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ABSTRACT

In this paper we deal with spoofing detection in GNSS receivers. We
derive the optimal genie detector when the true positions are per-
fectly known, and the observation errors are Gaussian, as a bench-
mark for other detectors. The system model considers three dimen-
sional positions, and includes correlated errors. In addition, we pro-
pose several detectors that do not need any position knowledge, that
outperform recently proposed detectors in many interesting cases.

Index Terms— GNSS, GPS, spoofing, jamming, detection

1. INTRODUCTION

The vulnerability of global navigation satellite systems (GNSS) to-
wards jamming and spoofing has been known for many years. These
issues were highlighted in the so called Volpe report [1] in 2001, and
much effort has been put in the research on spoofing [2–4] and anti-
spoofing techniques [5–16] in the last decade. The recent achieve-
ments on GPS spoofing techniques [2–4] have further raised these
issues, and shown that it is a real threat.

A spoofing attack aims at deceiving its target GNSS receiver to
reporting malicious spoofer-manipulated positioning andtiming in-
formation. It has been shown that this can be done in practicein a
controlled manner [3]. Meaconing is a simpler form of spoofing, de-
fined in the Volpe report [1] asthe reception, delay, and rebroadcast
of radionavigation signals to confuse a navigation system or user.
The position and timing information cannot be manipulated with the
same sense of control in a meaconing attack, but its simplicity makes
it a serious threat.

Several spoofing detectors have been proposed based on cross
checks with other sensors, for example intertial measurement units
(IMU) [2] or cross-correlation with a secure GNSS receiver [9, 10,
17]. Other techniques have been proposed based on the detection
of different types of anomalies in the correlator outputs caused by
spoofing [11–14]. This kind of detectors can be implemented in a
single receiver, but one drawback is that the distortions inthe cor-
relator outputs caused by a spoofer are hard to discriminatefrom
distortions caused by multipath fading [12]. Attempts to circumvent
this problem have been made by combining several measures, for
example correlator distortions and received power, to makea joint
decision [13, 14]. Exploiting signal anomalies to detect a spoofer is
in general a very challenging task. An intelligent enough spoofer
could, at least theoretically, emulate the authentic GNSS signals, ef-
fectively making the spoofer signal impossible to detect.

For that reason, much work on spoofing detection has focused
on array processing using multiple antennas or a single moving an-
tenna [5–7]. A lot of research has been performed in recent years
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on signal detection using multiple antennas (cf. [18] and the refer-
ences therein). Most of these papers focus on applications other than
spoofing detection, although the same techniques are applicable.

Multiple receivers were used for detection on a higher level
in [15, 16]. That is, detection was performed based on the posi-
tion solutions from multiple receivers, rather than on the received
sampled data itself. The main advantage of this kind of methods is
that the they can be implemented by using commercial off-the-shelf
(COTS) GNSS receivers, where the actual sampled data is not avail-
able to the user. In the papers [15,16], the locations of the receivers
relative to each other were assumed to be known, and the position er-
rors were assumed to be Gaussian. The optimal detector was derived
in [15] assuming known two dimensional positions and uncorrelated
noise. A detector was also proposed for the case when the spoofed
position and the true receiver positions were unknown (but known
relative to each other). That work was further extended in [16] to
include correlation between errors in east and north directions, al-
low for multiple samples instead of a single snapshot, and adapt the
proposed detector to use three-dimensional position data.

In this work, we deal with a similar problem as [15, 16]. How-
ever, we model the positions in three dimensions directly, and allow
the position errors to be correlated not only between different di-
rections but also between receivers. This is commonly the case in
practice, since receivers in the vicinity of one another experience
similar fading effects (e.g. shadowing). Hence, the proposed model
also includes receivers with different error characteristics. We derive
the optimal detector under these assumptions. In addition,the model
and proposed detectors are straightforward to extend to an arbitrary
number of dimensions, which allows for inclusion of additional met-
rics such as pseudo-ranges or SNR estimates that are often avail-
able from standard COTS GPS receivers. We also propose detectors
that do not require any knowledge of the true spoofed or receiver
positions, based on the position deviations between the receivers.
This allows for mobile receivers, without requiring any knowledge
of their relative positions, provided that they operate in the vicinity
of one another. The position deviations are exploited through esti-
mated distances between the receivers, and through properties of the
singular values of the observation matrix. This problem hasapplica-
tions, for example, for reliable first responder and soldierposition-
ing. The detection performance of the proposed methods is analyzed
numerically, and compared with similar state-of-the-art methods.

