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ABSTRACT

Simultaneous wireless information and power transfer (SWIPT) of-

fers an attractive alternative to the traditional battery limited or grid

dependent communication system design. In this paper, we inves-

tigate robust precoder designs for systems with SWIPT capabilities

under a stochastic Rician fading framework. Under a multiple-input

multiple-output (MIMO) channel model, we formulate the problem

of minimizing the average mean-square error at the information re-

ceiver (IR) while keeping the average energy harvested at the energy

receiver (ER) above given levels. We consider two different strate-

gies that can be adopted by the IR: i) simple estimation filters based

solely on the channel mean, ii) robust estimation filters aiming to

minimize the average mean-square error. Both of these scenarios

lead to non-convex formulations. For the first scenario, we propose a

convex relaxation that is tight. For the second scenario, we propose

an alternating minimization method that provides precoder designs

even in the scenarios where the number of transmit antennas is larger

than the length of data vector. Our numerical results show that the

proposed designs provide significant performance gains especially

when the scattering component of the channel is strong.

Index Terms— wireless power transfer, robust precoder design,

fading.

1. INTRODUCTION

Simultaneous wireless information and power transfer offers an at-

tractive alternative to the traditional battery limited or grid dependent

communication system design. SWIPT approach brings flexibility

in terms of power management in a wide range of applications in-

cluding wireless sensor networks and smart homes. In systems with

SWIPT capabilities, the two tasks, information and power transfer is

done simultaneously in a wireless medium. The optimal transmission

strategies for these two tasks are different, hence novel transmission

strategies have to be designed in order to be able to do these two tasks

most efficiently [1–3].

A practical issue in communication system design for multiple

antenna systems is the design of precoders and receiver filters. Pre-

viously precoder and receiver filter designs have been successfully

used to improve communication systems performance for systems

without energy transfer capabilities, see for instance [4–6]. Typi-

cally, joint linear precoder-receiver filter design requires the channel

information to be available to system designers. On the other hand,

in practice, the channel state information (CSI) cannot be obtained

perfectly. Hence, investigation of the effect of partial CSI and devel-

opment of robust designs is of paramount importance from a practi-

cal implementation point of view. In this regard, a number of works

investigate the robust designs for SWIPT systems. Norm bounded

deterministic channel estimation error models are investigated for

multiple-input single-output (MISO) multiuser scenario [7], relay

channels [8] and secure communication scenarios [9, 10]. Robust

designs in stochastic settings are investigated in [11, 12].

In this paper, we investigate robust precoder designs for simul-

taneous information and energy transfer under a stochastic frame-

work, in particular Rician fading. We utilize mean-square error as

the performance metric which is a widely used metric for precoder

design, see for instance [4–6]. Under a MIMO channel model, we

formulate the problem of minimizing the average mean-square error

while keeping the average energy harvested at the energy receiver

above a given level. We consider two different information receiver

structures. For the case where the receiver filter is based on only

the average channel information, we seek for the optimal linear pre-

coders at the transmitter. For this non-convex problem, we propose

a convex relaxation that is tight (Sec. 3). For the scenario where the

information receiver and the transmitter jointly optimize the trans-

mission strategy, i.e. linear precoder and the IR filter, we propose

an alternating minimization method (Sec. 4). For this second case,

our framework is similar to [11] where mean-square error criterion

together with rate maximization is considered under a similar fading

scenario. Nevertheless, unlike [11] our formulation lets us investi-

gate the scenarios with receiver antenna correlation at the informa-

tion receiver and the cases where the number of antennas at the trans-

mitter is larger than the length of data vector. This allows us to offer

designs that can take advantage of possibly large number of antennas

at the transmitter, for instance as in massive MIMO applications.

The rest of the paper is organized as follows. In Sec. 2, the sys-

tem model is described. The scenario where the receiver filter is fixed

and is based on only the average channel information is discussed in

Sec. 3. The joint precoder-receiver filter optimization problem is in-

vestigated in Sec. 4. In Sec. 5, performance of our robust designs are

illustrated. Finally, the paper is concluded in Sec. 6.

