 0. It is probable that zeros would occur
in the denominators in εi (4) during the quantization process
for the first several iterations. In this case, the correction term
in line 4 of Algorithm 2 will be meaningless and we have
to wait a long time before triggering Algorithm 2. Increas-
ing the initial values from 1 to a quite larger Nκ is meant to
tackle this concern. We also emphasize that no further buffer
is needed to store the previous states z̄i(t) and x̄i(K) (see line
7 of Algorithm 1 and line 6 of Algorithm 2 for their iterative
implementations).
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Fig. 1: A directed communication topology with 12 nodes.

4. PERFORMANCE EVALUATION

In this section, simulation results are provided to illustrate the
effectiveness of the proposed algorithm.

Consider a sensor network with 12 nodes deployed to
monitor an unknown parameter θ = 2. The directed com-
munication topology is shown in Fig. 1. Each node ob-
serves yi = θ + ni, where ni is the white Gaussian noise
with zero mean and unit variance. We choose α = 1 and
aij = (1 + di)

−1, if j ∈ Ni and 0, otherwise, for both
Algorithm 1 and Algorithm 2. For each implementation,
the initial state xi(0) is randomly chosen from the interval
[yi − 1, yi + 1], ∀i ∈ V . In the following simulations, we
consider both the uniform quantizer (UnifQ) [16] and prob-
abilistic quantizer (ProbQ) [11] . The proposed algorithm is
denoted as ProbQ-RA. Simulation results are presented by
averaging over 100 independent runs.

First, we simulate Algorithm 1. Here, κ = 1.15 and the
starting point for the running average of z is taken as k0 = 25.
Fig. 2 depicts the estimate of the left eigenvector ω at the
first node for ∆ = 1. From the results, we observe that
steady residues occur for UnifQ, and there are fluctuations for
ProbQ due to the random nature of the quantizer. While for
the proposed ProbQ-RA, the running average has an obvious
smoothing effect. The performance of ProbQ-RA is satisfac-
tory even for a low quantization resolution ∆ = 1 compared
with the large residues observed both in UnifQ and ProbQ.
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Fig. 2: Estimate of ω at the first node for ∆ = 1.

To quantify the performance of the proposed algorithm,

we use the average of the mean square error: MSEz =
N−1

∑N
i=1 ‖z̄i(t)− ω‖2 and MSEx = N−1

∑N
i=1(x̄i(K)−

θ̂)2 for Algorithm 1 and Algorithm 2, respectively. We set
τ = 1 and t0 = 25 for Algorithm 2. The results are shown in
Fig. 3 and Fig. 4. It can be seen that the proposed ProbQ-RA
outperforms UnifQ and ProbQ in both cases with ∆ = 0.2
and 1. From Fig. 3, we can see that the performances of
UnifQ and ProbQ are acceptable for the estimates of the
left eigenvector ω in both cases . However, with the errors
accumulated from the first stage to the second stage, they
degrade significantly for lower quantization resolution ∆ = 1
(see Fig. 4). Compared with UnifQ and ProbQ, the proposed
ProbQ-RA degrades quite smoothly. There is only a modest
increase of MSE with decreasing quantization resolution, i.e.,
increasing ∆ from 0.2 to 1.

0 50 100 150 200 250 300
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iteration index

A
v
e
ra

g
e
 M

S
E

z

 

 

UnifQ: ∆=0.2

ProbQ: ∆=0.2

ProbQ−RA: ∆=0.2

(a)

0 50 100 150 200 250 300
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iteration index

A
v
e
ra

g
e
 M

S
E

z

 

 

UnifQ: ∆=1

ProbQ: ∆=1

ProbQ−RA: ∆=1

(b)

Fig. 3: Comparison of MSE of UnifQ, ProbQ and ProbQ-RA
for the estimate of ω with respect to ∆ ∈ {0.2, 1}.
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Fig. 4: Comparison of MSE of UnifQ, ProbQ and ProbQ-RA
for the sample mean θ̂ with respect to ∆ ∈ {0.2, 1}.

5. CONCLUSION

We have studied the distributed parameter estimation problem
over ad hoc sensor networks in the presence of quantized data
and directed communication links. A two-stage algorithm
such that the centralized estimate can be achieved in a dis-
tributed manner has been proposed. We have presented simu-
lation results illustrating the effectiveness of the proposed al-
gorithm. Comparisons with other algorithms have also been
provided to highlight the improvements of the proposed one.
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ysis of distributed averaging with quantized communi-
cation,” in Proc. 53rd IEEE Conf. Decision and Con-
trol(CDC), Los Angeles, USA, Dec. 2014, pp. 3860–
3865.

[8] S. Liu, T. Li, L. Xie, M. Fu, and J. Zhang, “Continuous-
time and sampled-data based average consensus with
logarithmic quantizers,” Automatica, vol. 49, no. 11,
pp. 3329–3336, 2013.
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