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ABSTRACT

This paper introduces a spectrum sensing scenario based on kernel
theory which compares favorably against the conventional Energy
Detector (ED) in a cognitive radio system. The so-called Kerenlized
Energy Detector (KED) can provide superior accuracy in the case of
non-Gaussian noise. The incorporation of the nonlinear kernel func-
tion in the KED test statistics allows for the development of a non-
linear algorithm capable of considering both higher order and Frac-
tional Lower Order Moments (FLOMs) in the sensing task. Simula-
tion results show that the proposed semi-blind kernelized spectrum
sensing algorithm is much robust against impulsive noises and dis-
plays a considerably better detection performance than the conven-
tional ED in practical impulsive man-made noises which are gener-
ally modeled as the Laplacian and the α-stable distributions. More-
over, for the Gaussian signal and noise model, the performance of
the KED scheme is almost identical to that of the conventional ED.

Index Terms— Cognitive radio, spectrum sensing, non-Gaussian
impulsive noises, α-stable noise model.

1. INTRODUCTION

Cognitive Radio (CR) has been recognized as a promising solution
dealing with the scarcity of the radio spectrum [1]. In the CR tech-
nology, unauthorized users, known as Secondary Users (SUs), ex-
ploit unutilized bands, known as spectrum holes, when and where
no Primary User (PU) exists in their vicinity using these spectrum
holes. Toward this goal, SUs must sense the spectrum accurately
to detect the existing idle bands for opportunistic usage, and vacate
the occupied bands when a PU starts its transmission. This prevents
from interfering and degrading the PU’s performance. These fun-
damental requirements give rise to the challenging issue of spec-
trum sensing which is a crucial task in Cognitive Radio Networks
(CRNs). Many spectrum sensing schemes are presented in the lit-
erature [2, 3], among which Energy Detector (ED) and Higher or-
der statistics (HOS) based spectrum sensing methods are more con-
sidered in this paper. HOS-based algorithms, such as the multiple
cumulants-based spectrum sensing method in [4], have a great po-
tential to deal with non-Gaussian signals. However, the compu-
tational cost and the implementation burden of these methods are
overwhelming. The conventional ED has been recognized as one
of the most practical spectrum sensing schemes due to its simplic-
ity and the ease of implementation. Moreover, energy detector is a
semi-blind procedure which is independent of PU’s signal proper-
ties, but it requires the noise statistics to compute the sensing thresh-
old. However, the performance of HOS-based methods, as well as

the second order moment based schemes, degrades drastically for the
α-stable noise model where α < 2. Despite the extensive literature
on the spectrum sensing domain, most of them have concentrated on
the Gaussian noise assumption which undergo a drastic performance
degradation when the Gaussianity assumption of the noise fails. Al-
though, the Gaussian assumption is justified for the thermal noise, a
vast range of experiments conducted in various indoor and outdoor
environments invalidates the Gaussian assumption for impairments
caused by wireless channels. More precisely, communication sig-
nals in indoor environments are affected by the man-made impulsive
noises caused by electrical equipments such as microwave ovens and
devices with electromechanical switches. For outdoor environments,
main sources of impulsive noises are power lines, buildings in radar
clutter and lightning in the atmosphere [5]. Recently, a handful of
spectrum sensing methods has been presented in the non-Gaussian
impulsive-type noise environments which are generally developed
based on the fractional lower order statistics [6, 7].

Motivated by the simplicity of the conventional ED and the ca-
pability of higher order and Fractional Lower Order Moments-based
(FLOMs) algorithms for non-Gaussian signals [8], in this paper, we
propose the Kernelized Energy Detector (KED) which implicitly en-
compasses higher order and fractional lower order statistics through
incorporating nonlinear kernel functions in the sensing procedure.
As will be explained in Section 3, the kernel theory is considered as
an appropriate choice in the spectrum sensing task capable of real-
izing a good balance among the three major requirements, sensing
accuracy, computational complexity and the detection problem in the
presence of impulsive noises. In addition to a moderate complexity,
the proposed KED test is much robust against impulsive man-made
noises leading to a considerably better detection performance than
that of the conventional ED in practical impulsive noise environ-
ments. For the case of α-stable noise scenario where α < 2, numer-
ical evaluations indicate a superior sensing capability of the KED
scheme compared to that of the conventional ED and the FLOMs-
based methods, while the performance of the conventional ED de-
grades drastically due to the infiniteness of the second and higher
order moments. In addition, for the case of the Laplacian noise, the
proposed KED scheme demonstrates 2.5 dB better performance than
that of the conventional ED for a fixed detection probability.

