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Abstract—This paper focuses on the problem of positioning a
source using angle-of-arrival measurements taken by a wireless
sensor network in which some of the nodes experience non line-
of-sight (LOS) propagation conditions. In order to mitigate the
errors induced by the nodes in NLOS, we derive an algorithm
that combines the expectation-maximization algorithm with a
weighted least-squares estimation of the source position so that
the nodes in NLOS are eventually identified and discarded.
Moreover, a distributed version of this algorithm based on a
diffusion strategy that iteratively refines the position estimate
while driving the network to a consensus is presented.

Index Terms—positioning, AOA, NLOS, distributed estimation,
sensor networks.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) consist of a large
number of inexpensive sensor nodes deployed over

an area to monitor the environment. Each sensor has limited
processing capability and communicates with other sensors,
which allows for the implementation of distributed processing
techniques with the potential to reduce the overall power
consumption and offer an increased robustness against node
failures. WSNs are especially suited for the positioning of a
transmitting source, which is usually needed in surveillance
and military applications [1], thanks to their ability to cover
large areas at a minimum cost.

Source positioning is a well-studied topic [2] with many
applications in today’s wireless networks [3]. Most positioning
techniques rely on the measurement of the time of arrival
(TOA), received signal strength (RSS) or angle of arrival
(AOA) to locate the source. Although AOA-based positioning
is usually not considered for WSNs due to the need to equip
each node with an antenna array, the usage of these antennae is
both feasible and desirable [4]. In the positioning of a source,
the AOA at each node restricts the position of the source
to a line in the direction of the measured angle. This line
is called line of bearing (LOB), and the point at which the
LOB from two or more nodes cross indicates the position of
the source. In [5], a closed-form least-squares (LS) solution
for the positioning of a source using AOA measurements is
proposed. In [6], a similar method is used to locate the nodes
in a network with the AOA measurements taken by several
anchor nodes.

One of the main sources of error in AOA-based positioning
is the lack of direct visibility between the transmitter and the
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receiver, which is known as NLOS. NLOS identification and
mitigation techniques have been widely studied for TOA-based
positioning [7]. Other hybrid approaches combine TOA, AOA
and RSS measurements to identify the nodes in NLOS [8]
and mitigate the NLOS error [9]. In [10], a simple outlier
detection problem is proposed to identify and discard AOA
measurements taken in NLOS conditions based on the fact
that these exhibit a completely different statistical behavior.
Another option is the use of machine learning algorithms for
the identification of outliers in WSNs, as proposed in [11].
In general, it is well-known that NLOS mitigation techniques
require a large number of samples in order to effectively
reduce the estimation error [9].

In this paper we present an algorithm to estimate the
position of a source based on AOA measurements taken by
a WSN, with some nodes experiencing NLOS propagation
conditions. Further, we propose a distributed implementation
of the algorithm suited for WSNs in which each node can only
communicate with the neighbors located within a given range.
The proposed algorithm is based on the LS estimator from [5]
embedded in a difussion-based distributed algorithm [12]. As
it will be seen, each node is able to estimate its own LOS
probability and reach a final consensus with the other nodes
on the source position estimate.

This paper is organized as follows. Section II introduces the
signal model. The centralized estimator is derived in section
III, and its distributed version is presented in Section IV.
Section V includes the simulation results and, finally, the
conclusions are drawn in Section VI.

II. SIGNAL MODEL

Consider a set of N nodes with known positions
{ui = [xi, yi]

