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ABSTRACT

Wideband spectrum sensing is one of the core components of cog-
nitive radio. A novel frugal sensing scheme was recently proposed
by Mehanna et al, aiming to crowdsource spectrum sensing opera-
tions to a network of sensors transmitting randomly filtered power
measurement bits to a fusion center (FC). The ambient power spec-
trum is then estimated at the FC using a non-parametric approach.
Here, it is assumed that the primary signal admits a Moving Average
(MA) parametrization, and the frugal sensing problem is revisited
from a parametric spectral estimation point of view. We show that
the problem of estimating admissible MA parameters (and thus the
MA power spectrum) from single bit quantized data can be formu-
lated as a non-convex Quadratically Constrained Quadratic Program
(QCQP). This is NP–Hard in general, but semidefinite-relaxation
(SDR) can be employed to obtain approximate solutions. Simula-
tions reveal the superior performance of the SDR technique over the
globally optimal solution obtained from the non-parametric formu-
lation, when the MA assumption is valid.

1. INTRODUCTION

Wideband spectrum sensing is a crucial prerequisite for cognitive ra-
dio, since it forms the basis for adaptive spectrum sharing. While the
focus of most prior work has been on reconstruction of the signal’s
Fourier spectrum, only the power spectrum (PS) [1] is relevant for
certain sensing applications e.g., cognitive radio and radio astron-
omy. The power spectrum can be estimated by taking the Fourier
transform of a finite set of autocorrelation lags. Utilizing the fact that
power measurements are linear in the autocorrelation, it was shown
in [1] that by exploiting a low order correlation model, a finite length
autocorrelation sequence can be estimated at sub-Nyquist sampling
rates by gathering enough measurements to build an overdetermined
system of equations. If spectral information is available a priori in
the form of carrier frequencies and spectral masks, then sampling
rate requirements can be relaxed even further [2].

In this paper, a network sensing scenario is considered, com-
prising scattered low-end sensors with limited communication ca-
pabilities, each of which reports a single randomly filtered power
measurement bit to a fusion center (FC). By exploiting the spatial
diversity of the sensors, such distributed sensing schemes are able to
overcome issues related to fading, shadowing and the hidden termi-
nal problem. Furthermore, such schemes allow the task of spectrum
sensing to be crowdsourced to handheld wireless devices. Power
spectrum estimation in this context was first considered in [3], where
it was shown that adequate spectrum sensing at the FC can be per-
formed even with few bits, by utilizing a Linear Programming (LP)
formulation which exploits the autocorrelation parametrization and
other spectral non-negativity properties. This is in contrast to the PS
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estimation methods [1, 2] which assume availability of analog am-
plitude samples (i.e., finely quantized bitstreams) at the FC. This is
very reasonable when the measurements are co-located, but far less
appealing in distributed sensing scenarios, because it is more prone
to sensing and communication errors, demanding in terms of com-
munication resources, and it also has an adverse impact on sensor
battery lifetime.

One lesson from classical spectral estimation based on analog
measurements [4] is that if we have prior information that the signal
of interest admits a representation in terms of a parametric model of
a certain order, then we should use it to improve estimation perfor-
mance. Adopting a parametric model provides a more parsimonious
representation of the PS as compared to a non-parametric model,
since the former typically uses fewer parameters to describe the spec-
trum. This is the main motivation for our present work, where we as-
sume that the signal admits a Moving Average (MA) representation.
From an application perspective, this model is well motivated for
representing digital communication signals which are pulse shaped
using finite impulse response (FIR) filters, and transmitted over wire-
less channels which are also commonly modeled as FIR filters.

Considering the same network sensing scenario as in [3], we
seek to estimate the MA parameters from single bit quantized data.
The PS estimate is obtained by simply taking the magnitude square
of the Discrete-time Fourier Transform (DTFT) of the parameters.
Exploiting the MA parametrization, it is shown that the parameter
estimation problem from 1 bit data can be formulated as a non-
convex QCQP, which is NP–Hard in general [5]. Hence, we resort
to the technique of semidefinite relaxation (SDR) [6] in order to ob-
tain polynomial time approximate solutions to the problem. SDR
is often used in conjunction with randomization procedures to ob-
tain high quality sub-optimal solutions for a large class of NP–Hard
problems which are of engineering interest (see [6] and references
therein). The SDR technique is compared against the non-parametric
LP formulation in [3], followed by an additional step which imposes
MA structure on the autocorrelation estimate provided by the former
method. Simulations indicate the superior performance of the SDR
method when the MA parametrization is valid.

