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ABSTRACT

A game-theoretic framework based on smart pricing in power grids
that incorporates heterogeneous user preferences and renewable power
uncertainty is considered. The system operator adopts an adaptive pric-
ing policy that depends on total consumption and renewable generation.
The pricing policy sets up a non-cooperative game of incomplete infor-
mation among users with heterogeneous preferences. Selfish, altruistic
and welfare maximizing user behavior models are proposed. Information
exchange models in which users only have private information, commu-
nicate or receive broadcasted information are considered. For each pair of
behavior and information exchange models, rational consumption strat-
egy is characterized. Numerical analyses reveal that communication is
beneficial for the expected aggregate payoff while it does not affect the
expected net revenue of the system operator. Moreover, the additional
information to the users helps reduce the variance of total consumption
among runs increasing the accuracy of demand predictions.

Index Terms— Smart grid, demand response, game theory.

1. INTRODUCTION

Smart pricing policies emerge as prominent methods to alleviate the com-
plications in power balancing caused by uncertainties both on the con-
sumer and on the supply side in power systems. The uncertainty on
the consumer side is caused by changes in user consumption preferences
while the uncertainty on the supply side is due to renewable resources
[1–4]. Smart meters that control the power consumption of customers,
and enable information exchange between meters and the system operator
(SO) provide the infrastructure to implement smart pricing policies [5].

Real-time pricing (RTP) is a smart pricing policy where price de-
pends on instantaneous consumption of the population [2, 6, 7]. In RTP,
the SO shares part of the risk and reward with its customers by setting
price based on the total consumption which depends on user population
behavior. Therefore, it is customary to propose game theoretic models
of consumption behavior where users strategically reason about behavior
of others to determine their consumption [2, 3, 6–12]. The specifics of
the consumer behavior model and the information provided impact the
welfare of the system and is critical in assessing the benefits of a pric-
ing scheme [12]. Given a RTP scheme our goal in this paper is to char-
acterize price anticipatory behavior models, in which users strategically
reason about their impact on price, under different information exchange
schemes and assess their impact on welfare and SO’s net revenue.

The SO exercises a RTP mechanism in which customers agree to
a linear price function that depends on the total consumption and a pa-
rameter to alleviate the renewable generation uncertainty (Section 2.1).
The user utilities depend on heterogeneous consumption preferences and
price (Section 2.2) [13, 14]. We propose three models of consumer be-
havior based on whether a user regards his selfish utility, the population’s
aggregate utility or the welfare (Section 2.3). As time progresses, the
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users’ consumption decisions reveal information about their preferences
which can be utilized in updating estimates of total consumption, and
hence price. For this, we provide three information exchange models,
namely, private, action sharing and broadcast (Section 2.4). In the private
model, users only receive the SO’s initial public signal. In action sharing
there exists a communication network which enables users to exchange
their consumption with immediate neighbors. In broadcast, the SO broad-
casts the total consumption after each time step. We formulate each user
behavior and information exchange model pair as a repeated game of in-
complete information and characterize equilibrium behavior (Section 4).
In [14] we provided a characterization of selfish players with private and
communication information exchange models. In this paper, we extend
the characterization to altruistic and welfare maximizing behavior and
broadcast information model. Moreover, we comparatively analyze the
effects of each pair of behavior and information exchange model on total
consumption, aggregate user utility and SO’s net revenue (Section 5).

Our findings can be summarized as follows. Providing more infor-
mation to the users does not hurt the SO’s expected net revenue and in-
creases the expected aggregate utility. In addition, it reduces the uncer-
tainty in total demand. Action sharing model eventually achieves the ex-
pected utility under full information when the network is connected. The
positive effects of sharing reduce with increasing preference correlation.
Preference correlation increase has a decreasing effect on the expected
aggregate utility for all behavior models. Finally, the inefficiency due to
selfish behavior diminishes as the number of customers grows.

2. DEMAND RESPONSE MODEL

There are N customers each equipped with a power consumption sched-
uler. Power consumption of user i ∈ {1, . . . , N} at time h ∈ H :=
{1, . . . , H} is denoted by lih. The sum of the power consumed byN cus-
tomers at time h yields the time slot total consumption Lh :=

∑
i∈N lih.