T , ∀i = 1, . . . , N} deployed to estimate the po-
sition of a source located at r = [x, y]T . Each node takes a
single measurement of the AOA of a signal transmitted by the
source. Most nodes are in LOS propagation conditions, where
their measured AOA is assumed to be corrupted by zero-mean
additive Gaussian noise with variance σ2. We also assume that
a fraction of the nodes experience an NLOS propagation chan-
nel and their estimated AOA follows a uniform distribution
within the range of [−π, π) [13]. Thus, the estimated AOA at
node i can be expressed as

zi = ai · ψi + (1− ai) · µi, i = 1, . . . , N, (1)

where {ai,∀i} = {0, 1} are independent identically dis-
tributed (iid) Bernoulli random variables (rv’s) with probability
of LOS p , Pr{ai = 1}, {µi,∀i} are iid rv’s uniformly
distributed in [−π, π), and {ψi,∀i} are obtained applying the
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modulo 2π to iid Gaussian rv’s with mean αi and variance
σ2, thus having probability density function (pdf)

f(ψi) =


∞∑

n=−∞

1√
2πσ2

e−
(ψi−αi−2πn)2

2σ2 if −π ≤ ψi < π;

0 otherwise,
(2)

where {αi,∀i} are the true AOAs, equal to

αi = arctan

(
y − yi
x− xi

)
. (3)

We further assume that the sets {ai,∀i}, {µi,∀i} and {ψi,∀i}
are mutually independent. Thus, a value of ai = 1 indicates
that node i is in LOS and, conversely, in NLOS if ai = 0.
Denoting z = [z1, . . . , zN ]T and assuming a low-to-medium
value of σ2, f(ψ) can be approximated by the n = 0 term in
the summation and the pdf of z is

f(z|θ) =
N∏
i=1

[
p√
2πσ2

e−
(zi−αi)

2

2σ2 + (1− p)g(zi)
]
, (4)

where θ= [x, y, p, σ2]T is the vector of parameters and g(zi)
is the pdf of a uniform rv in [−π, π), i.e.

g(zi) =
1

2π

∏( zi
2π

)
. (5)

The parameter to be estimated is the position of the
source r, which is embedded in (4) through (3), whereas σ2

and p are regarded as unknown nuisance parameters.

III. CENTRALIZED ALGORITHM

In this section we derive a centralized algorithm that esti-
mates the source position and nuisance parameters assuming
the AOA measurements taken by all the nodes, i.e. z, are
available at a central entity. The algorithm estimates the
position of the source iteratively by solving a weighted least-
squares (WLS) problem whose parameters are estimated using
the expectation-maximization (EM) algorithm, an iterative
algorithm to compute the maximum likelihood (ML) estimate
in the presence of unobserved data [14], [15]. In our case,
the unobserved data correspond to the LOS/NLOS state of
the nodes. We regard the observation vector z as the in-
complete observation and {z, a} as the complete one, where
a= [a1, · · · , aN ]T . At iteration t, the EM algorithm performs
the following:

1) E-step: given an estimate θ̂t = [x̂t, ŷt, σ̂
2
t , p̂t]

T , compute
the conditional expectation

Q(θ̃ ; θ̂t) = Ea{log f(z,a | θ̃) | θ̂t, z}, (6)

where θ̃ = [x̃, ỹ, σ̃2, p̃]T denotes a trial value of θ.
2) M-step: obtain the estimate for the next iteration as

θ̂t+1 = argmax
θ̃

Q(θ̃ ; θ̂t). (7)

Let âi,t , Pr
{
ai=1 | θ̂t, zi

}
denote the a posteriori prob-

ability of ai being equal to one at iteration t. After some

algebra (6) becomes

Q(θ̃ ; θ̂t) = −
1

2
log 2πσ̃2

N∑
i=1

âi,t

− 1

2σ̃2

N∑
i=1

âi,t(zi − α̃i)2 + log p̃
N∑
i=1

âi,t

+ log(1− p̃)
N∑
i=1

(1− âi,t) +
N∑
i=1

(1− âi,t) log g(zi), (8)

where
α̃i = arctan

(
ỹ − yi
x̃− xi

)
. (9)

In order to complete the E-step, âi,t is computed using Bayes’
theorem as follows

âi,t =
f(zi | θ̂t, ai = 1) · Pr

{
ai = 1 | θ̂t

}
f(zi | θ̂t)

=
ρi,t · p̂t

ρi,t · p̂t + g(zi) · (1− p̂t)
, (10)

where

ρi,t = f(zi|ai = 1; θ̂t) =
1√
2πσ̂2

t

e
−

(zi−α̂i,t)
2

2σ̂2t , (11)

The M-step is accomplished maximizing (8) with respect to
θ̃, and it yields to

p̂t+1 =
1

N

N∑
i=1

âi,t, (12)

σ̂2
t+1 =

∑N
i=1 âi,t(zi − α̂i,t+1)

2∑N
i=1 âi,t

, (13)

where
α̂i,t+1 = arctan

(
ŷt+1 − yi
x̂t+1 − xi

)
. (14)

Note that the modulo 2π operation should be applied to the
term (zi − α̂i,t) in (13).