The following notation is used throughout the paper. Uppercase

and lowercase letters denote matrices, and column/row vectors, re-

spectively. The complex conjugate transpose, transpose and pseudo-

inverse of a matrix A are denoted by AH, AT and A+, respectively.

The ith row jth column element of matrix A is denoted by [A]ij .

The Frobenius norm of a matrix A is denoted by ||A||2= tr[AAH].
I denotes the identity matrix with the suitable dimensions. Positive

semi-definite ordering is denoted by �, where A � 0 denotes a

Hermitian positive semi-definite matrix. An optimal value of an op-

timization variable A is denoted by A∗. The operators E[.], and tr[.]
denote the expectation and trace operators, respectively.

2. SYSTEM MODEL

2.1. Channel and Signal Models
The multi-antenna transmitter transfer information to the information

receiver as well as power to the energy harvesting receiver according

to

yI = HIx+wI (1)

yE = HEx+wE (2)

where HI ∈ C
nr×nt and HE ∈ C

ne×nt represent the channel

gains from the transmitter to the information receiver and the energy
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receiver, respectively. Zero-mean complex proper Gaussian random

variables wI ∈ C
nr×1 ∼ CN (0,KwI

), KwI
= E[wIw

H
I ] and

wE ∈ C
ne×1 ∼ CN (0,KwE

), KwE
= E[wEw

H
E] denote the

noise at the IR’s and ER’s channel, respectively.

The channel input x is formed as x = As, where the zero mean

complex proper Gaussian random vector s ∈ C
ns , s ∼ CN (0,Ks),

Ks = I denotes the data and A ∈ C
nt×ns denotes the linear pre-

coder. The following transmission power constraint is imposed at the

transmitter

tr[AA
H] ≤ P. (3)

We assume that both the IR and ER channels go under Rician

fading. In particular, the channel for the information receiver can be

expressed as follows

HI = H
0

I +TI (4)

where H0

I represents the deterministic line-of-sight component of

the channel, and TI represents the scattering component with Ra-

gleigh distribution. In particular, we have

TI = RIR
1/2

T̄I(RT
1/2)T (5)

where elements of T̄I are i.i.d. complex proper Gaussian variables

with [T̄I]i,j ∼ CN (0, σ2
T,I) [13–15]. Here the covariance matrices

RT � 0 and RIR � 0 model the channel correlation at the transmit-

ter side, and the channel correlation at the receiver side, respectively.

The channel for the energy receiver is modelled similarly with H0

E,

TE, RER defined in the same manner. We note that the transmit-

ter side correlation is given by RT for both channels since the same

transmitter serves both to the information and the energy receiver. It

is assumed that T̄I, T̄E, wI, wE, and s are statistically independent.

2.2. Signal Recovery at the IR

Upon receiving yI, the information receiver forms an estimate of s.

For a given realization HI, the mean-square error is given by

ε(A,B) = ES [||s −ByI||
2]

where B represents the linear estimator adopted by the receiver. The

performance criterion at the information receiver is the average mean

square error

EH [ε(A,B)] = ES,H [||s −ByI||
2]

Here the subscripts S,H for the expectation operator is used to de-

note the expectation with respect to signals and the channels respec-

tively. We consider the following estimation strategies that can be

adopted by the IR:

Scenario I - Channel Equalizer: IR uses an estimator B that

only depends on the channel mean H0

I and is independent of the pre-

coder design. Such models have been used in various partial CSI sce-

narios successfully, see for instance [16]. This model includes a wide

range of channel equalizer scenarios, such as the zero forcing equal-

izer (H0

I

+
), and the mean-square error equalizer (H0

I

H
(H0

IH
0

I

H
+

KwI
)−1). Since the receiver strategies do not depend on the trans-

mitter strategy, such frameworks have the advantage of backward

compatibility.

Scenario II -General Filtering: IR uses an estimator B that de-

pends on H0

I , A and channel statistics. This case is more suitable for

scenarios with more complicated receiver structures and where joint

filter design for the transmitter and receiver is possible. In this case,

for a given linear precoding strategy A at the transmitter, the receiver

uses the following estimator B∗ which minimizes the average error

B
∗(H0

I ,A,RT,RIR) = argmin
B

ES,H [||s−ByI||
2] (6)

This receiver filter design problem is further discussed in Sec. 4.