2.1. Real Time Pricing
The SO’s cost of supplying Lh amounts of power isCh(Lh) units. When
the generation cost per unit is constant,Ch(Lh) is a linear function ofLh.
More often, increasing the loadLh results in increasing unit costs as more
expensive energy sources are brought online. This results in superlinear
cost functions Ch(Lh) with a customary model being the quadratic form

Ch(Lh) =
1

2
κhL

2
h, (1)

for given constants κh > 0 that depend on the time slot h. The cost in
(1) has been experimentally validated for thermal generators [15] and is
otherwise widely accepted as a reasonable approximation [2, 6, 10].

The SO implements an adaptive pricing strategy whereby users are
charged a slot-dependent price ph that varies linearly with the total power
consumption Lh. The SO owns renewable source plants and incorporates
renewable source generation into the pricing strategy by introducing a
random variable ωh ∈ R that depends on the renewable power produced
at time h. The per-unit power price at time h is set as

ph(Lh;ωh) = γh(Lh + ωh), (2)
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where γh > 0 is a policy parameter to be determined by the SO based on
its objectives. In [13], we present how the operator can pick the policy pa-
rameter to minimize PAR or achieve a desired rate of return. The random
variable ωh depends on the renewable source generation in h. That is,
SO applies a price discount ωh < 0 when renewable sources yield above
their nominal benchmark capacity, otherwise it implies a price increase.
The specific dependence of ωh with the realized renewable generation
and the policy parameter γh, are part of the supply contract between the
SO and its customers. We assume that the SO uses a model on the renew-
able power generation to estimate the value of ωh at the beginning of time
h. The mean estimate ω̄h := Eωh [ωh] of the corresponding probability
distribution Pωh is made available to all users prior to time h.

The SO’s price function maps the total demand to the market price.
Observe that the price ph(Lh;ωh) at time h becomes known after the
end of the time slot. This is because prices depend on the total demand
Lh and the value of ωh which are unknown a priori.

2.2. Power consumer
User i’s consumption at time h, lih, depends on his consumption prefer-
ence for the time gih > 0 . We model the preference gih as a random
variable that may vary across time. User i receives a quadratically dimin-
ishing marginal utility that increases linearly with his preference gih and
decreases quadratically with αh, that is, gihlih−αhl

2
ih. The utility of i at

time slot h ∈ H is then captured by the difference between the marginal
utility of i with the monetary cost of consumption lihph(Lh;ωh),

uih(lih, Lh; gih, ωh) = −lihph(Lh;ωh) + gihlih − αhl
2
ih. (3)

Note that if the SO’s policy parameter is set to γh = 0, the utility of user
i is maximized by lih = gih/2αh – see [1, 2] for similar formulations.

User i’s utility depends on the total consumption at h Lh, that is, it
depends on the consumption of other users denoted by l−ih := {ljh :
j ∈ N \ i}. l−ih depends partly on respective preferences, i.e., g−ih,
which are, in general, unknown to user i. We assume, however, that there
is a probability distribution Pgh(gh) on the vector of preferences gh :=
[g1h, . . . , gNh]T from which the preferences are drawn. We further as-
sume that Pgh is normal with mean ḡh1 where ḡh > 0 and 1 is anN ×1
vector of ones, and covariance matrix Σh, Pgh(gh) = N (gh; ḡh1,Σh).
We use the operator Egh to signify expectation with respect to the distri-
bution Pgh and σh

ij to denote the (i, j)th entry of the covariance matrix
Σh. Note that users have equal average preferences. In general, σh

ij > 0
to account for correlated preferences due to, e.g., common weather. We
assume that if there is a change in the user preferences from time h to
h+ 1, the distributions of gh and gh+1 are independent.

At the beginning of time h the information available to users and the
operator is the expected effect of renewable sources on price ω̄h, the user
preference distribution Pgh and the parameters αh and γh. We assume
that Pgh is correctly predicted by the SO based on past data and is an-
nounced to the users. The SO also announces the parameter γh and its
expectation of ωh. In addition, each user knows his own preference gih.

2.3. Consumer behavior models
The aggregate utility at time h is the sum of consumer utilities,

Uh(lih, l−ih) :=

N∑
i=1

uih(lih, Lh; gih, ωh), (4)

and the net revenue of the SO defined as its revenue minus the cost (1)

NRh(Lh;ωh) := ph(Lh;ωh)Lh − Ch(Lh). (5)

The welfare of the overall system at time h is the sum of the aggregate
utility with the net revenue,

Wh(lih, l−ih) := Uh +NRh. (6)

User i is selfish when he wants to maximize individual utility in (3).
He is altruistic when he cares about the well-being of other users, that
is, aims to maximize Uh in (4) given his information on preferences of
others. Finally, user i might also consider the well-being of the entire
system and aim to maximize welfare Wh in (6) given his information.
We use the superscript Γ ∈{S, U, W} in uΓ

ih(lih, l−ih) to indicate that
user i maximizes his selfish payoff S, aggregate utility U or welfare W.

