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ABSTRACT
Spectrum sensing is an essential functionality of cognitive radio
wireless networks (CRWNs) that enables detecting unused fre-
quency sub-bands for dynamic spectrum access. This paper pro-
poses a compressed spectrum sensing framework by (i) constructing
a sparsity basis in wavelet domain that helps compressed sensing
at sub-Nyquist rates and (ii) applying a wavelet-based singularity
detector on the reconstructed signal to identify available frequency
sub-bands with low complexity. In particular, for the compressed
sensing, an optimized Haar wavelet basis is employed to sparsely
represent piecewise constant (PWC) signals which closely approx-
imates the frequency spectrum of a sensed signal. Our simulation
results show that our proposed framework outperforms existing com-
pressed spectrum sensing methods by providing higher accuracy at
lower sampling rates.

Index Terms— Compressed sensing, wavelet transform, spec-
trum sensing, cognitive radio, dynamic spectrum access.

1. INTRODUCTION

Cognitive radio wireless network (CRWN) is a novel communica-
tion paradigm that provides dynamic spectrum access to users in an
opportunistic manner. As opposed to traditional licensed (i.e., fixed)
spectrum access networks, CRWN increases spectrum allocation by
allowing its users to access licensed bands without interfering with
the primary (licensed) users. Thereby, secondary (unlicensed) users
can exploit available spectrum bands to increase both their capac-
ity and the overall bandwidth utilization without interfering with
primary users. For this purpose, spectrum sensing is an important
requirement that enables users to adapt their spectrum use by de-
tecting unused frequency sub-bands (i.e., spectrum holes). How-
ever, accurate and efficient spectrum sensing is one the most chal-
lenging problems in CRWNs [1]. In general, spectrum sensing has
high complexity, since CRWNs typically operate at wideband fre-
quencies requiring very large number of measurements at Nyquist
sampling rates. In order to reduce the complexity of spectrum sens-
ing without degrading its accuracy, this paper proposes a wavelet-
based compressed spectrum sensing framework where (i) an opti-
mized Haar-Fourier basis (i.e., the Fourier transform followed by a
Haar wavelet transform) is constructed for effective sparse recovery
at sub-Nyquist sampling rates, and (ii) a wavelet-based singularity
detector is then employed to identify spectrum holes within the oper-
ating frequency band. The main advantage of our framework is that
the proposed basis construction in Haar-Fourier domain provides a
sparse signal representation helping effective signal recovery. This
is mainly because the frequency spectrum of a sensed signal can be
closely approximated as a piecewise constant (PWC) signal which is
sparse in Haar wavelet domain.
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In the literature, multiple spectrum sensing approaches have
been proposed (refer to [1] for a detailed overview on CRWNs).
Yucek and Arslan [2] survey different types of spectrum sensing
approaches where our problem of interest is commonly referred as
wideband spectrum sensing. In [3] and [4], authors develop optimal
thresholding strategies focusing on accurate spectrum sensing, but
they do not consider sensing at sub-Nyquist rates with low com-
plexity. More similar to our work, Tian and Giannakis [5] propose
a compressed sensing framework where the sparsity basis is chosen
as the Fourier basis, and more recently, Cohen and Eldar [6] derive
the minimal sampling rate for perfect spectrum reconstruction and
investigate different reconstruction techniques for both digital and
analog systems. However, in both [5] and [6], authors assume that
the received signal is sparse in frequency (Fourier) domain which
does not generally hold, especially when the wideband channel is
busy. In contrast, our proposed basis construction in Haar-Fourier
domain (which is the main contribution of this paper) leads to a bet-
ter sparse representation regardless of how the channel is utilized.

The rest of the paper is organized as follows. Section 2 formu-
lates the problems in our compressed spectrum sensing framework.
In Section 3, we discuss the proposed solution. Simulation results
are presented in Section 4, and Section 5 draws some conclusions.

2. PROBLEM FORMULATION

In what follows, we first formulate the general spectrum sensing
problem, then we extend this formulation by defining the com-
pressed spectrum sensing problem. Finally, we formulate the op-
timal orthogonal basis design problem that is used to find a sparse
representation of a set of signals for effective compressed spectrum
sensing. In our formulations, the main assumptions are:
• The signals of interest can be closely approximated with piece-

wise constant (PWC) signals in frequency domain (see Fig.1).
• The channel noise is modeled as additive white Gaussian noise

(AWGN), and the noise floor can be estimated using the mea-
surements from unused sub-bands.

