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ABSTRACT
This paper studies the energy management problem for two self-
interested microgrids with integrated renewable energy and energy
storage systems, which can exchange energy with each other through
the transmission line connecting them. Microgrids are willing to co-
operate if and only if both can benefit from the energy cooperation,
e.g. achieve lower energy costs as compared to the without energy
cooperation case, while sharing limited information due to privacy
considerations. We thus propose an iterative algorithm for the par-
tially cooperative energy management problem, which aims to re-
duce energy costs of both microgrids simultaneously, while shar-
ing limited information. To provide performance benchmark, we
also consider the fully cooperative energy management problem, for
which we ideally assume that microgrids share all their information
to minimize their total energy cost. Last, we evaluate our proposed
algorithms for the partially and fully cooperative energy manage-
ment via simulations based on the Tucson power system data.

Index Terms— Microgrids, energy cooperation, smart grid.

1. INTRODUCTION
The increasing trend in the electrical energy consumption has in-
creased the need for conventional fossil fuel based energy genera-
tions, which are costly and also damaging to the environment. Re-
newable energy has emerged as an alternative solution to address the
growing energy consumption. As a result, microgrids that integrate
a networked group of renewable energy generators and distributed
loads have become essential components of smart grids.

Unlike the conventional energy, renewable energy is intermit-
tent in nature; thus, it does not ensure the reliable operation of mi-
crogrids at all time. The traditional approach to mitigate renewable
energy fluctuations is deploying energy storage systems; however,
relying solely on energy storage systems may not be a viable so-
lution since they incur high installment and maintenance costs and
also have practically limited capacities. Another approach is en-
abling energy cooperation among geographically distributed micro-
grids, where microgrids with energy surplus compensate those with
energy deficit. The energy cooperation among microgrids can be
performed under the coordination of a central controller, which has
access to all or part of the information of cooperating microgrids.
If the microgrids belong to the same entity or different entities with
common interests, they share all their information with the central
controller. The central controller then minimizes the total energy
cost of all microgrids given their provided information. Otherwise,
if the microgrids belong to different self-interested entities, they only
share limited information with the central controller due to privacy
considerations. In order for self-interested microgrids to have energy
cooperation with each other, we need to motivate them by offering
some benefits in return, e.g., reductions in their energy costs.

In this paper, we study the energy management problem for
two self-interested but cooperative microgrids that are connected to

each other via a dedicated power transmission line and also to the
main grid. Each microgrid consists of renewable energy genera-
tors, an energy storage system, and an aggregate load. We assume
that renewable energy generations in microgrids can be perfectly
predicted without any error. In this case, we propose a partially
cooperative energy management paradigm, under which the cen-
tral controller coordinates the energy exchanged between microgrids
based on the limited information received from them. Given the ex-
changed energy, each microgrid independently optimizes the energy
charged/discharged to/from its energy storage system and that drawn
form the main grid so as to minimize its energy cost. To motivate
the energy cooperation between the two microgrids, we devise an
iterative algorithm for the central controller to gradually update the
energy exchanged between microgrids such that their energy costs
reduce simultaneously as compared to the without energy coopera-
tion case, i.e., they operate independently without energy exchange.
To provide performance benchmark, we further consider the ideal
case that microgrids have common interests and thus share all their
information with the central controller. We then formulate the fully
cooperative energy management problem, under which the central
controller jointly optimizes the energy exchanged between micro-
grids, that charged/discharged to/from their energy storage systems,
and that drawn from the main grid by each microgrid to minimize
the total energy cost of both microgrids. Last, we present simulation
results based on the real data of Tucson power system [1] to com-
pare the total energy cost of microgrids resulting from the partially
cooperative energy management versus that of the fully cooperative
counterpart.

There have been a handful of prior studies on the energy man-
agement for a single microgrid [2] as well as multiple microgrids
[3–9]. Particularly, [3–6] studied the fully cooperative energy man-
agement, for microgrids with common interests, to minimize their
total energy cost by assuming full information sharing between mi-
crogrids and the central controller [3, 4] or limited information shar-
ing [5, 6]. However, microgrids may not have common interests;
as a result, the fully cooperative energy management is not always
valid in practice. On the other hand, [7–9] studied the partially
cooperative energy management for self-interested microgrids us-
ing game-theoretical approaches [7, 8] or heuristically designed al-
gorithms based on multi-agent systems [9]. Although [7–9] have
shown interesting results on the energy management problem for
self-interested microgrids, they did not provide a complete view of
the problem. For instance, it is not clear under which circumstances
microgrids should exchange energy with each other. The energy
trading (selling/buying) among microgrids was also not modeled
in [7–9].