2.4. Information exchange models

Consumption behavior of other users at time h ljh can provide valuable
information about the consumption preferences gh in that time slot. This
information is of use to user i in estimating consumption for time h + 1
if the preferences of the users do not change in that time slot, that is,
gh = gh+1. Otherwise, the information is not helpful in estimating be-
havior of others for time h+1 because the change in the preference distri-
bution is independent. We present a list of possible information exchange
models under the assumption that the preferences remain the same for
a given amount of time starting from time h and lasting until there is a
change in the preferences, that is, gh = g0 := [g10, . . . , gN0] with prior
distribution Pg0 for the time zone T = {h ∈ H : gh = g0}. If there
is a change in the preference distribution we restart the information ex-
change process. The prediction of renewable source term Pωh is allowed
to vary for h ∈ T . We use IΩ

ih to denote the set of information available
to consumer i at time slot h ∈ T for the information exchange model Ω.

Private (P). The information specific to consumers is the merest possible
when it consists of the private preference gi0, that is, IPih = {gi0}.
Action Sharing (AS). Power control schedulers are interconnected via a
communication network represented by a graph G(N , E) with its nodes
representing the users N = {1, . . . , N} and edges belonging to the set
E indicating communication between nodes. After time slot h, user i’s
neighbors, Ni := {j ∈ N : (j, i) ∈ E}, send their consumption lNit :=
[li1t, . . . , lid(i)t] to user i where the vector of i’s d(i) := #Ni neighbors
is denoted by [i1, . . . , id(i)]. Hence, the information of user i at time slot
h ∈ T contains self-preference gi0 and the consumption of his neighbors
up to time h−1, that is, IAS

ih = {gi0, {lNit}t=1,...,h−1}. We assume that
the power consumption schedulers keep the received information private
and that they know the network structure G.
SO Broadcast (B). The SO collects all the user behavior at each time h
and broadcasts the total consumption Lh, that is, IBih = {gi0, L1:h−1}.

Behavior model, i.e., selfish (S), altruistic (U), or welfare (W) maxi-
mizer, and the information exchange model, i.e., private (P), action shar-
ing (AS) or SO broadcast (B) determine the consumption decisions of
user i. Next we define the user rational behavior for each behavior model
using the solution concept Bayesian Nash equilibrium (BNE).

3. BAYESIAN NASH EQUILIBRIA

User i’s load consumption at time h ∈ T is determined by his belief qΩ
ih

and strategy sih. The belief of i is a conditional probability distribution
on g0 given IΩ

ih, qΩ
ih(·) := Pg0(·|IΩ

ih). We use EΩ
ih[·] := Eg0 [·|IΩ

ih] to
indicate conditional expectation with respect to belief of qih. In order to
second-guess the consumption of other customers, user i forms beliefs
on preferences given the common prior Pg0 and his information IΩ

ih. His
strategy maps any possible local observation that he may have to his con-
sumption, that is, sih : IΩ

ih 7→ R for any IΩ
ih. In particular, user i’s best

response strategy is to maximize expected utility with respect to his belief
qΩ
ih given the strategies of other customers s−ih := {sjh}j 6=i,

BRΓ(IΩ
ih; s−ih) = arg max

lih
EΩ

ih

[
uΓ
ih(lih, s−ih; gi0, ωh)

]
. (7)

Before we define the BNE solution concept, we state the following
lemma that characterizes the general form of the best response function
for all the consumer models Γ = {S, U, W}.
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Lemma 1 The best response strategy for the consumer behavior models
Γ ∈ {S, U, W} has the following general form

BRΓ(IΩ
ih; s−ih) =

gi0 − µΓ
hω̄h − λΓ

h

∑
j 6=i[E

Ω
ih[sjh]

)
2(τΓ

h + αh)
(8)

where λS
h = µS

h = τSh = γh, λU
h = 2γh, µU

h = τUh = γh, and
λW
h = 2κh, µW

h = 0, τWh = κh.