The rest of the paper is organized as follows. In Section 2,
the system model and the spectrum sensing problem are introduced.
Some fundamental concepts of the kernel theory and the proposed
KED method are presented in Section 3. Section 4 provides some
simulation results, and finally in Section 5, an overview of the re-
sults and conclusions are presented.
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2. SYSTEM MODEL AND PROBLEM DESCRIPTION

This paper considers a non-cooperative spectrum sensing scenario
where each SU performs the PU’s detection task individually.
We assume that SUs are equipped with P antennas. The avail-
able data for spectrum sensing is denoted as an N × P matrix
X = [x1 x2 . . . xP ], where N is the cardinality of the sample set

and each column xk = [xk,1, . . . , xk,N ]T , k = 1, ..., P , denotes the
complex valued received signal vector in kth antenna of the SU. The
received data matrix X can be thought of as an over-sampled signal
from one antenna with factor P . The spectrum sensing problem for
each SU is represented by the following binary hypotheses test:{

H0 : xk = wk,
H1 : xk = sk +wk,

k = 1, 2, . . . , P, (1)

where H0 and H1 indicate the hypothesis relating to the absence
and presence of the PU, sk = [sk,1, . . . , sk,N ]T represents the PU’s
signal samples, and wk = [wk,1, . . . , wk,N ]T is the additive noise.
Throughout this paper, the additive noise is modeled as the Gaussian
and non-Gaussian (Laplacian and α-stable impulsive noises) distri-
butions. The received signal samples are assumed to be independent
and identically distributed (i.i.d.). Moreover, we assume that the
signal and the noise are independent. For the performance evalu-
ation of our proposed scheme, we use the false alarm probability,
Pfa = P (H1|H0), and the detection probability, Pd = P (H1|H1).

The pure noise samples requirement is inevitable in semi-blind
spectrum sensing schemes such as the energy detector, where accu-
rately estimated noise statistics are essential to measure the sensing
threshold precisely [9]. Moreover, in the sensing schemes based on
goodness-of-fit tests, pure noise samples are necessary in the sensing
task to measure the similarity of the received signal distribution to
the noise distribution. For this reason, we adopt a two stage spec-
trum sensing scenario to shed light on the practical issues relating
to our proposed semi-blind kernelized spectrum sensing algorithm
where in analogy with the conventional ED, the noise statistics are
needed to determine the sensing threshold. A two stage spectrum
sensing scenario, consisting of two Sensing Periods (SP), is adopted
as a practical procedure supported by the IEEE 802.22 [10] standard
to extract pure noise samples in the fine sensing stage and use these
samples in the subsequent fast sensing steps. During the fine SP,
accurate detection algorithms are employed in considerably longer
time spans, while the fast sensing should be done much faster to
meet the online requirements of cognitive radio.

3. KERNELIZED ENERQY DETECTOR

In this section, we first briefly explain the fundamental concepts
of kernel theory and then propose a new spectrum sensing scheme,
namely Kernelized Energy Detector (KED), for the CRN model in-
troduced in Section 2.

Kernel Theory: Kernel theory has been enjoying considerable
popularity during the last two decades due to its ability in solving
complex real world problems through efficient nonlinear learning
algorithms. Kernels are similarity measures which can be thought
as a dot product in a feature space H. In kernel methods, data
points x belonging to the input space X are mapped into a fea-
ture space H with a greater dimension using a nonlinear feature
map Φ as Φ : X −→ H, x −→ Φ(x) [11]. For these al-
gorithms, different feature maps yield completely different feature
spaces, where each one displays a different performance. There-
fore, choosing a proper feature map is a crucial task depending on

the problem under scrutiny. Generally, a kernel function is the dot
product of data points in the feature space. Kernel trick is referred
to the process of substituting the inner product with an equivalent
kernel function which proposes an efficient measure through which
kernel methods are used without explicitly knowing the feature map-
ping and the kernel function provides sufficient information in this
context [12]. By employing the kernel trick, any linear algorithm
in the literature, which is based on inner product, can be easily
kernelized via replacing an inner product with the kernel function
K(xi,xj) = 〈Φ(xi),Φ(xj)〉H, ∀ xi,xj ∈ X , where K(., .) is a
positive semi-definite function [11].