In contrast to the aforementioned works, in this paper we pro-
pose an algorithm for the partially cooperative energy management
of microgrids under a practical setup with two self-interested micro-
grids that can exchange energy given known prices. In particular,
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our algorithm aims to reduce energy costs of both microgrids simul-
taneously, while limited information is exchanged with the central
controller. The obtained results show that our proposed algorithm
is helpful to motivate self-interested microgrids to cooperate with
each other, since both can benefit from the energy cooperation while
preserving their privacy.

2. SYSTEM MODEL

We consider a power system consisting of two microgrids that are
connected to each other and also to the main grid via separate trans-
mission lines. Each microgrid, denoted by index j, j∈J ={1, 2},
consists of renewable energy generators, an energy storage system,
and an aggregate load. The two microgrids exchange energy given
known prices that are specified based on a certain agreement of both
microgrids. The energy cooperation is coordinated by a central con-
troller that microgrids are trusting of and has access to all or part
of the information of microgrids. Our goal is to devise an algorithm
to optimize the energy exchanged between microgrids such that their
energy costs decrease simultaneously as compared to the without en-
ergy cooperation case, while sharing only limited information with
the central controller due to privacy considerations.

For the convenience of analysis, we assume a time-slotted sys-
tem with slot index i, i ∈ N = {1, . . . , N}, where N denotes the
total number of time slots for scheduling. We also assume a quasi-
static time-varying energy model, in which the rate of the renewable
energy generation at each microgrid is constant within each time slot,
while may change from one time slot to another. Furthermore, we
assume that the duration of each time slot is normalized to a unit
time; hence, we use power and energy interchangeably in this paper.
In the following, we define our system model in detail.
• Microgrids’ Energy Costs: We consider a linear time-varying cost
model for the conventional energy drawn from the main grid by each
microgrid [10]. Denote Gj,i≥0 as the energy drawn from the main
grid by microgrid j at time slot i. The energy cost for microgrid j at
time slot i is expressed as λj,iGj,i, where λj,i > 0 is the price of a
unit of energy offered by the main grid. We assume that prices λj,i,
∀j∈J , ∀i∈N , are known to microgrids.
• Energy Storage: We denote the energy charged (discharged) to
(from) the energy storage system of microgrid j at time slot i as
Cj,i ≥ 0 (Dj,i ≥ 0). The energy losses during charging and dis-
charging processes are specified by the charging and discharging ef-
ficiency parameters, denoted by 0 < αcj < 1 and 0 < αdj < 1,
respectively. Denote the state (stored energy) of the energy storage
system of microgrid j at the beginning of time slot i as Sj,i ≥ 0.
Then, the energy storage dynamics is obtained as Sj,i+1 = Sj,i +
αcjCj,i − Dj,i/α

d
j , ∀i ∈ N . We also denote Smax

j ≥ 0 and
Smin
j ≥ 0 as the storage capacity and the minimum energy required

in storage of microgrid j, respectively. We thus have the following
constraints for the energy storage system of microgrid j

Smin
j ≤S1,j + αcj

i∑
k=1

Cj,k − 1/αdj

i∑
k=1

Dj,k≤Smax
j , ∀i ∈ N (1)

where Smin
j ≤Sj,1≤Smax

j , ∀j ∈J , are assumed by default.
• Microgrids’ Net Energy Profiles: We consider microgrids with re-
newable energy integration. We define the total generated renewable
energy offset by the aggregate load in microgrid j at time slot i as
the net energy profile, denoted by ∆j,i. In this paper, we assume that
∆j,i’s can be perfectly predicted and thus are known to microgrids
(e.g., in day-ahead energy management).
• Microgrids’ Energy Exchange: Let Ej,i ≥ 0 denote the power
transferred from microgrid j to microgrid ̄, ̄ ∈ J \{j}, at time slot