2.3. Energy Harvesting at the ER

For a given HE, the energy harvested at the ER can be expressed as

follows [1]

(7)J (A) = tr[HEAA
H
HE

H].

The following average energy harvesting constraint is imposed at the

energy receiver:
(8)EH [J (A)] ≥ γ

We note that it is possible to account for the possible loss in the

energy conversion process by scaling right hand side expression in

(7) with a loss factor κ ∈ [0, 1]. Here, we assume that this loss is

accounted for while setting desired energy levels.

2.4. Precoder Design Problem

For Scenario I, for a given receiver filter B(H0

I ), we are interested

in the following precoder filter design problem

(P1) min
A

EH [ε(A,B(H0

I )))] (9a)

s.t. (3) and (8). (9b)

For Scenario II, we are interested in the following joint precoder and

receiver filter design problem

(P2) min
A,B

EH [ε(A,B)] (10a)

s.t. (3) and (8). (10b)

In both scenarios we minimize the average mean-square error at the

information receiver while satisfying the transmit power constraint at

the transmitter and the energy harvesting requirement at the energy

receiver. We discuss these design problems in more detail in Sec. 3

for Scenario I and in Sec. 4 for Scenario II.

3. PRECODER DESIGN WITH FIXED RECEIVER FILTER

AT THE IR

In this section, we focus on Scenario I and discuss the precoder de-

sign problem in (9). We first present the explicit forms of the objec-

tive function and the constraints, and discuss the convexity properties

of the problem. Although the problem is non-convex, we show that

it is possible to solve it by convex optimization methods by using a

tight convex relaxation.

For a given channel realization, the mean-square error at the IR

can be written as

ε(A,B) = ES [||s −ByI||
2] (11)

= ES [||s −B(HIAs+wI)||
2] (12)

= ||I−BHIA||2+tr[BKwI
B

H] (13)

where for notational convenience we have expressed B(H0

I ) as B.

Hence the average mean-square error can be expressed as

EH [ε(A,B)] = EH,S[||s −ByI||
2]

= EH [||(I−BH
0

IA)−BTIA||2] + tr[BKwI
B

H]

= ||I−BH
0

IA||2 +EH [||BTIA||2]+ tr[BKwI
B

H]

We note that
(14a)EH [||BTIA||2] = tr[EH [BTIAA

H
TI

H
B

H]]

(14b)= tr[AH
R

T
TA] tr[BRIRB

H]

where (14b) follows from [17, Ch.7]. We now have

(15)EH [ε(A,B)]=tr[AH
H

0

I

H
B

H
BH

0

IA]−2Re[tr[BH
0

IA]]+ns

+tr[AH
R

T
TA] tr[BRIRB

H]+tr[BKwI
B

H]

where Re[z] denotes the real part of z ∈ C. Similarly the average

energy harvested can be expressed as follows

EH [J (A)] = EH [tr[(H0

E +TE)AA
H(H0

E +TE)
H]]

(16)= tr[AH(H0

E)
H
H

0

EA] + tr[AH
R

T
TA] tr[RER]

We now go back to the main problem considered in this section,

the precoder design problem in (9). We observe that the objective

function, i.e. (15), is a convex quadratic function in A. Similarly, the

average energy harvested, (16), and the transmitter power constraints

are also convex quadratic functions of A. Nevertheless, the resulting
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Algorithm 1 Algorithm for Problem P2

Initialize:

Using (22) find A0.

if ((22) is infeasible) then

Quit Algorithm 1. // Problem P2 is infeasible.

end if

Using A
0 and (20), find B

0. Let i=1.
repeat

Using Bi−1, solve (18) for (Ai
,KA

i).
if Rank constraint is not satisfied then

Generate new A
i using [20, Algorithm RED].

end if

Using A
i and (20), find B

i.