• The operating frequency range (i.e., minimum and maximum
frequency) is known by all CRWN devices.

2.1. General Spectrum Sensing Problem

We start by formulating the general spectrum sensing problem orig-
inally presented in [7]. Let us suppose that a CRWN’s operating
frequency range is B = [f0, fN ] and has N sub-bands B1, ..., BN .
The goal is identifying used and unused spectrum sub-bands. In par-
ticular, for a received signal r(t) of the following general form,

r(t) =

N∑
n=1

αnpn(t) + w(t) (1)
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we define its power spectral density (PSD) as

Sr(f) = lim
T→∞

E

[
1

T

∣∣∣∣∫ T

0

r(t)e−i2πftdt

∣∣∣∣2
]

(2)

that is

Sr(f) =

N∑
n=1

α2
nSn(f) + Sw(f) f ∈ [f0, fN ] (3)

where pn(t) is the signal whose frequency spectrum is

Sn(f) =

{
1 if f ∈ Bn
0 if f /∈ Bn

(4)

that has support only in sub-band Bn = [fn−1, fn], αn is the sig-
nal magnitude in sub-band Bn, and w(t) is an additive white Gaus-
sian noise with power spectral density Sw(f). Thus, the spectrum
sensing problem can be formally defined as finding the following
parameters based on the received signal r(t),
• {fn}N−1

n=1 : Frequency boundaries identifying N frequency sub-
bands {Bn}Nn=1.

• {α2
n}Nn=1: Square magnitude of signal at each sub-band {Bn}Nn=1

where α2
n ≈ 0 implies Bn is unused.

Fig.1 illustrates the power spectral density of a received signal and
the parameters that we need to characterize for the spectrum sensing
purpose.

2.2. Compressed Sensing Problem

In order to effectively solve the spectrum sensing problem formu-
lated in Section 2.1, it is essential to accurately acquire the received
signal r(t) and its frequency spectrum Sr(f). However, depending
on the operating frequency range (B), required sampling rates can
be very high. To reduce complexity of the spectrum sensing process,
compressed sensing (CS) frameworks have been proposed to obtain
reasonable frequency spectrum estimates at sub-Nyquist sampling
rates [6].

In compressed sensing, the goal is to design aK×M dictionary
matrix D = ΦΨ with the restrictive isometry property (RIP) [8, 9]
such that (i) a given signal r ∈ RM is sparse in an orthogonal basis
(or frame) Ψ, and (ii) a matrix Φ ∈ RK×M (K < M ) reduces the
number of measurements (i.e., sampling rate). After determining the
dictionary D, CS approaches perform a sparse recovery of the signal
r from its CS measurements y = Φr = ΦΨx where x is the sparse
representation of r in transform domain (i.e., x∗ = Ψtr). Formally,
this can be written as following optimization problem,

x̂0 = argmin
x
‖x‖0 subject to y = Dx. (5)

Note that, this problem is known to be NP-hard due to the l0 pseudo-
norm in the objective function. However, if there exists a sufficiently
sparse solution, the problem can be relaxed to an l1 minimization
problem [8], where the relaxed solution x̂1 closely approximates x̂0.

2.3. Orthogonal Sparsity Basis Design

In compressed sensing, it is crucial to design a basis (or a frame)
providing a sparse representation for a class of signals. This is be-
cause better compression and reconstruction can be achieved when
sparsity of signals is maximized through some basis. In this work,
we focus on orthogonal sparsity basis design which can be posed as
an optimization of the following problem,

Ψ̂ = argmin
Ψ
‖ΨtY‖0 subject to ΨtΨ = I (6)

where ‖A‖0 is the number of non-zero elements in matrix A, Y ∈
RM×S is the matrix of S training signals with length M , and Ψ is
the M ×M basis matrix. This problem can be also relaxed to an l1
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Fig. 1: Signals of interest can be closely approximated with piece-
wise constant functions.