i. In practice, some power will be lost while flowing over transmis-
sion line due to the ohmic resistance of the line. Denote R > 0
and V > 0 as the ohmic resistance of the transmission line con-
necting the two microgrids per length unit and its operating volt-
age, respectively. The transmission loss resulted from flowing Ej,i
amount of energy over the transmission line is modeled as βE2

j,i,
where β = (R · d)/V 2 [10]. As a result, the net power received
in microgrid ̄ from microgrid j at time slot i can be expressed as
Ej,i − βE2

j,i.
1 Moreover, the power transferred over the line con-

necting the two microgrids is constrained by the transmission line
capacity, denoted by 0 ≤ E < 1/(2β), due to, e.g., thermal limi-
tations of its conductors. We thus have the following constraints for
the power transferred from microgrid j to ̄ as

0 ≤ Ej,i ≤ E, ∀i ∈ N . (2)

Intuitively, it is not optimal for microgrids to exchange energy at the
same time given the energy loss in the transmission lines; hence, we
only consider {Ej,i} satisfying

Ej,i · Ē,i = 0, ∀i ∈ N . (3)

Last, we denote ωj,i ≥ 0 as the price that microgrid j sells a unit
of energy to microgrid ̄ at time slot i. We assume that microgrids
always exchange energy with each other in lower prices compared to
those offered by the main grid, i.e., ωj,i < λj,i. The monetary profit
for microgrid j at time slot i obtained from selling Ej,i amount of
energy to microgrid ̄ is ωj,iEj,i, while the monetary profit for mi-
crogrid ̄ is −ωj,iEj,i.2
• Microgrids’ Energy Neutralization Constraints: We assume that
microgrid j meets its load by 1) using its renewable energy gener-
ation and/or 2) discharging its energy storage system and/or 3) pur-
chasing energy from microgrid ̄ and/or 4) purchasing conventional
energy from the main grid. The energy neutralization constraints in
microgrid j is thus expressed as

Gj,i + ∆j,i +Dj,i − Ej,i + Ē,i − βE2
̄,i ≥ Cj,i, ∀i ∈ N . (4)

Note that in case of renewable energy surplus ∆i > 0, part of the
energy may be curtailed due to the limited capacity of the energy
storage system. In this case, (4) needs to hold with a strict inequality.

3. PARTIALLY COOPERATIVE ENERGY MANAGEMENT
We define Fj(e) as the minimum energy cost of microgrid j, given
any energy exchange vector e=[E1,1 . . .E1,N E2,1 . . .E2,N ]T, with
Ej,i, ∀j ∈ J , ∀i ∈ N , satisfying (2) and (3). Specifically, we
formulate the following problem for achieving the minimum energy
cost in microgrid j.

(P1− j) :

Fj(e)= min
{Gj,i},{Cj,i},{Dj,i}

N∑
i=1

(λj,iGj,i−ωj,iEj,i+ω̄,iĒ,i)

s.t. (1) and (4),

Gj,i ≥ 0, Cj,i ≥ 0, Dj,i ≥ 0, ∀i ∈ N .

It can be verified that Fj(e) is a convex function of e [11]. More-
over, given any energy exchange vector e, energy costs of both mi-
crogrids can be reduced simultaneously if and only if there exists
sufficiently small ∆e = [∆E1,1 . . .∆E1,N ∆E2,1 . . .∆E2,N ]T ,

1Due to the fact that voltages of lines connecting the main grid to micro-
grids are high (over 220 KV), it follows that their β’s are very small and thus
we can ignore the resulting losses in these lines.

2Note that microgrid ̄ pays ωj,i to draw Ej,i amount of energy from
microgrid j, while it receives Ej,i − βE2

j,i due to the transmission loss.
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with e+ ∆e satisfying (2) and (3), such that Fj(e+ ∆e) < Fj(e),
∀j ∈ J . In the following, we first derive the dual problem of (P1-
j). Next, we characterize the effect of changing the energy exchange
vector e to e+ ∆e on the minimum energy cost of microgrid j, i.e.,
we derive Fj(e + ∆e)− Fj(e). Last, we investigate whether such
∆e exists or not.