The proof follows by taking the derivative of the corresponding utility
with respect i’s consumption lih, equating to zero and solving the equality
for lih. A BNE strategy profile is such that each user maximizes his
expected utility uΓ

ih with respect to his own belief given that other user
play with respect to BNE strategy.

Definition 1 A Bayesian Nash equilibrium (BNE) strategy sΓ :=
{sΓ

ih}i∈N ,h∈T for the user behavior model Γ ∈ {S,U,W} is such
that for all i ∈ N , h ∈ T , and {IΩ

ih}i∈N ,h∈T ,

EΩ
ih

[
uΓ
ih(sΓ

ih, s
Γ
−ih; gi0, ωh)

]
≥ EΩ

ih

[
uΓ
ih(sih, s

Γ
−ih; gi0, ωh)

]
. (9)

A BNE strategy (9) is computed using beliefs formed according to Bayes’
rule. Note that in BNE strategy profile, no user at any given point in
time has a profitable deviation to another strategy – see [16–18] for more
details on the concept. In (9), users keep beliefs on others’ consumption,
which is a function of their beliefs and strategies, to respond optimally.
Equivalently, a BNE strategy is where users best respond as per (7) to
best response strategies of others, that is, sΓ

ih(IΩ
ih) = BR(IΩ

ih; sΓ
−ih) for

all i ∈ N , h ∈ T and IΩ
ih. Using this notion of BNE and Lemma 1, next

we characterize the unique linear BNE strategy for any Ω and Γ.

4. CONSUMERS’ BAYESIAN GAME

It suffices for user i to keep an estimate of the preference profile g0 in
order to keep an estimate of beliefs and strategies of other users [16]. We
define the preference profile augmented with mean ḡ0, g̃ := [gT

0 , ḡ0]T .
The mean and error covariance matrix of i’s belief at time h is denoted
by EΩ

ih[g̃] and Mi
g̃g̃(h) := E[(g̃ − E[g̃|IΩ

ih])(g̃ − E[g̃|IΩ
ih])T ], respec-

tively. Next result shows that, for an information exchange model Ω ∈{P,
AS, B}, there exists a unique BNE strategy that is calculated by a linear
weighting of EΩ

ih[g̃] and the weights are obtained by solving a set of lin-
ear equations based on the behavior model Γ ∈ {S, U, W} – see [19] for
the proof.

Proposition 1 Consider the Bayesian game defined by the payoff uΓ
ih for

Γ ∈ {S, U, W}. Let the information of customer i at time h ∈ T IΩ
ih

be defined by one of the information exchange models Ω ∈ {P, AS, B}.
Given the normal prior on the self-preference profile g0, the user i’s mean
estimate of the preference profile at time h ∈ T can be written as a linear
combination of g̃, that is, EΩ

ih[g̃] = TΩ
i,hg̃ where TΩ

i,h ∈ RN+1×N+1

for all h ∈ T , and the unique equilibrium strategy for i is linear in his
estimate of the augmented self-preference profile,

sΓ
ih(IΩ

ih) = vT
ihE

Ω
ih[g̃] + rih (10)

where vih ∈ RN+1 and rih ∈ R are the strategy coefficients. The strat-
egy coefficients are calculated by solving the following set of equations
for the consumer behavior models Γ ∈ {S,U,W}

vT
ihTΩT

i,h + ρΓ
hλ

Γ
h

∑
j∈N\i

vjhTΩT
i,h TΩT

j,h = ρΓ
hei ∀i ∈ N , (11)

rih + ρΓ
hλ

Γ
h

∑
j∈N\i

rΓ
jh = −ρΓ

hµ
Γ
hω̄h ∀i ∈ N (12)

where λΓ
h, µ

Γ
h, τ

Γ
h are as defined in Lemma 1 for Γ ∈ {S,U,W}, ρΓ

h =
(2(τΓ

h + αh))−1 and ei ∈ RN+1 is the unit vector.