(a) Symmetric filterbank

(b) Dyadic filterbank

Fig. 2: Two-channel filterbank decompositions and their wavelet
packet (tree) abstractions. The vertices of the trees correspond to
wavelet coefficients.

minimization by changing its objective function to ‖ΨtY‖1 which
is equal to sum of absolute values of elements in matrix ΨtY. Note
that the signals of interest in this problem are piecewise constant.
Since the piecewise constant signals are known to be sparse in Haar
wavelet domain by construction [10, 11], we further constrain our
orthogonal basis design to be in Haar wavelet domain. In particular,
we reduce the problem stated in (6) to designing a tree-structured
Haar wavelet filterbank, where a basis can be fully defined by a tree
T (i.e., wavelet packet) [10]. Thus, the reduced problem is

min
T
‖Ht
TY‖0 subject to Ht

THT = I (7)

where HT denotes the basis matrix determined based on a Haar
wavelet packet tree T . Fig.2 illustrates the wavelet packet abstrac-
tion of multi-stage filterbanks in terms of trees. The problem in (7)
is a special case of the standard wavelet packet construction prob-
lem [12] where in our case the objective function promotes sparsity.

3. PROPOSED SOLUTION

We now provide details of our proposed solution, including (i) a
method to find a sparsity basis (Ψ) in Haar wavelet domain, (ii) the
solution to the compressed spectrum sensing, and (iii) the wavelet-
based singularity detection method to identify frequency sub-bands
from reconstructed signal.
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3.1. Haar Wavelet Packet Design

In order to find the best wavelet packet tree solving the optimiza-
tion problem stated in (7), we propose a two-step solution: We first
perform a wavelet packet analysis on PWC training signals in Y
and construct a vertex-weighted tree where weights reflect sparsity.
Then, a tree pruning algorithm is employed to find the best sub-tree.

Let us assume that each signal in Y has length M = 2J+1

where J is a non-negative integer. For wavelet packet analysis,
training signals are first transformed using J-level symmetric Haar
wavelet decomposition (see Fig.2(a)). Then, the sparsity (i.e., l0
pseudo-norm) of the resulting wavelet coefficients is calculated at
each level of decomposition. Note that wavelet coefficients at each
branch of the wavelet filterbank correspond to a vertex of a tree
(i.e., black nodes in Fig.2). Thus, we define a vertex-weighted tree
associated to J-level symmetric wavelet decomposition where the
vertex-weights are the sparsity of the corresponding wavelet coeffi-
cients. After defining the tree, we employ a sub-tree pruning algo-
rithm to find the minimum cost sub-tree (T ∗) leading to best basis
Ĥ = HT ∗ . In particular, we use the tree-pruning algorithm orig-
inally developed by Coifman and Wickerhauser for entropy based
wavelet packet selection [12]. The same algorithm is also used for
RD-optimized wavelet packet selection in [13].

Note that the proposed method requires a noise-free training sig-
nal set (Y) which may not be available in practice. In case of noisy
training signals, we can simply modify the objective function in (7)
by replacing sparsity measure with l1 norm and/or including regu-
larization terms. If a training signal set is unavailable, secondary
(unlicensed) users can learn about the frequency use patterns by ob-
serving the channel for a certain amount of time before constructing
a Haar-Fourier basis. In addition, frequency bands allocated for pri-
mary users can be known a priori so that secondary users can decide
on a basis by simulating on randomly generated PWC signals that
match pre-allocated frequency intervals. Basis selection can be also
made based on expected length of transitions in PWC signals of in-
terest. For example, higher frequency utilization leads to PWC sig-
nals with larger transition length. Typically, as the average transition
length increases, a dyadic Haar wavelet decomposition with larger
number of decompositions results in a favorable sparsity basis.

3.2. Compressed Spectrum Sensing

After constructing the sparsity basis Ψ, our next goal is defining the
measurement matrix Φ that realizes spectrum sensing at sub-Nyquist
rates. For this purpose, let us suppose that the received signal r(t)
is sampled at Nyquist rate which leads to M samples vectorized in
rt ∈ RM . In frequency domain, rf = FMrt is approximately
PWC where FM is M ×M discrete Fourier transform (DFT) ma-
trix. In the CS literature, assuming that a signal r is k-sparse with
respect to basis Ψ, it has been shown that if the measurement ma-
trix Φ ∈ RK×M is i.i.d. Gaussian, then sparse recovery algorithms
can recover signals from K = O(k log(M)) measurements [14]. If
Φ is a random row matrix of the DFT matrix, a similar number of
measurements is sufficient in practice [15]. Based on this result, we
select our measurement matrix as Φ = RF−1

M where R is aK×M
random row matrix obtained by randomly removing rows of identity
matrix IM with dimension M × M , and F−1

M is the inverse DFT
matrix.