Let γj,i ≥ 0 be the Lagrange dual variables corresponding to
constraint (4). The dual function of (P1-j) is given by

g({γj,i}) = min
{Gj,i},{Cj,i},{Dj,i}

( N∑
i=1

(λj,iGj,i−ωj,iEj,i+ω̄,iĒ,i)

−
N∑
i=1

γj,i(Gj,i+∆j,i+Dj,i−Cj,i−Ej,i+Ē,i − βE2
̄,i)

)
s.t. (1),

Gj,i ≥ 0, Cj,i ≥ 0, Dj,i ≥ 0.

The dual problem of (P1-j) is thus expressed as

(D1) : max
{γj,i≥0}

g({γj,i})

Lemma 3.1. In order for g({γj,i}) to be bounded from below, it
must hold that γj,i ≤ λj,i, ∀i ∈ N .

Denote the optimal solution to (D1) as 0≤ γ∗j,i ≤λj,i, γ∗j,i∈U ,
where U is the set of all optimal dual variables. We then have the
following lemma.
Lemma 3.2. Under any given ∆e, the change in the energy cost of
microgrid j by adjusting energy cooperation decisions is given by

Fj(e+∆e)−Fj(e)

=

N∑
i=1

2∑
k=1

f+
j,Ek,i

[∆Ek,i]
+−f−j,Ek,i

[−∆Ek,i]
+, (5)

where [x]+ , max(0, x), ∆e is sufficiently small, e + ∆e ≥ 0,
f+
j,Ek,i

and f−j,Ek,i
, are right-partial and left-partial derivatives of

Fj(e) with respect to Ek,i, respectively, given by3 [11, 12]

f+
j,Ek,i

=


∂Fj(e)

∂E+
j,i

= maxU{γ∗j,i−ωj,i} k = j

∂Fj(e)

∂E+
̄,i

= maxU{2βĒ,iγ∗j,i− γ∗j,i +ω̄,i} k = ̄
(6)

f−j,Ek,i
=


∂Fj(e)

∂E−
j,i

= minU{γ∗j,i−ωj,i} k = j

∂Fj(e)

∂E−
̄,i

= minU{2βĒ,iγ∗j,i− γ∗j,i +ω̄,i} k = ̄
(7)

Given the partial derivatives in Lemma 3.2, we seek for suf-
ficiently small ∆e with e + ∆e satisfying (2) and (3), such that
Fj(e + ∆e) < Fj(e), ∀j ∈ J . We investigate the existence of
such ∆e by solving the following feasibility problem.

(F1) : find {∆Ej,i}
s.t. |∆Ej,i| ≤ ρ, ∀j ∈ J , ∀i ∈ N (8)

0≤Ej,i+∆Ej,i≤ E, ∀j ∈ J , ∀i ∈ N (9)
(Ej,i+∆Ej,i) ·(Ē,i+∆Ē,i) = 0, ∀i ∈ N (10)

2∑
k=1

N∑
i=1

f+
j,Ek,i

[∆Ek,i]
+−f−j,Ek,i

[−∆Ek,i]
+<0, ∀j ∈ J (11)

where ρ > 0 is a small constant. Constraint (8) restricts each ∆Ej,i
to take small steps, since (5) is only valid nearby e. Constraints

3In the case that U has only one element, the right-partial and the left-
partial derivatives become equal and Fj(e) is thus differentiable.

Table 1: Algorithm for the Partially Cooperative Energy Management
Algorithm 1

a) Initialize e← 0, ε− < 0, ε+ > 0, ρ > 0, and Flag← 0.
b) While Flag 6= 1 do:

1) Given the energy exchange vector e, each microgrid j
computes f+

j,Ek,i
and f−j,Ek,i

using (6) and (7), respec-
tively, and passes them to the central controller.

2) Given the received partial derivatives, the central con-
troller investigates the existence of ∆e by solving the
feasibility problem in (F1). If (F1) is infeasible, Flag=
1 is set. Otherwise, the energy exchange vector e is
updated as e = e + ∆e.

c) The central controller announces e to microgrids as the final
decision for the energy exchange.