Proposition 1 presents the computation of BNE consumption strate-
gies at each time which is integrated with belief propagation. The sched-
uler repeatedly determines its consumption strategy given behavior model
Γ and propagates its beliefs on g̃ given available information based on
the information exchange model Ω to use them in the next time. The
Bayesian belief propagation follows the LMMSE sequential estimates at
each time for the AS and B information models. The proof uses LMMSE
sequential estimates to show that the beliefs remain Gaussian and the
mean estimates are linear combinations of g̃ at all times for all models.
For each behavior Γ ∈ {S, U, W} the user solves a different set of equa-
tions in (11)-(12). This user can do locally by keeping track of how others
compute their beliefs [14]. For Private model, users do not receive any
new information within the horizon hence their mean estimate of g̃ is the
same, that is, TP

i,h = TP
i,1 for h ∈ T , which implies the set of equations

(11)-(12) need to be solved only once at the beginning to determine the
strategy for the time horizon. For Action Sharing, upon observing actions
of his neighbors lNih, user i has new relevant information about g̃ which
it can use to better predict the total consumption in future steps. In SO
Broadcast model, each user receives the total load at time h Lh that is
useful in estimating price in the following time. We detail the local com-
putations of scheduler i in an algorithm for the selfish and action sharing
model in [14]. See [19] for specific changes for each model pair.

4.1. Price-taking consumer behavior
Users are price takers Γ = K when they do not anticipate their effect
on price, that is, the selfish payoff in (3) depends on self consumption
lih and price ph. Given the price at time ph, consumers maximize their
payoff by lKih = (−ph + gih)/2αh. Users are charged hourly prices ph
determined by the SO maximizing hourly expected net revenue, that is,
ph = maxpE[pLK

h − Ch(LK
h )] where LK

h =
∑N

j=1 l
K
jh. Expected net

revenue maximization results in ph = (2αh + κh)ḡh/(4αh + 2Nκh).
Note that information models do not affect price-taking behavior.

5. NUMERICAL ANALYSIS
We analyze the performance under the behavior models Γ ∈ {S, U, W,
K} and the information exchange models Ω ∈{P, AS, B}. In each pair
of price anticipating behavior Γ ∈ {S, U, W} and information exchange
model consumers behave rationally following BNE strategy in Proposi-
tion 1. Price takers follow the model in Section 4.1. We consider average
consumption L̄ :=

∑
h Lh/H , aggregate utility U =

∑
h Uh/H , net

revenue NR =
∑

hNRh/H and welfare W =
∑

hWh/H as the per-
formance metrics of the model.

The setup contains H = 24 hours. We let the SO’s cost parameter
be κh = 1 for h ∈ H. The policy parameter is γh = 1.2 for all times –
see [13] for an extensive analysis on the effects of γh. There are N = 10
users. We consider a geometric network on a 3 mile by 5 mile radius with
a connection threshold of 2 miles. We analyze the effect of the population
size N and the network structure in Section 5.1. Each user has a decay
equal to αh = 1 for h ∈ H. In order for the information sharing models
to be relevant we assume that the preferences gh are realized once and at
the beginning of period as per the discussion in Section 2.4, that is, gh =
g. The preference g is normal with mean ḡ = 30 with identical variance
σii = 4 and homogeneous correlation σij . We analyze the effect of
correlation σij on the performance metrics by varying σij ∈ {0, 1, 2, 3}.
We further set ωh = ω for all h ∈ H. Unless otherwise stated, we let ω
have normal distribution with mean ω̄ = 0 and variance σω = 2.

We consider 100 instantiations of the random variables g and ω for
each σij ∈ {0, 1, 2, 3}. We compute the expected values of average con-
sumption, aggregate utility and net revenue (EL̄,EU,ENR) by taking
an average of all runs for a given correlation coefficient σij .

Our findings can be summarized as follows – see Table 1 in [19]
for complete results. With increasing correlation σij , EU and ENR
decrease for each Γ and Ω pair, e.g., when σij = 0 to σij = 3, EU
decreases from 187 to 182.5 for Γ = U. The ENR of the SO is the
largest when σij = 0 and Γ = K. However, the SO’s ENR for Γ =
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Fig. 1. Lh over time for Γ =S and Ω ∈{P, AS, B} for N =
{3, 5, 10, 15}. When the network is connected, AS model converges to
B model in the number of steps equal to the diameter of the network.