2. SYSTEM MODEL

The idea of Frugal Sensing was first introduced in [3], where it was
demonstrated that wideband power spectrum estimation from few
bits is possible by employing a network of scattered low-end sensors
with low rate communication capabilities. Consider a network sens-
ing scenario, where M scattered sensors take measurements of the
ambient signal power and report to a FC. Sensors process (shifted, at-
tenuated, and possibly multipath-filtered versions) of the wide-sense
stationary (WSS) signal x(t), whose Nyquist rate samples form the
discrete time sequence x(n). As shown in [3], the Nyquist sampling
rate requirement can be relaxed by using an equivalent analog pro-
cessing and integration chain. Automatic gain control is employed
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to eliminate the effects of path loss, shadowing, and frequency-flat
fading, while the effects of frequency-selective fading (which varies
from sensor to sensor) can be mitigated, provided sensors average
out their measurements over many fading states (see [3] for a de-
tailed explanation). Timing offsets and phase shifts are allowed,
since the power spectrum is invariant with respect to these factors.
The Moving Average representation of x(n) is given by

x(n) =

q∑
k=0

h(k)w(n− k) (1)

where h = [h(0), h(1), ..., h(q)]T are the model parameters,w(n) ∼
CN (0, 1), and q is the model order. Each sensorm ∈ {1, 2, · · · ,M}
filters x(n) using a wideband FIR filter with complex binary pseudo-
noise (PN) impulse response gm(n) of length K:

gm(n) =

{
(1/
√
2K)(±1± j) : 0 ≤ n ≤ K − 1

0 : otherwise
(2)

The filter output is given by zm(n) =
∑K−1

k=0 g∗m(k)x(n − k),
where gm = [gm(0), . . . , gm(K − 1)]T are the filter tap weights
and x = [x(n), x(n − 1), . . . , x(n − K + 1)]T are the tap in-
puts. The filter impulse response gm can be generated by a PN
shift register, whose initial seed is unique to each sensor (e.g., its
serial number) and is known to the FC. The use of random PN fil-
ters promotes diversity, simplifies the convolution operation (no mul-
tiplications are required) and eliminates the need for coordination
among sensors. We denote the average power of the WSS signal
zm(n) by ρm = E[|zm(n)|2] = E[|gH

mx|2] = gH
mRxgm, where

Rx = E[xxH ] is the K × K Toeplitz-Hermitian autocorrelation
matrix of x. Each sensor estimates ρm by averaging over N sam-
ples to obtain

ρ̂m =
1

N

N−1∑
n=0

|zm(n)|2 (3)

Under appropriate ergodic mixing conditions [7, p. 171], we have
that limN→∞ ρ̂m = ρm. Finally, each sensor compares its estimate
ρm to a single, fixed threshold t. If ρ̂m ≥ t, then a ′1′ is trans-
mitted to the FC, otherwise a ′0′ is transmitted. We introduce the
set notationMa := {m : ρ̂m ≥ t} andMb := {m : ρ̂m < t},
with Ma = |Ma| and Mb = |Mb| such that Ma + Mb = M .
Thus, on receipt of a ′1′ (or a ′0′) from a sensor, the FC infers that
gH
mRxgm ≥ t (or gH

mRxgm < t), assuming sufficient averaging to
ensure that sample averages converge to ensemble averages. Since
it is only required to ensure that the sign of each inequality is not
reversed, sample averaging requirements are relaxed relative to high
rate quantization. The FC is required to estimate the ambient PS of
x(n) from these inequalities, which are linear in the autocorrelation
sequence r(k). In the following section, it is shown that by utilizing
the MA parametrization of x(n), these inequalities can be written
explicitly in terms of the MA parameters h.