(9) and (10) are due to (2) and (3), respectively. Last, constraint (11)
ensures that energy costs of both microgrids decrease simultaneously
after changing the energy exchange vector e to e + ∆e. Note that
(F1) is a non-convex optimization problem due to constraints (10)
and (11). However, constraints (8) and (9) specify a convex set over
{∆Ej,i}. In order to solve (F1), we can search over the set specified
by constraints (8) and (9) to find {∆Ej,i} that satisfy (10) and (11).

The algorithm for solving the partially cooperative energy man-
agement of microgrids is given in Table 1. The algorithm starts from
the case of no energy cooperation between microgrids, i.e., e = 0.
The following procedures are implemented iteratively. In each iter-
ation, given e, each microgrid j computes f+

j,Ek,i
and f−j,Ek,i

using
(6) and (7), respectively, where partial derivatives are then passed to
the central controller. The central controller then searches for ∆e by
solving the feasibility problem (F1). If (F1) is feasible, then the cen-
tral controller updates the energy exchange vector e as e = e + ∆e
and returns the new energy exchange vector to microgrids for the
next iteration. The procedure shall proceed until (F1) becomes in-
feasible, i.e., further update is impossible. Given the obtained energy
exchange vector e, each microgrid independently solves the linear
programming in (P1-j) to derive {Gj,i, Cj,i, Dj,i}.
Remark 3.1. The energy cost of microgrid j resulting from the par-
tially cooperative energy management cannot be higher than that
without energy cooperation, i.e., Fj(0). Otherwise, microgrid j can
simply operate independently without any energy exchange and in-
formation sharing with the other microgrid/central controller.

It is worth noting that in Algorithm 1 in Table 1, each microgrid
preserves its privacy, since it only needs to share the right-partial and
left-partial derivatives of its minimum energy cost function Fj(e)
with the central controller; meanwhile it can achieve a lower energy
cost as compared to the without energy cooperation case.

4. BENCHMARK CASE: FULLY COOPERATIVE ENERGY
MANAGEMENT

In this section, we ideally assume that the two microgrids have com-
mon interests and cooperate with each other in order to minimize
their total energy cost. We formulate the fully cooperative energy
management for the two microgrids as follows.

(P2) : min
{Gj,i≥0},{Cj,i≥0},{Dj,i≥0},{Ej,i≥0}

2∑
j=1

N∑
i=1

λj,iGj,i

s.t. (1), (2), and (4), ∀j ∈ J .

It can be verified that (P2) is a convex optimization problem.
Note that in (P2), we have not explicitly included (3) in the con-
straints. However, it will be shown that the optimal solution to
(P2) always satisfies (3). Denote the optimal solution to (P2) as
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{G?j,i,C?j,i,D?
j,i, E

?
j,i}. The optimal solution to (P2) is given in the

following proposition.
Proposition 4.1. The optimal solution to (P2) is given by

E?j,i=


0 γ?̄,i = 0

min

([
γ?̄,i−γ

?
j,i

2γ?̄,iβ

]+
,E

)
otherwise , ∀j ∈ J , ∀i ∈ N (12)

where 0≤γ?j,i≤λj,i, ∀j ∈J, ∀i∈N, are the optimal Lagrange dual
variables corresponding to constraints in (4). Given {E?j,i} in (12),
{G?j,i,C?j,i,D?

j,i} are solutions to the following linear programming
problem that can be solved by existing softwares such as CVX [13].

min
{Gj,i≥0},{Cj,i≥0},{Dj,i≥0}

2∑
j=1

N∑
i=1

λj,iGj,i

s.t. (1), ∀j ∈ J
Gj,i+∆j,i+Dj,i−Cj,i−tj,i ≥ 0, ∀j ∈ J , ∀i ∈ N (13)

where tj,i = E?j,i − E?̄,i + βE?̄,i
2.