The maximization of (8) with respect to x̃ and ỹ leads to
two nonlinear equations that cannot be solved analytically. In
order to compute the pair r̂t+1 = [x̂t+1, ŷt+1]

T we resort to
a weighted version of the LS method proposed in [5], which
gives the position of the source as

r̂t+1 =
(
HT ÂtD̂

−1
t H

)−1
HT ÂtD̂

−1
t b, (15)

where b = [b1, . . . , bN ] and bi = −xi · sin zi + yi · cos zi;
matrix H is equal to

H =

 − sin z1 cos z1
...

...
− sin zN cos zN

 ; (16)

and the weight matrices are Ât = diag[â1,t, . . . , âN,t] and
D̂t = diag[d̂1,t , . . . , d̂N,t], where d̂i,k = ‖r̂i,t − ui‖2. Since
each âi,t is a soft decision on the LOS/NLOS state of the
node, the LS equations are weighted by matrix Ât to discard
the nodes in NLOS. Moreover, given that the errors in the AOA
measurements induce a larger positioning error as the distance
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between the source and the nodes increases, the equations are
also weighted by the inverse of matrix D̂t.

Although the use of the WLS method to find the estimate
r̂t+1 that maximizes (8) is suboptimal in general, it is less
computational intensive and allows for a distributed imple-
mentation of the algorithm as explained hereafter.

IV. A DIFFUSION-BASED DISTRIBUTED
ALGORITHM

In order to obtain a distributed implementation of the
algorithm described in Section III, each node must be able
to compute the parameters (12), (13), and (15) locally, which
require global information. The distributed implementation is
based on the DB-DEM algorithm proposed in [12], where
it is shown that it enables a distributed implementation of
the EM algorithm whenever the parameters are expressed as
a summation over i of variables available at the nodes. For
this purpose, note that the elements involved in (15) have the
following expressions

HT ÂtD̂
−1
t H =

 ∑ âi,t

d̂i,t
sin2 zi −∑ âi,t

d̂i,t
sin zi cos zi

−∑ âi,t

d̂i,t
sin zi cos zi

∑ âi,t

d̂i,t
cos2 zi


(17)

HT ÂtD̂
−1
t b =

 −∑ âi,t

d̂i,t
sin zi(−xi sin zi + yi cos zi)∑ âi,t

d̂i,t
cos zi(−xi sin zi + yi cos zi)

 ,
(18)

and that the nuisance parameters in (12) and (13) are calculated
as summations as well.

Consider then a WSN with N nodes in which each node
can only communicate with the neighbors located within a
certain radius. Let us define a weight matrix W ∈ RN×N

with nonzero wij entries only if there is a direct connection
between node i and node j. Let us assume that this matrix
also satisfies

W1 = 1, 1TW = 1T , ρ(W − 11

N
) < 1. (19)

The distributed algorithm is run iteratively after the initial
angle measurements. At each time instant k1, node i keeps
local variables θ̂i,k = [x̂i,k, ŷi,k, σ̂

2
i,k, p̂i,k]