K drops from ENR = $122 when σij = 0 to ENR = $6.3 when
σij = 3. Moreover, for Γ = K, we observe that the variance of ENR
increases when σij changes from σij = 0 to σij = 3. Among Γ ∈{S, U,
W} SO attains the highest ENR when Γ = S, ENR = $67 for Ω = P
and σij = 0. Furthermore, when Γ ∈ {S, U, W}, the effect of correlation
coefficient on SO’s ENR is small, e.g., ENR = $66 when σij = 3
for Γ = S and Ω = P. ENR drops significantly when Γ = U, e.g., the
ENR drops to $20 when Γ = U. The model pair Γ = W and Ω = B,
achieves the highest EW for all σij , e.g., EW = 216 when σij = 0.
Among anticipatory behaviors Γ ∈ {S, U, W}, the lowest EW = 168
is when Γ = S and Ω = P for σij = 0. The loss due to selfishness is
more remarkable than the loss due to keeping information private, that
is, EW = 172 when Γ = S and Ω = B, or EW = 211 when Γ =
W and Ω = P. The positive effect of communication on EW is expected
since information exchange helps users estimate price better. However,
this does not imply that the utility of each user is improved [20, 21].

Providing more information to the consumers is always beneficial to
the expected aggregate utilityEU for Γ ∈ {S, U, W} and the information
affects neither ENR nor EL̄. Consequently, Ω ∈{AS, B} improves
EW . We observe that the improvement in B model is larger than AS
model. This is because in AS users learn about g̃ through their neighbors,
that is, it takes longer in AS for the users to eventually learn the sufficient
statistic for a connected network than in the B model. The impact of
AS and B models vanishes as the correlation approaches σij/σii = 1.
We further consider the variance of L̄ as a measure of the uncertainty
of SO on demand. We observe that the variance for P model is always
larger than AS or B models. In sum, the SO can allow users to share their
information and expect the user utility to increase and variance of average
consumption to drop without any decrease in the ENR.

5.1. Effect of population size N and renewable uncertainty ω̄

Figs. 1(a)-(d) exhibit the total consumption with respect to hours for the
population size N = {3, 5, 10, 15}, respectively. Each line corresponds
to a different information exchange model Ω for Γ = S – see the legend in
Fig. 1(d). The network is determined by randomly placing N individuals
on a 3 mile×5 mile area and connecting them with the threshold connec-
tivity of 2 miles. The network diameter is displayed in the horizontal axis
along with the population size for each plot. We observe that when the
network is connected (Figs. 1(b)-(d)), the total consumption in AS model
converges to the total consumption in B model. Note that full information
is achieved when the SO broadcasts Lh and σij is homogeneous, that is,
Lh is a sufficient statistic of price [20]. The convergence time is in the
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order of the network diameter. When the network is not connected (Fig.
1(a)), the convergence does not occur.

We further examine the effect ofN on theEW loss per capita in Fig.
2. EW loss, EWL, is the difference between the EW for Γ = W and
Ω = B and EW for Γ = S, and Ω = P. Expected welfare loss per capita
normalizes EWL by the N , that is, EWL/N . The EWL incorporates
inefficiencies due to selfish behavior and information. From Fig. 2, we
observe that the inefficiency disappears as N increases. Furthermore, the
correlation coefficient σij/σii can increase welfare loss for σij/σii <
0.2, otherwise when σij/σii > 0.2 increases, it has a decreasing effect on
EWL. From discussion above, increase in correlation coefficient has a
decreasing effect on the EW . That is, increasing σij is more detrimental
when Γ = W and Ω = B than when Γ = S and Ω = P. This is due to the
fact that as σij/σii → 1, the informational inefficiency disappears.

Figs. 3(a)-(b) plot the total consumption per capita EL̄/N and mean
welfare EW respectively when ω̄ ∈ {−2,−1, 0, 1, 2} with σij/σii =
0.6. Based on the best response of W behavior in (8), W user is not af-
fected by the changes in ω̄. Since the increase in ω̄ implies an increase
in price, the EL̄/N drops for S and U behaviors (Fig. 3(a)). Because
the S users have higher consumption than W users, the decrease in con-
sumption benefits EW of S users. Similarly, the U users have lower
consumption than W users, hence further decrease in consumption due
to increase in ω̄ detriments EW . Conversely, decreasing ω̄, can improve
EW for U users above EW for W users – see Fig. 3(b) when ω̄ = −2.

6. CONCLUSION

We considered rational behavior models under information exchange
models for a power market with heterogeneous user preferences and
a SO. The SO exercised a RTP policy which set up a game of non-
cooperative game of incomplete information for the users. We showed
that when the users exchange consumption levels or the SO broadcasts
aggregate demand information, the expected aggregate utility increases
and demand variance decreases without affecting SO’s net revenue.
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