Hence, for the CS problem stated in (5) our dictionary is D =

(RF−1
M )Ĥ and measurement vector is y = RF−1

M rf . The ultimate
goal is reconstructing the original (sparse) Haar wavelet coefficients,
x∗ = Ĥtrf , from CS measurements in y using dictionary D. With

respect to time domain, (i) coefficients x∗ = ĤtFMrt are in Haar-
Fourier domain, and (ii) measurements in y = RF−1

M FMrt = Rrt
are actually random samples in time-domain which is useful in prac-
tice. For reconstruction we use basis pursuit algorithm in Section
4, yet a less complex algorithm such as orthogonal matching pur-
suit [16] can be employed if complexity is a concern.

3.3. Identifying Spectrum Bands: Spectrum Hole Detection

After successfully recovering the frequency spectrum Sr(f), we can
now identify the used/unused spectrum sub-bands in CRWN. Our
proposed solution has two steps: (i) We detect transition locations
(discontinuities) in Sr(f) corresponding to maximum/minimum fre-
quency of each sub-band. (ii) We estimate signal power within each
sub-band, and then decide whether it is used/unused sub-band based
on relative signal power levels. Although it is possible to iden-
tify spectrum holes by simple thresholding, the proposed solution
is more robust to noise and reconstruction errors.

To detect signal transitions in the frequency spectrum, we adopt
a wavelet-based approach exploiting the results presented in [7, 17].
In particular, we use the multiscale wavelet products approach orig-
inally developed in [7] which provides robust detection under noisy
signals. By finding the local maxima of multiscale wavelet products,
we estimate the frequency boundary locations within (f0, fN ) as
{f̂n}Ne

n=1 = argmaxima
f

{|Ud{Sr(f)}|} f ∈ (f0, fN ) (8)

whereNe is the number of detected frequency boundaries andUd{·}
denotes the d-scale wavelet product formulated as

Ud{Sr(f)} =
d∏
j=1

W ′s=2j{Sr(f)}. (9)

whereW ′s{·} operator is the first derivative of Gaussian wavelet with
scale s. Note that f̂0 = f0 and f̂Ne+1 = fN based on the third
assumption in Section 2. After detecting {f̂n}Ne

n=1, we estimate av-
erage signal power at each sub-band in {B̂n}Ne+1

n=1 , that is

En =
1

f̂n − f̂n−1

∫ f̂n

f̂n−1

Sr(f)df ∀n = {1, 2, ..., Ne + 1} (10)

which can provide good estimates of the original Sr(f) since it is
PWC. Thus, for each frequency band B̂n, the square magnitude of
the signal, α2

n, can be estimated from En
α̂2
n = En −min

i
Ei, ∀n = {1, 2, ..., Ne + 1} (11)

where the subtracted term suppresses the noise floor introduced by
the channel based on the second assumption in Section 2.

4. RESULTS

In this section, we demonstrate the spectrum sensing performance
of our approach in terms of accuracy/efficiency trade-off and com-
pare it against the method proposed in [5]. To simulate each ap-
proach, we first perform compressed spectrum sensing at different
sampling rates where the basis pursuit algorithm is used for sparse
signal recovery. Based on the reconstructed signals, we identify
spectrum holes by using the method presented in Section 3.3. Then,
the spectrum sensing performances are evaluated in terms of two
different metrics: (i) Mean square error (MSE) of reconstructed sig-
nal with respect to original (noise-free) signal, (ii) the spectrum hole
detection performance in terms of receiver operating characteristics
(ROCs).