From (12), it follows that given any (γ?j,i, γ
?
̄,i), E?j,i and E?̄,i

cannot be non-zero simultaneously and thus (3) always holds.
Main differences between the partially cooperative and fully co-

operative energy management schemes are highlighted as follows:
• The optimal solution in Proposition 4.1 resulted from the fully co-
operative energy management can be only achieved when the central
controller has access to all the required information from both micro-
grids. In this case, each microgrid feeds back its information (includ-
ing its net energy profile, the available energy in its energy storage
system, etc.) to the central controller. This is in contrast to Algo-
rithm 1, proposed for the partially cooperative energy management,
which only requires to exchange 2N scalars (i.e., the partial-left
and partial-right derivatives of Fj(e) with respect to Ej,i, ∀j ∈ J ,
∀i ∈ N ) between microgrids and the central controller. Therefore,
Algorithm 1 preserves the privacy of microgrids.
• Algorithm 1 minimizes energy costs of the two microgrids simul-
taneously based on the gradients of two convex cost functions (see
(11) in (F1)), which differs from the conventional gradient descent
method in convex optimization which minimizes a single convex ob-
jective [11]. In contrast, in (P2), one microgrid may incur a higher
energy cost compared to the case of no energy cooperation, although
the total energy cost of the two microgrids is reduced.

5. SIMULATION RESULTS
In this section, we provide simulation results to evaluate the per-
formance of the proposed algorithms for microgrids’ partially ver-
sus fully cooperative energy management. We consider two micro-
grids located in Tucson, Arizona, United States [1].4 Microgrid 1
and microgrid 2 own 70 and 80 Vestas V90 wind turbines, respec-
tively, where each turbine has the rated output of 3 MW. We model
{∆j,i} as the aggregate hourly predicted wind energy generations of
all wind turbines in microgrid j over 12 hours (from 12 PM to 11
PM, 5 August 2006) offset by its load that is set as 25 MW and 7
MW for microgrid 1 and microgrid 2, respectively. Parameters of the
energy storage systems in microgrids are set as αcj = 0.7, αdj = 0.8,
Sj,1 = 0, Smin

j = 0, and Smax
j = 10 MW, ∀j ∈ J . We consider

the type of transmission line connecting the two microgrids as Pea-
cock [14] with R= 0.0945 Ω/MW. Given d = 45 Km and V = 33
KV, we have β=0.0039 (MW)−1. Last, we set λj,i=89.85 $/MW,
∀j ∈ J , ∀i ∈ N [15].

4We assume that microgrid 1 comprises of wind generators with site IDs:
151, 161, 162, 163, 170, 171, 189, and microgrid 2 with site IDs: 152, 172,
181, 190, 200, 216, 219, 220 [1].
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By setting ω1,i = 40 $/MW and ω2,i = ω2, ∀i ∈ N , we plot
the total energy cost of the two microgrids over ω2 in Fig. 1. It is
observed that the total energy cost of microgrids resulting from the
fully cooperative energy management is the lowest, since both share
all their information with the central controller and the total energy
cost is minimized. The obtained results also show that with only
limited information sharing, the total energy cost of the two self-
interested microgrids can be remarkably reduced as compared to the
case of no energy cooperation, while it also performs close to the
lower bound derived from the fully cooperative energy management.

Next, we set ω2 = 40 $/MW and Smax
j = Smax, ∀j ∈ J .

Fig. 2 shows the total energy cost of microgrids over Smax. For
small values of Smax, the difference among the total energy cost
of microgrids resulting from partially/fully energy management and
the case of no energy cooperation is large, while the difference de-
creases with increasing Smax. This is because when Smax is small,
any energy deficit is mainly satisfied by drawing energy from the
other microgrid and/or the main grid. Therefore, energy cooperation
saves the total energy cost significantly as it reduces the purchase of
more expensive energy from the main grid. However, as Smax be-
comes large, each microgrid can rely more on its own energy storage
system to deal with energy deficit and thus the energy exchange be-
tween microgrids becomes less effective. It is also observed that the
difference in total energy costs between the partially and fully en-
ergy management is small and does not vary much with Smax. This
shows that energy cooperation can greatly reduce the need for large
energy storage systems.

6. CONCLUSION
In this paper, we study the energy management problem for two self-
interested microgrids with energy cooperation. We devise an itera-
tive algorithm by which energy costs of both microgrids can reduce
simultaneously while they share only limited information. We then
evaluate the performance of the proposed algorithm by simulations
based on real system data. Our results show that using the proposed
partially cooperative energy management algorithm, both microgrids
achieve lower energy costs as compared to the case without energy
cooperation and the total energy cost in this case performs close to
the lower bound derived from the fully cooperative energy manage-
ment benchmark.
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