2. SYSTEM MODEL

The system model and assumptions will be described in the follow-
ing. There areK cooperating GNSS receivers, each one delivering
its calculated position solution to a fusion center. The receivers are
assumed to be COTS receivers, so that only high level data such as
the position solution is available. We wish to determine whether
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the GNSS receivers are being spoofed or not. Suppose that allof
the available satellite signals are being recreated and transmitted by
the spoofer, as in a meaconing attack. If the receivers are being
spoofed, by tracking all satellite signals from the spoofer, their error-
free position solutions would be equal. However, if they arenot be-
ing spoofed, their position solutions depend on their actual, distinct,
positions. Hence, we wish to discriminate between the hypotheses

H0 : xk = pk + ek, k = 1, . . . ,K,

H1 : xk = s+ ek, k = 1, . . . , K,
(1)

wherepk is the true position of receive antennak, s is the true
spoofed position, andek is noise. The position vectorspk ,
[pk,1, pk,2, pk,3]

T and s , [s1, s2, s3]
T represent the north, east

and altitude components respectively of the positions. Equation (1)
can be equivalently written in matrix form as

H0 : X = P+E,

H1 : X = S+E,
(2)

where X ,


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xT
1

...
xT
K


 , P ,


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pT
1

...
pT
K


 andS ,



sT

...
sT


 . (3)

Assume that the noise is zero mean Gaussian (as was also done in
[15, 16]). Moreover, lete , vec(E), and assume thatΩ is the
covariance matrix ofe. That is, the position components are allowed
to be correlated between the north, east and altitude directions as
well as between receivers. Similarly, letx , vec(X), p , vec(P)

ands , vec(S). Then, (2) can be rewritten as

H0 : x ∼ N (p,Ω),

H1 : x ∼ N (s,Ω).
(4)

3. GENIE DETECTOR: KNOWN p AND s

Based on the system model described in Section 2, we will derive the
Neyman-Pearson optimal detector. It is well known that the optimal
detector, when the probability distribution under both hypotheses are
perfectly known, is a (log-)likelihood-ratio test. The log-likelihood
ratio of (4) is

log
f (x|H1)

f (x|H0)
= x

T
Ω

−1 (s− p) +
1

2
p
T
Ω

−1
p−

1

2
s
T
Ω

−1
s+ c,

(5)

wherec is a constant independent of the received data. When the
true positionsp ands are known, all terms that are independent of
the received datax can be included in the decision threshold. Hence,
the optimal detector is

x
T
Ω

−1 (s− p)
H1

≷
H0

η, (6)

whereη is a predetermined decision threshold. This is a genie de-
tector in the sense that it is not realizable, since the true positions
cannot be perfectly known. However, the genie detector serves as a
performance limit for all other detectors.

In (6), the covariance matrix was assumed to be known and arbi-
trary. Consider the special case when the position errors are uncor-
related, with equal variance, both between position components and

receivers, so thatΩ = I. Then, the optimal test statistic reduces to

x
T (s− p) =

K∑

k=1

x
T
k (s− pk) . (7)

So far, we have assumed that all parameters are known under
both hypotheses. In practice, that will not be the case. In particular,
the main issue is that the true positions are unknown. Detection with
unknown positions is dealt with in the following section.

4. GLRT WITH UNKNOWN POSITIONS

A well known, and often very well performing, method when
there are unknown parameters is the generalized likelihood-ratio
test (GLRT). That is, the unknown parameters are estimated using
maximum-likelihood estimation, and the estimated parameters are
used in the likelihood-ratio in lieu of the true parameters.That is,
we wish to compute the maximum-likelihood (ML) estimates ofthe
unknown positionspk ands. Since there is only a single observa-
tion available, the ML estimate of the receiver positionspk is the
observation itself, i.e.

p̂k = xk (8)

The true spoofed position is the mean value of the observed position
for each receiver. Hence, the ML estimate of the spoofed position is

ŝ =
1

K

K∑

k=1

xk (9)

By inserting the estimated positionŝpk and ŝ in the log-likelihood
ratio (5), we obtain the GLRT
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≷
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η, (10)

where

p̂ = vec
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Moreover, the GLRT when the position errors are uncorrelated
(Ω = I) is
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η.
(12)

Note that this test can also be used if the covariance matrix is un-
known, even though the position errors could actually be correlated.

5. DETECTION WITH UNKNOWN POSITIONS AND
COVARIANCE

In most practical scenarios, the true positionsP andS, as well as the
covariance matrixΩ, are unknown. To be able to detect the spoofer
despite that these parameters are unknown, we will exploit that the
spoofed position is equal for all receivers whereas the authentic po-
sitions are distinct for different receivers.
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Estimating the covariance matrix in a similar manner as the un-
known positions in Section 4 is impossible in this case unless a sig-
nificant structure or a priori information is imposed. The reason is
that it would require at least as many observations as the size of the
covariance matrix (3K) for the sample covariance matrix to have full
rank. Instead of trying to estimate the covariance matrix, we propose
two detectors based on properties of the mean of the observation that
differ between the two hypotheses. The proposed detectors will be
explained in the following sections.