T and auxiliary
variables
fa(i, k) = ξi,k; fc(i, k) = 1

f1(i, k) =
ξi,k

d̂i,k
sin2 zi; f2(i, k) = − ξi,k

d̂i,k
sin zi cos zi

f3(i, k) =
ξi,k

d̂i,k
cos2 zi; f4(i, k) = − ξi,k

d̂i,k
sin zi

(−xi sin zi + yi cos zi)
f5(i, k) = −f4 cos zi

sin zi
; f6(i, k) = ξi,k(zi − α̂i,k)2

(20)
where ξi,k , Pr

{
ai=1 | θ̂i,k, zi

}
is a local estimation at the

ith node of the LOS/NLOS state ai, given by

ξi,k =
p̂i,k · 1√

2πσ̂i,k
e
−

(zi−α̂i,k)2

2σ̂2
i,k

p̂i,k · 1√
2πσ̂i,k

e
−

(zi−α̂i,k)2

2σ̂2
i,k + (1− p̂i,k) · 1

2π

, (21)

1We use the index k for the distributed implementation to avoid confusion
with the centralized approach of Sec. III, for which we use the index t.

For i = 1, · · · , N
1) Initialization:

• Set âi,0 to an initial guess and d̂i,0 = 1.
• Compute the auxiliary variables fν(i, 0) for
ν ∈ {a, c, 1, . . . , 5} as in (20).

• Compute the intermediate variables

φν(i, 0)=
N∑
j=1

Wijfν(j, 0) for ν ∈ {a, c, 1, . . . , 5}.

• Compute r̂i,1 and p̂i,1 as

r̂i,1 =

[
φ1(i, 0) φ2(i, 0)
φ2(i, 0) φ3(i, 0)

]−1 [
φ4(i, 0)
φ5(i, 0)

]
p̂i,1 =

φa(i, 0)

φc(i, 0)
(22)

• Compute α̂i,0, f6(i, 0), φ6(i, 0) and then σ̂2
i,1 as

σ̂2
i,1 =

φ6(i, 0)

φa(i, 0)
(23)

For k ≥ 1,
2) E-Step: given θ̂i,k , compute ξi,k , d̂i,k and α̂i,k .
3) M-Step: for every subindex ν ∈ {a, c, 1, . . . , 6}, update the

auxiliary variables fν with the new ξi,k and compute the
intermediate variables

φν(i, k) = (1−β(k))
N∑
j=1

Wijφν(j, k−1)

+ α(k)
N∑
j=1

Wijfν(j, k), (24)

where

α(k) =
1

k
, β(k) =

1

kδ
, 0 < δ < 1, k = 1, 2, . . . (25)

and then update

r̂i,k+1 =

[
φ1(i, k) φ2(i, k)
φ2(i, k) φ3(i, k)

]−1 [
φ4(i, k)
φ5(i, k)

]
p̂i,k+1 =

φa(i, k)

φc(i, k)

σ̂2
i,k+1 =

φ6(i, k)

φa(i, k)
(26)

4) Repeat steps 2 and 3 until convergence.

TABLE I
DIFFUSION-BASED DISTRIBUTED ALGORITHM

where d̂i,k = ‖r̂i,k − ui‖2 and α̂i,k = arctan
(
ŷi,k−yi
x̂i,k−xi

)
.

Table I summarizes the execution of the distributed algo-
rithm, which can be described as follows. In the expectation
step, each node updates the value of ξi,k, the estimated
angle α̂i,k and the distance d̂i,k using the estimates θ̂i,k
obtained in the previous iteration. In the maximization step,
information is exchanged between the neighboring nodes to
update the auxiliary variables fν(i, k) and the intermediate
variables φν(i, k). Finally, the estimates θ̂i,k+1 are calculated
using the intermediate variables. These steps are repeated until
convergence.

The sum of the two terms weighted by (1−β(k)) and α(k)
in (24) is responsible for propagating the information over
the network. The weight of the first term, which drives the
network towards a consensus, increases with k whereas the
second term, which diffuses the updated variables, vanishes.
The relationship between the two terms can be tuned with the

3199



0 5 10 15 20 25 30 35 40 45
−10 log10(σ2)

−20

−10

0

10

20

30

40

10
lo

g
1
0
(M

S
E

)

Distributed δ = 0.8

Distributed δ = 0.7

Distributed δ = 0.6

Centralized
Clairvoyant

Fig. 1. MSE (dB) vs. −10 log10 σ2 for N = 100 and δ = {0.6, 0.7, 0.8}.

parameter δ, with lower values of δ delaying the consensus in
favour of more refined estimates of the unobserved data ξi.