KED Scheme: Energy detector is a simple spectrum sensing
algorithm which can be easily implemented in CR systems. It only
measures the power of the received signal and ignores higher order
and Fractional Lower order moments (FLOMs) of data. On the
other hand, it is shown in [4] that Higher Order Statistics (HOS)
have a promising performance in non-Gaussian signal processing
where multiple cumulants-based sensing schemes are employed.
However, HOS-based methods require considerably large number
of samples to reach a satisfactory estimation which in turn leads to
an overwhelming computational complexity. Moreover, these HOS-
based methods do not have the capability of handling impulsive
noises properly, specially for the α-stable noise model where α < 2.
FLOMs are distinguished as a powerful mean for impulsive signals
processing [8]. Motivated by the simplicity of the energy detector
and capability of HOS and FLOMs based algorithms to deal with
non-Gaussian signals, the Kernelized Energy Detector (KED) is
proposed which has a moderate complexity and can be easily imple-
mented in analogy with the conventional ED. The KED incorporates
higher order and fractional lower order moments of the received
signal samples in the spectrum sensing process through employing
the kernel methods. In one point of view, the KED method is con-
sidered as an improved version of the conventional ED, especially in
the practical case of non-Gaussian noise. From another perspective
which stems from the fact that kernels are similarity measures, the
KED can be interpreted as an algorithm that employs the similar-
ity of the received signal samples for the spectrum sensing task.
Thus, as will be seen in this section, the proposed KED method is
derived by applying the kernel theory to the conventional ED. The
test statistic of the conventional energy detector [13, 14], defined
as TED =

∑N
i=1

∑P
j=1 |xi,j |2, has a form of the dot product, i.e.,

TED =
∑N

i=1 〈xi,xi〉, where xi represents each row of the re-
ceived data matrix X defined in Section 2, which paves the way for
the promotion of the conventional energy detector using the kernel
trick. Thus, we can replace the dot product in the test statistic of the
energy detector with an arbitrary kernel function as follows:

TKED =

N∑
i=1

K(xi,xi), (2)

where K(xi,xi) is a nonlinear kernel function which depends on
the received signal vector xi. As an example, if the kernel func-
tion K(xi,xi) is a polynomial kernel of the second degree, our test

statistic in (2) will become as TKED =
∑N

i=1

(‖xi‖2 + 1
)2

=∑N
i=1

(‖xi‖4 + 2 ‖xi‖2 + 1
)
. It is seen that higher order moments

of the received signal as well as the power of the signal in the con-
ventional ED are employed in the sensing task using (2), while the
KED in (2) does not take into account the joint moments of the re-
ceived signal samples, i.e., the interaction of the samples. As will
be proved in Lemma 1, E{〈Φ(xi),Φ(xj)〉} = E{K(xi,xj)} in-
corporates the effect of the higher order and fractional lower order
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statistics and considers the interaction of the received signal samples
in the sensing task. Based on the above property of E{K(xi,xj)},
a more improved KED test statistic than (2) is proposed as

TKED,U =
1

N(N − 1)

N∑
i=1

N∑
j=1
j �=i

K(xi,xj), (3)

where K(xi,xj) is a nonlinear kernel function of two received
signal vector xi and xj corresponding to each row of matrix
X. Moreover, the test statistic in (3) is an unbiased estima-
tion for E{K(xi,xj)}. According to the U-statistics theory, the
KED test statistic in (3) can be more simplified as TKED,U =(
N
2

)−1 ∑∑
1≤i<j≤N K(xi,xj), if the nonlinear kernel function

K(xi,xj) is symmetric [15]. According to the Hoeffding’s in-
equality [16, p. 25], we know that the KED test statistic in (3) is
highly concentrated around its mean value which is a vital require-
ment of any sensing scheme in order to distinguish two hypothe-
ses H0 and H1. In other words, for a bounded kernel function
a ≤ K(xi, xj) ≤ b, where P = 1, deviation of the KED test
statistic from its mean value is sufficiently small, i.e.,

P (|TKED,U − E{TKED,U}| ≥ ε) ≤ e
−Nε2

(b−a)2 , (4)

where ε is a positive real value. In the case of Gaussian kernel func-

tion K(xi, xj) = e
− (xi−xj)