To evaluate the performance of the proposed approach, our ex-
periments are set up as follows. Throughout the simulations, the
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Fig. 3: Sparse recovery performances of our proposed approach and existing method [5] in terms of mean square error (MSE).
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Fig. 4: Spectrum hole detection performances of our proposed approach and existing method [5] in terms of ROCs at different sampling rates.

wideband of interest is in the range of B = [f0 = 300, fN =
420] MHz, and the frequency points determining the sub-bands, i.e.,
{fn}N−1

n=1 , are first randomly selected and then fixed. In practice, this
is analogous to a government allocating different spectrum bands to
primary (licensed) users. In order to find the sparsity basis (Ψ),
we generate a noise-free training set Y (see in (6)) by picking i.i.d
Bernoulli random vectors b ∈ {0, 1}N with success rate p for each
sub-band {Bn}Nn=1. If bn = 1, this implies sub-band Bn is utilized,
otherwise it is empty. Then, we randomly assign high (α2 = 20) and
medium (α2 = 10) signal power values for the utilized sub-bands.
The test dataset is independently generated by following the same
procedure, yet an AWGN is added on top. In our experiments, we
use a dataset with 100 training and 20 test samples. Note that, the
success rate, p, corresponds to overall channel utilization, and we do
our experiments for p = 0.3 and p = 0.7 which approximately leads
to 30% (sparse) and 70% (busy) channel utilization, respectively. For
each p value, the training procedure (i.e., solving the problem stated
in (7)) leads to two different basis. Specifically, 3-level and 4-level
dyadic Haar wavelet packet transforms are constructed for p = 0.3
and p = 0.7, respectively. Since the measurement matrix (Φ) is ran-
dom, we repeat our simulations 30 times at different sampling rates.
To detect spectrum holes, we employ multiscale wavelet products
with d = 5 scales (see in Section 3.3).

The average spectrum sensing performance is evaluated in terms
of MSE and ROCs, which are shown in Figs. 3 and 4, respectively.
The results show that the proposed approach outperforms the ex-
isting method in both sparse recovery and spectrum hole detection
at any sampling rate. Also, the proposed method performs better
for both sparse and busy spectrum use cases. The performance dif-
ference between two methods decreases if the channel utilization is
lower or the sampling rate is higher.

5. CONCLUSIONS

Based on our observations from the experimental results, the follow-
ing conclusions are drawn:
• An optimized basis in Haar-Fourier domain can significantly im-

prove spectrum sensing in terms of accuracy/efficiency trade-off.
• The proposed approach significantly outperforms the existing

work at low sampling rates (i.e., low complexity), for both high
and low channel utilization scenarios.

• The performance of existing work is similar to our method only
if the channel use is sparse and sampling rate is high (which
means higher complexity).

• Practically, Haar-Fourier basis training can be done for different
channel utilization rates where we can estimate utilization by
some means and use the corresponding basis.
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[10] M. Vetterli and J. Kovačevic, Wavelets and Subband Coding.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1995.

[11] M. Unser and P. Tafti, “Stochastic models for sparse and
piecewise-smooth signals,” IEEE Transactions on Signal Pro-
cessing, vol. 59, no. 3, pp. 989–1006, March 2011.

[12] R. Coifman and M. Wickerhauser, “Entropy-based algorithms
for best basis selection,” IEEE Transactions on Information
Theory, vol. 38, no. 2, pp. 713–718, March 1992.

[13] K. Ramchandran and M. Vetterli, “Best wavelet packet bases
in a rate-distortion sense,” IEEE Transactions on Image Pro-
cessing, vol. 2, no. 2, pp. 160–175, Apr 1993.

[14] E. Candes and M. Wakin, “An introduction to compressive
sampling,” IEEE Signal Processing Magazine, vol. 25, no. 2,
pp. 21–30, March 2008.

[15] J. Tropp, M. Wakin, M. Duarte, D. Baron, and R. Baraniuk,
“Random filters for compressive sampling and reconstruction,”
in Proc. IEEE International Conference on Acoustics, Speech
and Signal Processing, 2006. ICASSP 2006., vol. 3, May 2006,
pp. 872–875.

[16] Y. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal
matching pursuit: recursive function approximation with ap-
plications to wavelet decomposition,” in Proc. the Twenty-
Seventh Asilomar Conference on Signals, Systems and Com-
puters, 1993., vol. 1, Nov 1993, pp. 40–44.

[17] S. Mallat and W. L. Hwang, “Singularity detection and pro-
cessing with wavelets,” IEEE Transactions on Information
Theory, vol. 38, pp. 617–643, 1992.

3161