3. PROBLEM FORMULATION

Since x(n) is an MA(q) process, we can express Rx as

Rx = r(0)ΘK
0 +

min(K−1,q)∑
k=1

(r(k)ΘK
k + r∗(k)ΘK

−k) (4)

where ΘK
k is theK×K elementary Toeplitz matrix with ones on the

kth diagonal and zeros elsewhere, and rx = [r∗(K−1), . . . , r∗(1),
r(0), r(1), . . . , r(K−1)]T is the autocorrelation sequence. The up-
per limit on the summation is due to the fact that r(k) = 0, ∀ |k| >
q, and hence, depending on whether K is set to be larger than q or

not, we get the corresponding number of summation terms. Using
(4), each ρm = gH

mRxgm can be expressed as

gH
mRxgm = gH

m

(
r(0)ΘK

0 +

min(K−1,q)∑
k=1

(r(k)ΘK
k +

r∗(k)ΘK
−k)

)
gm (5)

= gH
mΘK

0 gm︸ ︷︷ ︸
cm,0

r(0)

+

min(K−1,q)∑
k=1

(
gH
mΘK

k gm︸ ︷︷ ︸
cm,k

r(k) + gH
mΘK

−kgm︸ ︷︷ ︸
cm,−k

r∗(k)

)

(6)

= cm,0r(0) +

min(K−1,q)∑
k=1

(cm,kr(k) + cm,−kr
∗(k))

(7)

where in (7), cm,k = gH
mΘK

k gm represents the kth lag of the deter-
ministic autocorrelation sequence of the mth broadband filter with
impulse response gm. The autocorrelation sequence of an MA(q)
process can be characterized in terms of h as follows

r(k) =

{∑q−|k|
i=0 h∗(i)h(i+ |k|) : |k| ≤ q

0 : |k| > q
(8)

=

{
hHΘ

(q+1)
k h : |k| ≤ q

0 : |k| > q
(9)

Substituting the expression for r(k) given by (9) in (7), we obtain

gH
mRxgm = hH

(
cm,0Θ

(q+1)
0

+

min(K−1,q)∑
k=1

(cm,kΘ
(q+1)
k + cm,−kΘ

(q+1)
−k )

)
h (10)

= hHCmh (11)
where by construction each Cm matrix is also Toeplitz, Hermitian
and positive semi-definite [13]. Hence, the linear inequalities in rx
are equivalent to the quadratic inequalities in the MA parameters h.
For determining the PS, we first seek to estimate an h that satis-
fies the given set of quadratic inequalities. The total energy of the
signal E[|x(n)|2] = r(0) = ‖h‖22 is chosen as a cost function to
minimize, consistent with the premise of cognitive radio, where it is
assumed that most of the spectrum is idle at most times. After de-
termining the parameter estimate ĥ, the PS estimate is computed as
Ŝ(ejω) = |Ĥ(ejω)|2, where Ĥ(ejω) is the DTFT of ĥ. Note that
the phase of h cannot be estimated even from analog output power
measurements, let alone from quantized ones; but this ambiguity is
immaterial for our purposes, because it does not affect the power
spectrum, which is what we are ultimately after. The problem of
estimating an admissible h can therefore be formulated as

minimize
h∈Cp+1

‖h‖22 (12a)

subject to hHCmh ≥ t , m ∈Ma (12b)

hHCmh < t , m ∈Mb (12c)
which is a QCQP problem. However, since the constraint set (12b)
represents the intersection of the exteriors of multiple co-centered
ellipsoids, the problem is non-convex and NP–Hard in general. In
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the following section, we relax the problem and propose a polyno-
mial time approximation algorithm to obtain approximate solutions.

4. SEMIDEFINITE RELAXATION

The problem (12) can be equivalently recast as follows
minimize

H∈C(q+1)×(q+1)
Trace(H) (13a)

subject to Trace(CmH) ≥ t , m ∈Ma (13b)
Trace(CmH) < t , m ∈Mb (13c)
H � 0, (13d)
rank(H) = 1 (13e)

where we have defined H = hhH and used the cyclic property of
the trace operator to write hHCmh = Trace(CmH). The non-
convexity in the reformulated problem has been isolated in the form
of the rank-1 constraint on H. Dropping the rank constraint, we
obtain the following relaxed problem

minimize
H∈C(q+1)×(q+1)

Trace(H) (14a)

subject to Trace(CmH) ≥ t , m ∈Ma (14b)
Trace(CmH) < t , m ∈Mb (14c)
H � 0 (14d)

which is the Lagrangian bi-dual [8] of (12) and has the form of
a Semidefinite Programming Problem (SDP). Hence, (14) can be
solved efficiently to global optimality using modern interior point
methods, at a worst case computational complexity ofO((q+1)6.5)
[9]. Note that solving the rank relaxed problem does not solve the
non-convex QCQP (12) in general. However, several post-processing
techniques have been developed which use rank relaxation to gener-
ate approximate solutions for the original NP–Hard problem from
the optimal solution of the relaxed problem. This may be done
via randomization techniques [6], which have a considerably lower
complexity cost compared to solving the relaxed SDP.
Randomization Algorithm: Denote the optimal solution of (14) by
Hopt. If it turns out that rank(Hopt) = 1, then its principal compo-
nent is the globally optimal solution for (12). However, in general,
Hopt is not rank 1, in which case we use the following randomiza-
tion approach to obtain approximate solutions for (12) from Hopt.
• If Hopt is approximately rank 1, then we keep its principal com-
ponent hpc =