2

2c2 , where c is the bandwidth of the ker-
nel and xi and xj are the received signal samples at the SU, we have
0 ≤ K(xi, xj) ≤ 1 which is independent of the statistical distribu-
tion of the received samples whether they belong to the bounded or
unbounded distributions1. Thus, it is concluded that in the case of
Gaussian kernel function, inequality (4) is always satisfied regard-
less of the signal and the noise distributions in the sensing task. This
in turn represents that the KED test statistic in (3) is robust for differ-
ent noise scenarios leading to a suitable sensing scheme for impul-
sive man-made noises. As will be shown later, the main advantage
of the proposed KED in (3) is a better detection performance for
the case of non-Gaussian noise; moreover, it is much more robust
against impulsive man-made noises than the classical ED. Optimal-
ity of the proposed KED test statistic is investigated in [17] where
it is proved that in the case of utilizing a proper kernel function sat-
isfying the finiteness of the KED test statistic (as mentioned in (4)),
an optimal spectrum sensing scheme could be obtained for various
Gaussian and non-Gaussian noise scenarios. Finally, although some
general properties of the kernel functions which can be considered
in the KED scheme are presented in this paper and in [17], it is be-
yond the scope of this paper to design different kernels to fulfill these
properties.

Lemma 1 Let assume K(xi, xj) is a nonlinear kernel function.
Then, 1) E{K(xi, xj)} can be represented by higher order mo-
ments and cumulants of two random variables xi and xj , where the
expectation is computed with respect to xi and xj . 2) The kernelized
spectrum sensing defined as a nonlinear moment, E{K(xi, xj)},
employs the FLOMs in the sensing process.

E{K(xi, xj)} =

∞∑
k1=0

∞∑
k2=0

K(0, 0)(k1,k2)

k1!k2!
mXiXj

(k1, k2). (5)

1The upper bound is due to the fact that power of the exponential in the
Gaussian kernel is always negative and K(xi, xj) is maximized when the

power of the exponential is zero , i.e., ∀xi, xj then (xi − xj)
2 ≥ 0.

EXiXj
{K(xi, xj)} =

∞∑
�=0

∞∑
n=0

1

n!

1

�!
EXiXj

{K(xi, xj)
(n,�)}

×cXiXj
(�+ 1, n), (6)

where the superscripts in the parenthesis indicates order of deriva-
tion and mXiXj

(k1, k2) and cXiXj
(� + 1, n) are the joint moment

and cumulat of random variables Xi and Xj , respectively.

E{K(xi, xj)} =

M∑
k=1

[ ∞∑
m=0

∞∑
n=0

Fα,β(m,n)E{xmα
i xnβ

j }
]
, (7)

where Dα is the fractional derivative operator for 0 < α ≤ 1 [18]
and Fα,β(m,n) = 1

Γ(αm+1)Γ(βn+1)
(Dα)mΦk(xi)(D

β)nΦk(xj).

Proof: This Lemma can be proved using the Taylor series ex-
pansion and the definitions of moment generating and cumulant gen-
erating functions which is eliminated due to the space constraints.

Corollary 1: As a result of Lemma 1, the KED test statistic
(3) which is compatible with the U-statistics based estimation of
E{K(xi, xj)}, defined as β = 1

N(N−1)

∑N
i=1

∑N
j=1
j �=i

K(xi, xj), in-

cludes the higher order joint statistics and FLOMs of the received
signal samples.

Practical methodology associated with the KED algorithm in the
two stage spectrum sensing context is presented in [17] which is not
provided here due to the space considerations.

4. NUMERICAL RESULTS

In this section, some numerical results are presented to evaluate the
performance of the proposed KED algorithm in practical impulsive
man-made noises to confirm our analysis in Section 3. The simu-
lation setup follows a one-primary and K-secondary users scenario
where each SU performs the spectrum sensing task individually.
BPSK and QPSK modulated signals are considered for PU’s signal,
and the bandwidth of the Gaussian kernel function, c, is considered
to be fixed for the KED algorithm. We generate pure noise samples
corresponding to the predetermined noise distributions: Gaussian,
Laplacian or α-stable, based on which sensing threshold is measured
for a pre-specified false alarm probability. The measured threshold
is then employed to sense the PU’s signal. We assume that the car-
dinality of the received signal samples set in the sensing task is 200
and 400. Additionally, the number of iterations in each simulation
is 10, 000. The performance of the KED scheme is compared with
that of the conventional ED which has been extensively investi-
gated in the literature, e.g. [9, 13]. Moreover, a fair comparison
can be achieved in this case since both the conventional ED and
the proposed KED scheme are semi-blind methods requiring noise
statistics in detection process. Detection probability versus SNR and
the Receiver Operating Characteristic (ROC) curves are employed
as the metrics to demonstrate the performance of the KED and the
conventional ED schemes in various noise scenarios.