5.1. Mean Squared Distance (MSD)

The first approach is to use the spread of the distances between the
receivers. If the receivers are being spoofed, the average distance
should be close to zero, whereas if they are not being spoofedit
should be strictly positive. We propose to use the followingtest

K∑

k=1

k∑

l=1

‖xk − xl‖
2

H0

≷
H1

η. (13)

Since we assume that the relative positions are unknown, theex-
pected value of the average distance is of course also unknown.
If all distances were known, then the receivers’ relative positions
would be known too, and the scenario would be equivalent to the one
in [15,16]. Of course, knowledge of the distances could be exploited
in our proposed test to set the decision threshold more appropriately
to achieve the desired detection and false-alarm probabilities. In
the current proposal, the decision threshold can be set based on a
desired detection probability, which depends on the deviation from
zero caused by the noise in the spoofed case. The false-alarmprob-
ability will then depend on the scenario in the non-spoofed case, for
example the receivers’ actual relative positions.

5.2. Singular Value Spread

Another approach is to exploit properties of the observation matrix,
or rather the mean of the observation matrix. In the current model,
E {X|H0} = P andE {X|H1} = S. SinceS is comprised of
the single positions, E {X|H1} has a single positive singular value
whereasE {X|H0} has three positive singular values (provided that
K ≥ 3 and the receiver antennas are spread out in the three di-
mensions). The proposed method is based on these propertiesof the
singular values ofX, or equivalently of the eigenvalues ofXXH .

There exist many other examples where properties of the eigen-
values of a sample covariance matrix have been used for detection.
For example, the well known sphericity test [19] discriminates be-
tween equal and distinct eigenvalues by using the ratio of the arith-
metic to the geometric mean. The sphericity test was originally de-
rived to distinguish between correlated and white Gaussiandistribu-
tions. An extension to the sphericity test was proposed in [20], where
the eigenvalues were not restricted to be equal or distinct but there
could be an arbitrary number of distinct values with known multi-
plicities. These works, however, exploit properties of thecovariance
matrix of the observed data, whereas we are interested in themean
value of the observation.

We propose to use a similar test statistic, working on the singu-
lar values of the observation matrix. Letσi, i = 1, . . . , 3, be the
singular values of the observation matrixX sorted in descending or-
der. In our case, the mean of the observation matrix has a single
non-zero singular value underH1, but three positive singular values

underH0. Therefore, the proposed test is

σ1

σ2 + σ3

H1

≷
H0

η. (14)

Note that this test can be performed without any knowledge ofthe
covariance. However, if the covariance is known or can be estimated,
one could prewhiten the received data and then perform an identical
test based on the whitened data.

6. DETECTION WITH KNOWN LOCAL POSITIONS

Let p̃k denote the receiver positions parametrized in a local ref-
erence frame such that the origin is determined by the constraint∑K

k=1
p̃k = 0. That is, the global receiver positions arepk =

b + Rp̃k, whereb is the unknown origin of the local reference
frame, andR is an unknown rotation matrix.

As a comparison, we will include the detector of [16], i.e.

−

∣∣∣∣∣

K∑

k=1

2∑

l=1

p̃k,lxk,l

∣∣∣∣∣− δ
K∑

k=1

p̃k,3xk,3

H1

≷
H0

η, (15)

whereδ is the ratio of the horizontal error variance to the vertical
error variance. The detector (15) was proposed in [16] by extending
the two dimensional GLRT of [15] to three dimensions by adding an
extra term that includes the vertical component. The error variances
were assumed in [16] to be equal in the north and east directions. To
allow for unequal horizontal error variances, the detectoris slightly
generalized so thatδ , (Ω1,1+Ω2,2)/(2Ω3,3). When the horizon-
tal error variances are equal that is equivalent to what was originally
proposed in [16].