Using A
i,Bi and (15), find the error ei.

until (ei−1 − e
i ≤ ǫ) // The stopping criterion is met.

Output: Ai.

optimization problem is not convex since the energy harvesting con-

straint bounds a convex function from below, hence it does not form

a convex constraint.

We now introduce a tight relaxation to the optimization prob-

lem in (9). We introduce a new variable KA = AAH. Hence the

objective function can be written as follows:

ε̄K(A,KA,B) = tr[H0

I

H
B

H
BH

0

IKA]− 2Re[tr[BH
0

IA]] + ns

+ tr[RT
TKA] tr[BRIRB

H] + tr[BKwI
B

H]

The average energy harvested can be written as

J̄K(KA) = tr[(H0

E)
H
H

0

EKA] + tr[RT
TKA] tr[RER].

Hence the optimization problem in (9) can be equivalently expressed

as

min
A,KA

ε̄K(A,KA,B) (17a)

s.t. J̄K(KA) ≥ γ, (17b)

tr[KA] ≤ P, (17c)

KA = AA
H. (17d)

Now the energy harvesting constraint is a linear function of the op-

timization variables. Nevertheless, the problem is not convex due to

the equality constraint in (17d). We relax this constraint as KA �
AAH. Hence the relaxed problem can be expressed as follows

min
A,KA

ε̄K(A,KA,B) (18a)

s.t. (17b), (17c), (18b)

KA � AA
H. (18c)

This is a convex optimization problem, and it can be solved by stan-

dard numerical optimization tools, such as SDPT3 and CVX [18,19].

In the following result, we observe that this convex relaxation is tight:

Lemma 3.1 Let (18) be solvable. Then the optimum error values

for (9) and the relaxed problem in (18) are equal and can be attained.

An optimal solution for (9) can be constructed from an optimal solu-

tion of (18).

The proof is given in Sec. 7. In Sec. 4, we use this result as an

intermediate step for solving the joint precoder-receiver filter design

problem.

4. JOINT PRECODER AND RECEIVER FILTER DESIGN

In this section, we focus on Scenario II and discuss the precoder and

receiver filter design problem in (10). We observe that, in general,

(10) is not a convex optimization problem in (A,B). To see this, for

instance, we recall that for fixed B, the optimization problem is not

convex as discussed in the previous section.

We now derive the optimum filter B for fixed precoder A. We

are interested in finding the filter B that minimizes the following

error expression

(19)

EH [ε(A,B)]=EH,S[||s −ByI||
2]

=tr[B(H0

IAA
H(H0

I )
H
+KwI

)BH]−2Re[tr[BH
0

IA]]

+ns+tr[AH
R

T
TA] tr[BRIRB

H].

By taking the derivative, and equating to zero, we find the optimal B

as

B
∗ = A

H(H0

I )
H(H0

IAA
H
H

0

I

H
+ tr[AH

R
T
TA]RIR +KwI

)−1.

(20)

Substituting B∗ back into (19), the average mean-square error can

be expressed as

(21)EH [ε(A,B)] = tr[(I+ (H0

IA)HK̄−1
wI

H
0

IA)−1],

where K̄wI
= tr[AHRT

TA]RIR + KwI
. Hence the optimization

problem in (10) can be equivalently written as the minimization of

(21) over the precoder A subject to (3) and (8).

The error expression in (21) has a form similar to the error ex-

pression for the classical MMSE estimation where full CSI is avail-

able. Here, in the robust stochastic scenario, the noise covariance

KwI
is replaced by the modified expression K̄wI

. We note that K̄wI

in general depends on A, which makes this optimization problem

very difficult to tackle.

To find a design for (10), we propose an alternating minimization

approach. This method is summarized in Algorithm I. Here we take

turns in fixing A and B. For the fixed B step, by Lemma 3.1, an

optimal solution for A can be found using the relaxation in (18).

Details regarding how an optimal A is found from a solution of (18)

is given in Sec. 7. For the fixed A step, an optimal B is found using

(20). We initialize the algorithm by solving the following problem

which maximizes the average energy harvested

max
KA

J̄K(KA), (22)

subject to (17b) and (17c), and using [20, Algorithm RED]. This

alternating minimization technique is guaranteed to converge since

in both fixed A and fixed B steps, the objective function decreases.