V. SIMULATION RESULTS

We have simulated several configurations of a graph net-
work with N nodes that estimates the position of a source
randomly positioned in a 200 × 200 m2 square. The nodes
have a connectivity radius of 40 m and experience a LOS
propagation channel with probability p=0.7. The range of the
noise variance σ2 is [10−4.5, 1] rad. We compare the central-
ized estimator, a clairvoyant (CV) WLS estimator that obtains
the source position using (15) with Â = diag[a1, . . . , aN ], and
the distributed estimator. The CV estimator is run twice; first
with D̂ = I to obtain an estimate of the distances d̂i, and
a second time with the weight matrix D̂ = diag[d̂1, . . . , d̂N ].
The centralized algorithm is run Nit = 300 iterations and
the distributed algorithm is run ND

it = 1000 iterations with
δ = {0.6, 0.7, 0.8} and a Metropolis weight matrix W [16].
All three algorithms are run a total of Nrea = 1000 real-
izations for each value of σ2. A new random position of
the source source is used in each realization, as well as
new random LOS or NLOS channels for the nodes. As a
performance metric we use the logarithm of the MSE, defined
as

10 log10 MSE = 10 log10

[
E

(
1

N

N∑
i=1

‖r̂i,Nit − r‖22

)]
,

(27)
Fig. 1 shows the MSE vs. σ2 for N = 100, with a

random deployment of the nodes in each realization, and
δ = {0.6, 0.7, 0.8}. We observe that the MSE of the central-
ized algorithm is slightly above the MSE of the CV estimator
and that at the lower σ2 the two curves merge. We also
observed in the simulations that the centralized algorithm
converges in less than 10 iterations for noise variances lower
than −5 dBradians. The distributed algorithm performs as
well as the centralized version and also converges to the CV
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Fig. 2. MSE (dB) vs. −10 log10 σ2 for N = {49, 100} and δ = 0.7.

estimator for δ = 0.7, whereas for δ = {0.6, 08} it does not.
With δ = 0.6 the consensus is slower than with δ = 0.7, so
each node relies longer on the information from its neighbors.
On the other hand, with δ = 0.8 the consensus is reached too
soon, which hinders the propagation of the updated estimates
ξi,k over the network. Moreover, we have observed that in a
percentage of the realizations (4% for δ = 0.6, 2% for δ = 0.7
and 11% for δ = 0.8) the algorithm is unable to identify all the
nodes in NLOS conditions independently of the noise variance.

Fig. 2 shows the MSE vs. σ2 for N = {49, 100} nodes
deployed in a rectangular grid and δ = 0.7. We observe that
the centralized algorithm converges to the CV estimator for
both N , whereas the distributed algorithm only converges for
N = 100. For N = 49, the MSE of the distributed algorithm
increases due to the high number of nodes in NLOS, i.e.
30% on average, and the reduced amount of samples and
connectivity of the network. Furthermore, the percentage of
realizations in which the distributed algorithm is not able to
discard all the nodes in NLOS conditions for any given σ2

rises from 0.2% to 2%.

VI. CONCLUSIONS
An algorithm for the mitigation of the NLOS error in

AOA-based positioning in WSNs has been proposed. The
scheme relies on the EM algorithm to identify the nodes
in NLOS and obtain the ML estimate of several nuisance
parameters, whereas a WLS estimator is used to calculate the
position of the source. This approach allows for a distributed
implementation in which each node iteratively refines its
estimates and diffuses the new information over the network,
while a consensus process is gradually switched on so that
all nodes reach a final agreement on the estimated values.
Simulation results show that the centralized algorithm offers
performance close to that of a CV estimator and it only needs a
few iterations to converge to a solution, whereas the distributed
version, given a correct balance between consensus speed and
propagation of new information, is able to attain the same level
of performance.
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