The detector (15) that was extended from two (horizontal) to
three dimensions in [16] is not adapted to deal with the unknown
three dimensional rotation, but only takes the horizontal rotation into
account. A straightforward modification of the test statistic, to be
able to deal with a three dimensional rotation, can be made bytaking
the absolute value of all terms rather than only of the first terms
corresponding to the horizontal components. That is, the modified
test statistic is

−

∣∣∣∣∣

K∑

k=1

2∑

l=1

p̃k,lxk,l + δ
K∑

k=1

p̃k,3xk,3

∣∣∣∣∣ = −

∣∣∣∣∣

K∑

k=1

p̃
T
k Λxk

∣∣∣∣∣ , (16)

whereΛ is a weight matrix. Note that in this special case, the weight
matrix is used to compensate for the (known) error variancesso that
Λ = diag(1, 1, δ). If the variances are known, a better weight ma-
trix would beΛ = diag(1/σ2

N , 1/σ2

E , 1/σ
2

A), whereσ2

N , σ2

E and
σ2

A denote the error variances in the north, east and altitude direc-
tions respectively (assumed to be equal for all receivers).Note that
the detectors (15) and (16) cannot account for correlation between
receivers. Even more generally, the weight matrixΛ = Ω−1 could
be used to compensate for the full covariance.

7. NUMERICAL RESULTS

In the following, we will show some numerical evaluations ofthe de-
tection performance, based on Monte-Carlo simulations. The eight
true receiver positions were placed at the corners of a cube with side
lengthd = 5 meters. The true spoofed position was placed in the
center of the cube. Two versions of the detector (15) are included,
one where the rotation of the receiver positions is perfectly aligned
with the true rotation (labeledno rot.), and one where the rotation
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Fig. 1. ROC curve with uncorrelated errors and eight receivers posi-
tioned in the corners of a 5 meters cube.

is unknown, which is modeled by a random rotation with uniformly
distributed angles in three dimensions. The former case is,of course,
equivalent to perfectly known rotation in three dimensions.

Figure 1 shows the receiver operating characteristics (ROC) for
the detectors, with uncorrelated errors (Ω = σ2I, whereσ = 10).
As expected, the GLRT with and without knowledge of the covari-
ance have equal performance since the errors are uncorrelated. In
addition, the detector (15) (no rot.) that requires knowledge of the
relative positions as well as their rotation, outperforms all of the de-
tectors that do not have that knowledge, but still perform far from
the optimal detector. When the rotation is unknown however,the de-
tectors (15) and (16) perform very poorly. That is, knowledge of the
local receiver positions can be quite useful if the platformrotation
is known too, for example, by the use of gyros and accelerometers.
The proposed GLRT detectors (10) and (12), and the mean distance
detector (13) performs quite well, despite not having any knowledge
of the true receiver positions. The proposed singular valuedetec-
tor (14) shows quite poor performance, and is also computationally
more burdensome than the other detectors. Note that the perfor-
mance in absolute numbers depends much on the scenario (number
of receivers, receiver positions etc.), but the performance of different
methods relative to each other is similar. For example, the distance
between the receivers is smaller in these simulations as compared
to [16], which deteriorates the performance for all detectors.

Figure 2 shows the ROC with a fixed correlation factor of0.3
between all position components. The covariance matrixΩ is also
normalized such that‖Ω‖

2
= σ2, to make the position errors com-

parable with those of Figure 1. In this case, when the errors are
correlated, there is a clear difference between the two GLRTdetec-
tors (10) and (12). Moreover, we note that both of these detectors
outperform the detector (15) of [16] when the rotation is unknown,
although no knowledge of the receiver positions is requiredfor (10)
and (12). Note also that due to the unknown three dimensionalro-
tation, the detector (15) performs even worse than flipping acoin at
low probabilities of false alarm (. 0.25).

Figure 3 shows the ROC with a random covariance matrixΩ for
each realization. The covariance matrix is created asΩ = HHH ,
where the coefficients of the3 × 5K matrix H are drawn from a
white Gaussian distribution, and then normalized such that‖Ω‖

2
=

σ2. That is, the covariance matrix is Wishart distributed but normal-
ized to make a fair comparison with the previous cases. In this case,
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Fig. 2. ROC curve with correlated errors (ρ = 0.3) and eight re-
ceivers positioned in the corners of a 5 meters cube.
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Fig. 3. ROC curve with a Wishart covariance matrix and eight re-
ceivers positioned in the corners of a 5 meters cube.

the average performance of the GLRT (12), without knowledgeof
the covariance, is very close to that of the mean distance detector
(13). Again, the proposed singular value detector shows poor per-
formance compared to the other detectors.

8. CONCLUDING REMARKS

We have proposed several new spoofing detectors that exploitthe
position solution from multiple COTS GPS receivers in different
ways, without requiring any knowledge of the receiver positions. We
have also proposed an extension to a previously proposed detector,
that exploits knowledge of the local receiver positions butalso takes
into account an unknown three dimensional rotation. We havealso
shown by Monte-Carlo simulations that the proposed detectors per-
form well in many cases.

It should be noted that it is straightforward to include other met-
rics than the position solution from each receiver, such as the individ-
ual satellite pseudo ranges. That would only increase the dimension
of the data model (1), and the derivation would follow in exactly the
same way.
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