We note the model considered and subsequently the error expres-

sion studied in [11, eqn.18] is different from (21). The two expres-

sions would be equal if RIR = I. In our formulation, this is not re-

quired. It is also worth mentioning that from a precoder design point

of view, the analysis in [11] is restricted to the case where nt ≤ ns,

since it is not clear whether it is possible to produce a solution in

the form A ∈ C
nt×ns satisfying KA = AAH from a transmit co-

variance matrix (KA ∈ C
nt×nt ) found by solving [11, eqn.20] if

nt > ns.

5. NUMERICAL RESULTS

For our numerical results, we consider the practical channel models

considered in [14, 15]. In particular the antenna correlation matrices

are given by

[Rc]m,n = e−j2π(n−m)dc cos(θ0
c
)e−0.5(2π(n−m)dc sin(θc)σc)

2

,

where c = T, IR,ER corresponds to the transmitter, the informa-

tion receiver and the energy receiver respectively. The normalized

antenna spacing at the transmitter and the information/energy re-

ceiver are denoted by dT and dIR/dER. Here θT ∼ N (θ0T , σ
2
T ) de-

notes the angle of departure for the transmitter. Similarly the angle of

arrival for information/energy receiver is given by θc ∼ N (θ0c , σ
2
C)

where c = IR/c = ER. The mean channel component is given by

H
0
c =

L
∑

1

βiac(θc,i)a
T
c (θT,i), (23)
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Fig. 1. Average mean-square error versus energy harvesting require-

ment, K = 0.1.

where c = T, IR,ER. Here aT(θT,i) is the array steering vector

at the transmitter and aIR(θIR,i)/aER(θER,i) is the array response

vector at IR/ER corresponding to ith dominant path in the IR/ER

channel. βi is the corresponding complex path amplitude. Here

ac(θ) = [1 ej2πdc cos(θ) . . . ej2π(nc−1)dc cos(θ)]. (24)

The Rician-K factors for information and energy receiver channels

are given as follows: Kc = ||H0
c ||

2/E[||Tc||
2], where c = I, E

[14]. Rician-K factor gives a parametrization for the ratio of the

power in the mean component of the channel to the power in the

fading component [14, 15]. We consider the following parameters

for our experiments: dc = 0.5, σ2
c = π/128 for c = T, IR,ER;

L = 1, β1 = 1, θIR,1 = θ0IR = π/6, θER,1 = θ0ER = π/3,

θT,1 = θ0T = π/4. KI = KE = K ∈ {0.1, 1}. Let nt =
4, nr =ne=4, ns = 2, KwI

= σ2
w,II, σ2

w,I = 1, P = 1000 (Ws).

ǫ = 10−6ns. We assume that the system parameters, including the

power constraint and the energy harvesting constraints, are scaled to

the proper ranges. Discussions on the admissible values can be found

in [1]. The associated convex optimization problems are solved using

[18, 19].

In our numerical results we compare three different strategies:

TX-RR, TX-MM, TX-RM. TX-RR is the proposed design for the so-

lution of (10) found by Algorithm 1. TX-MM corresponds to the

strategy that uses the channel means as true channel matrices and

optimizes the error under the energy harvesting constraint accord-

ingly. This scenario corresponds to solving (10) with RT = 0̄,

RIR = 0̄, RER = 0̄ where 0̄ is the zero matrix of appropriate

dimensions. TX-RM corresponds to the robust error strategy found

under a mean energy harvesting channel. Here transmitter assumes

the channel mean is the actual channel realization in the energy har-

vesting channel whereas it provides a robust solution for the informa-

tion transmission channel. This scenario corresponds to solving (10)

with RER = 0̄. In our results, for all scenarios, the mean-square er-

ror (MSE) performance is reported as the average over the channel,

i.e. evaluating (15) with the estimator in (20) for B. The MSE values

normalized by dividing the MSE with ns = tr[Ks] are presented in

the figures.