√
λmqm as a possible candidate solution, where λm

and qm denote the principal eigen-value and eigen vector of Hopt

respectively. We attempt to convert hpc into a feasible solution for
(12) by scaling it to satisfy both sets of constraints of (12). We first
determine the minimum scaling α for which hpc satisfies all the con-
straints in the set (12b), which can be determined as

α =

√
t

min
m∈Ma

(hpc)HCm(hpc)
(15)

Thus, we obtain a new candidate vector h̃A = αhpc. If the candi-
date vector also satisfies all the constraints in the set (12c), then it
is kept as a candidate solution. However, if it violates one or more
constraints in (12c), it is discarded.
• In general, Hopt will not be approximately rank 1. In this case,
we employ the technique of Gaussian randomization [6] in order to
obtain a feasible solution for (12). A total of L candidate Gaussian
random vectors {hc

l }Ll=1 ∼ N (0,Hopt) are drawn, from which the
’best’ is chosen by the following approach. Each vector hc

l is scaled
by a factor βl until it satisfies the set (12b) and then it is checked if

the set (12c) is also satisfied for the same scaling. The scaling factor
βl is determined as

βl =

√
t

min
m∈Ma

(hc
l )

HCm(hc
l )

(16)

If βlhc
l violates any of the constraints in the set (12c), it is discarded.

Otherwise, it is kept as a possible solution. Amongst such candidate
Gaussian vectors which can be scaled to yield feasible solutions, the
one with the minimum cost is chosen as the final approximate solu-
tion h̃B.
• In most cases, the previously outlined approaches fail in obtain-
ing a feasible solution. If this is the case, we propose to drop the
convex constraint set (12c) and scale the candidate vectors to satisfy
the non-convex constraints (12b) only. For example, when hpc is
scaled by α, the vector h̃C = αhpc satisfies the set (12b) , but we
do not check for violations in (12c). We employ a similar technique
for Gaussian randomization, where each random vector is scaled by
βl to yield a solution that is feasible for the set (12b) only, following
which the minimum cost candidate is chosen as the solution h̃D. Our
basic intuition for dropping the set (12c) stems from the fact that the
set (12b) is more informative, since it corresponds to the activity de-
tection set. Furthermore, the choice of cost function (12a) places an
upper bound on each quadratic term in the set (12b) by virtue of the
Rayleigh-Ritz criterion which upper bounds the Rayleigh quotient
by its principal eigenvalue. Thus, it is expected that this method
will also produce good quality approximate solutions. Overall, after
solving an instance of (14) to obtain Hopt, the algorithm proceeds
in the following manner. First, it is checked if rank(Hopt) = 1,
in which case, hpc is the globally optimal solution of the problem
(12). Otherwise, we check if it is possible to obtain an approximate
feasible solution h̃A or h̃B. If both h̃A and h̃B exist, then the one
having the smaller cost is chosen as the solution. In case a feasible
solution cannot be obtained, the set (12c) is dropped and a pair of
solutions h̃C and h̃D are obtained. Again, the one having smaller
cost is chosen as the solution.

5. NUMERICAL RESULTS

In order to benchmark our SDP relaxation method, we compare its
performance against a two-step estimation approach, where in the
first step a non-parametric approach is adopted - namely, the au-
tocorrelation function is estimated using the MA-agnostic LP for-
mulation in [3]. The MA parametrization is utilized in the second
step to fit an MA autocorrelation sequence by solving a Semidefi-
nite Quadratic Linear Programming (SQLP) problem, as described
in [4, p. 131]. The spectral estimate is obtained by taking the DTFT
of the MA autocorrelation estimate. The various optimization prob-
lems were modeled using YALMIP [10], with the relaxed SDP and
SQLP problems being solved using the generic cone program solver
SeDuMi [11], while MOSEK [12] was used for solving the LP prob-
lem. The Normalized Mean Squared Error (NMSE) criterion was
used as a performance criterion, where NMSE = E

[
‖Sx−Ŝx‖22
‖Sx‖22

]
,

Sx being the true spectrum and Ŝx being the estimated spectrum,
with both spectra normalized by their peak values. The expectation
is taken over the random signal and the random impulse response of
the wideband FIR filters.