Fig. 1 illustrates the ROC curves for the proposed KED scheme
compared with the conventional ED for the QPSK signal, SNR=-
8dB, and both in Laplacian and Gaussian noise scenarios. As
depicted in Fig. 1, the KED scheme provides almost the same
detection performance with the conventional ED in the Gaussian
Noise (GN) model as expected, however, for the Laplacian Noise
(LN), the KED algorithm achieves a considerably better perfor-
mance than the ED. This better performance is mainly due to the
fact that the KED scheme employs higher order and fractional lower
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Fig. 1. ROC curves for the PU with QPSK modulated signal for both
Laplacian and Gaussian noise scenarios, where the KED and the ED
algorithms consider N = 200 and SNR = −8dB.

order moments for the LN, while in the GN, higher order moments
provide redundant information where no performance improvement
is achieved. Fig. 2 shows the detection probability of the KED al-
gorithm compared to the conventional ED for different SNR values
among [−20, 0]dB for the Laplacian noise and QPSK signal where
the false alarm probability is considered to be Pfa = 0.01. As
seen in Fig. 2, the KED scheme displays about 2.5 dB better per-
formance than the conventional ED. To investigate the performance
of the proposed KED test in various impulsive noise models, the
α-stable distribution is employed in our simulations. As previously
mentioned, the second or higher order moments of the α-stable
distribution is infinite for α < 2. It should be noted that due to
the infiniteness of the noise variance for the α-stable model, the

SNR cannot be measured as SNR=
E{‖s‖2}
E{‖w‖2} . Instead, the SNR

for the above scenario should be computed using the Generalized

Signal-to-Noise Ratio defined as GSNR=
E{‖s‖2}

Mγ
where γ is the

dispersion parameter of the α-stable distribution and Mγ denotes
the averaged value of it. Fig. 3 demonstrates the ROC curves for
the KED and the ED schemes when the noise follows an α-stable
distribution for different values of α = 0.5, 1, 1.5, 2, shift parameter
ν = 0, N = 400 and GSNR= −2dB. It is worth mentioning that α-
stable distribution for α = 1 and ν = 0 coincides with the Cauchy
distribution, while α = 2 determines the Gaussian distribution. As
represented in Fig. 3, the proposed KED scheme has significantly
better detection performance for α < 2 than the conventional ED
scheme and it is much more robust against various impulsive noises,
while the convectional ED fails to detect the PU’s signal in the ex-
istence of these α-stable impulsive noises. The better performance
of the KED scheme for α < 2 is due to the fact that the Gaussian

kernel function K(xi, xj) = e
− (xi−xj)

2

2c2 is bounded among zero
and one regardless of the noise density. According to (4), this leads
to a well concentrated test in various noise scenarios which is crucial
for a spectrum sensing method.
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Fig. 2. Pd versus SNR for a PU with QPSK and the Laplacian noise
for the KED and the ED algorithms where N = 200 and Pfa = 0.01.
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Fig. 3. ROC curves for a PU with BPSK modulated signal and the
α-stable noise distribution with various values of α for the KED and
the ED algorithms, where N = 400, GSNR = −2dB.

5. CONCLUSION

In this paper, we proposed a robust spectrum sensing scheme,
namely the kernelized energy detector, for the practical impulsive
man-made noises. The proposed KED algorithm significantly out-
performs the conventional ED for the case of α-stable noise model
when α < 2, while the performance of the conventional ED de-
grades considerably due to the infinite variance of the α-stable
distribution. The better detection performance of the KED test
can be attributed to the kernel theory which enables us to develop
nonlinear algorithms capable of employing the higher order and
fractional lower order statistics in the sensing procedure. In addi-
tion, incorporation of bounded kernel functions in the KED method
leads to concentrated test statistics around its mean value, according
to Hoeffding’s inequality, which results in a high detection accuracy
in Gaussian and non-Gaussian impulsive noise scenarios.
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