We now study the trade-off between the average error and the en-

ergy harvesting requirements in Fig. 1 for K = 0.1 and in Fig. 2 for

K = 1. We observe that the best error performance is exhibited by

the fully robust solution TX-RR. It is observed that the advantage of

the robust solution is more prominent for high levels of energy har-

vesting demand. For low energy harvesting requirements TX-RR and

TX-RM show similar performance. In this range, the transmissions

solely optimized for information transfer provide enough power to

meet relatively low levels of energy harvesting requirements. For

higher values of EH constraints, the main advantage of TX-RR over

TX-RM is the fact that the transmitter is aware of the additional scat-
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Fig. 2. Average mean-square error versus energy harvesting require-

ment, K = 1.

tering and can adjust its transmission to take advantage of these to

deliver power to the energy receiver. The fully non-robust solution

(TX-MM) performs worst as expected. The close performance of TX-

RM and TX-MM for high energy harvesting requirements is due to

the necessity for the transmitter to optimize its transmission to meet

these high requirements leaving little room for robust error reduction.

Comparing Fig. 1 with Fig. 2 we observe that, as expected, the gap

between the fully robust solution and the other solutions is smaller

for the K = 1 case, which is the case when the scattering component

of the channel is less dominant.

6. CONCLUSIONS

Robust solutions for precoder design in SWIPT systems are investi-

gated for MIMO channels with Rician fading. Our design method-

ologies allowed us to provide solutions even for scenarios where the

number of transmit antennas is larger than the length of data vector.

We have illustrated that significant gains compared to non-robust de-

signs are obtained by the proposed robust designs, especially in cases

where the scattering component of the channel is strong.

7. APPENDIX

Here we give the proof of Lemma 3.1. Using Schur complement

[21, A.5.5], we equivalently write the expression in (18c) as a linear

matrix inequality

ZA =

[

I AH

A KA

]

� 0. (25)

We note that the optimization problem in (18) can be alternatively

written in terms of the positive semi-definite variable ZA instead of

A,KA.

We observe that (18) is the SDP relaxation of (9). (One can, for

instance, see [20, 2.7] for the general form of the SDP relaxations of

such quadratically constrained optimization problems.) By [20, Thm

2.2], (9) and its SDP relaxation have the same optimal value if the

relaxation is solvable and the number of constraints in the original

problem (9) is equal to or smaller than 2ns. We also observe that the

dual of (18) is strictly feasible since the regularity condition in [20,

2.10] holds. (This is due to the fact that the matrix associated with the

power constraints, identity, is positive definite.) Hence together with

the feasibility of (9), this implies solvability of SDP relaxation [20,

Cor. 2.1].

The above argument shows that the two problems have the same

optimum value. With regard to the optimal solutions, we observe

the following: An optimal solution for (9) can be constructed from

a solution of (18) using [20, Algorithm RED] or equivalently [22,

Algorithm 1]. Using these algorithms on an optimal ZA will result

in a rank-constrained optimal ZA solution. Due to [20, Lemma 2.1],

an optimal solution A for (9) is given by the lower left nt×ns matrix

of this rank-constrained ZA.
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[18] R. H. Tütüncü, K. C. Toh, and M. J. Todd, “Solving

semidefinite-quadratic-linear programs using SDPT3,” Math-

ematical Programming, vol. 95, no. 2, pp. 189–217, 2003.

[19] CVX Research Inc., “CVX: Matlab software for disciplined

convex programming 2.0.” http://cvxr.com/cvx, 2012.

[20] A. Beck, “Convexity properties associated with nonconvex

quadratic matrix functions and applications to quadratic pro-

gramming,” Journal of Optimization Theory and Applications,

vol. 142, no. 1, pp. 1–29, 2009.

[21] S. Boyd and L. Vandenberghe, Convex Optimization. Cam-

bridge University Press, 2004.

[22] Y. Huang and D. Palomar, “Rank-constrained separable

semidefinite programming with applications to optimal beam-

forming,” IEEE Transactions on Signal Processing, vol. 58,

no. 2, pp. 664–678, 2010.

3191