In order to illustrate the effectiveness of our proposed approach,
we consider a sensing scenario with M = 100 sensors, setting
the broadband filter length K = 24 and the threshold such that
Ma = 25. In figure 1a, each PS estimate was normalized by its
peak value, and the results were averaged over 500 Monte-Carlo tri-
als, for a signal generated by a real MA(4) model. The model or-
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(a) Mean Normalized Spectra

(b) Variance of Normalized Spectra

Fig. 1: Illustrative example for a real MA(5) model

der was assumed to be known in this case. The quality of the PS
estimates obtained from the SDR and the MA fitting techniques, us-
ing only 100 bits, is very satisfactory. The NMSE values obtained
from the LP, MA fitting and SDR estimates were 0.2966, 0.0366
and 0.0073 respectively, thus showcasing the superior performance
of the parametric approach, in spite of the fact that in 99.8% of the
trials, SDR failed to obtain a feasible solution for the non-convex
QCQP, while both the LP and MA fitting formulations can be solved
to global optimality in polynomial time. This is because SDR uti-
lizes the MA parametrization from the outset, while the two-step
MA fitting method makes use of the MA representation only in the
second step. In spite of failing to obtain a feasible solution in most
cases, the SDR method still produces a high quality sub-optimal so-
lution (in terms of spectral NMSE) by the constraint dropping tech-
nique mentioned in Section 4. In figure 1b, the spectral variance is
plotted as a function of the normalized frequency. The LP estimate
exhibits very high variance about its peak, which explains why the
peak of the mean normalized LP estimate in figure 1a is below 0
dB. The MA fitting estimate exhibits lower variance, but the SDR
exhibits the least variance across all frequencies.

We present another simulation in Figure 2 where 50 MA mod-
els of order 9 were randomly generated. Setting M = 80 sensors,
K = 30, the threshold t was varied in order to vary Ma, the num-
ber of sensors reporting above threshold. Knowledge of the true
model order is assumed. For each model realization, the spectral
NMSE for each Ma was averaged over 100 Monte-Carlo trials, with
the final result obtained by averaging across all model realizations.

Fig. 2: NMSE vs Ma for MA(9) models

The superior performance of the SDR technique is again noted, even
though in the overwhelming majority of cases it is unable to yield
a feasible solution, and we have to resort to dropping the convex
constraints. The non-parametric method is significantly worse-off
in comparison. Although the two-step MA model fitting method
brings about an improvement in the quality of the PS estimate, it
still cannot match the SDR estimate, except when more than half the
sensors report above threshold. Extensive simulations across a wide
range of model orders revealed that the SDR technique always out-
performs the other approaches, and the optimal choice of threshold
for which the SDR estimate attains its lowest NMSE value corre-
sponds to roughly 25− 35% sensors reporting above the threshold.

6. CONCLUSIONS

A network sensing scenario was considered, where a network of
scattered, low-end sensors with limited communications capabilities
transmit randomly filtered power measurement bits to a FC. The de-
velopment of parametric power spectral estimation techniques in this
context was pursued. Under the assumption that the primary signal
admits a Moving Average time-series representation, the problem of
estimating admissible MA parameters, and thus the MA spectrum,
can be formulated as a non-convex QCQP, which is NP–Hard in gen-
eral. In order to obtain polynomial-time approximate solutions, we
use rank relaxation followed by a randomization procedure. Due to
the two-sided constraints of the non-convex QCQP, this rarely yields
a feasible solution. However, a high quality (albeit infeasible) sub-
optimal estimate can be obtained by dropping the convex constraint
set. The method was tested against the non-parametric LP formu-
lation in [3], as well as a two-step LP plus MA model fitting ap-
proach. Simulations revealed the superior performance of the SDR
technique, in terms of spectral NMSE and spectral variance, over the
other two methods, thus showcasing the advantage of using the MA
parametrization from the outset, even though it can only be solved
approximately. For further developments, regarding the choice of
the parameters Ma,K, t and their effects on the estimation perfor-
mance, and scenarios where only an upper bound on the true model
order is known, we refer the reader to [13].
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