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ABSTRACT

We consider an asynchronous two-way relay network, in which
two double-antenna relays assist in the communication between two
single-antenna terminals through analog network coding. The asyn-
chronous transmission between relays and terminals causes symbol
misalignments and results in diversity loss in space–time block code
(STBC). We propose a zero-padded time-reversal quasi-orthogonal
STBC that can achieve full diversity with low-complexity maximum
likelihood (ML) decoding, given a bounded delay. With ML decod-
ing, the proposed code is decomposed into several independent parts,
which leads to single complex symbol decoding. Proof of full diver-
sity is established, and the decoding complexity order is analyzed
for the proposed design. Simulations confirm the full diversity gain.
The bit error rate performance in asynchronous scenarios is almost
the same as that in synchronous scenarios.

Index Terms— Asynchronous, two-way relay network, analog
network coding, space-time code, full diversity, maximum likeli-
hood decoding.

1. INTRODUCTION

Two-way relay networks allow simultaneous information exchange
between two terminals via a few relays in between [1–4]. In Phase
I, both terminals simultaneously broadcast their signals to relays.
Depending on how signal mixing on relays, individual relay could
choose to either map the mixed signals to the network-coded sym-
bols, which is known as digital network coding [5–7], or directly am-
plify and transmit the received superposition signals, which is called
analog network coding (ANC) [8]. In Phase II, the relays simul-
taneously broadcast to terminals. Terminals extract useful signals
by cancelling self-interference components. The channel between
multiple relays and each terminal is a multiple-input single-output
(MISO) channel, which offers diversity gain. Space-time block code
(STBC) [9–12] can harvest the diversity gain in such MISO channel.

Given different path and processing delays on each relay, multi-
ple transmission undertaken by distributed nodes may not be per-
fectly synchronized over time. In two-way relay networks, such
asynchronous transmission is received by relays in Phase I and ter-
minals in Phase II. The lack of perfect synchronization may cause
severe performance degradation, such as diversity loss in STBC
[13, 14]. To compensate for the asynchronous transmission, syn-
chronization procedures are required. However, such procedures
normally require considerable overhead. To avoid unnecessary over-
head, asynchronous STBC [14–26] is proposed to achieve diversity
gain without synchronization requirement. For one-way relay net-
works, some STBC designs have been used to achieve diversity gain.

However, one-way relay networks do not have asynchronous trans-
mission on relays, and the existence of such asynchronous transmis-
sion render these studies inapplicable to two-way relay networks.

Recently, several schemes have reconsidered the asynchronous
issue in two-way relay networks [27–30]. These schemes can be
categorized as either frequency-domain or time-domain approaches.
For frequency-domain approaches, the authors in [28, 29] consid-
ered frequency selective fading channel and adopted orthogonal fre-
quency division multiplexing (OFDM), in which cyclic prefix was
applied to combat symbol misalignment. Thus, such approaches
may not be applicable to non-OFDM systems. A time-domain ap-
proach was proposed in [27] to achieve full diversity through dis-
tributed linear convolutive STBC [20]. However, maximum likeli-
hood (ML) decoding of this time-domain approach is computation-
ally prohibitive. First, the ML decoding in this approach requires an
exhaustive search over all symbols. Second, for different delay dif-
ferences, the received signal structures also differ, and thus result in
different ML decoders. Consequently, the complexity of ML decod-
ing increases exponentially with code length and linearly with the
maximum delay difference. To alleviate ML decoding complexity,
zero-padded interleave-reversal Alamouti code (ZP-IR AC) [30] has
been proposed to achieve diversity order 2 with reduced ML decod-
ing complexity. However, ZP-IR AC is limited to networks with two
single-antenna relays, and can only provide transmit diversity order
2. Moreover, the ML decoding complexity of ZP-IR AC continues
to increase with the constellation size to the fourth power, which
may be a problem for high-order constellations. This drawback mo-
tivates us to design a new type of STBC to achieve full diversity
order higher than 2 with simpler complexity order than ZP-IR AC
for ANC and multiple antennas at relays.

Time-reversal STBC (TR-STBC) [14] has been proposed in one-
way cooperative communication with two single-antenna transmit-
ters and one destination. However, owing to the existence of asyn-
chronous transmission received by relays, TR-STBC can not be di-
rectly applied to asynchronous two-way relay networks. For 4 × 1
systems, quasi-orthogonal space-time block code (QOSTBC) [31]
successfully achieves full rate 1 and full diversity order 4 with sin-
gle symbol complexity. Our following work on two double-antenna
relays is based on QOSTBC.

In this paper, we propose a zero-padded time-reversal quasi-
orthogonal space-time block code (ZP-TR QOSTBC) for asyn-
chronous two-way relay networks with two double-antenna relays.
Given the maximum delay difference, terminals transmit with zero
padding to combat asynchronous transmission received by relays
in Phase I. One relay then processes a time-reversal procedure on
the received signals and broadcast the signals at Phase II with the
other relay. After cancelling self-interference, the overall decod-
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Fig. 1: Asynchronous two-way relay network with two relay nodes.

ing problem is decomposed into several independent sub-problems,
which greatly facilitate the ML decoding process. The proposed
code achieve full diversity order 4 with ML decoding complexity
of O(L|S|), where L is the code length and |S| is the cardinality
of the signal constellation. Proof of full diversity, code rate analy-
sis and decoding complexity analysis are provided for the proposed
codes.

The remainder of this paper is organized as follows. Section
2 provides the system model of asynchronous two-way relay net-
works. The proposed STBC code design is presented in Section 3.
Section 4 provides the simulation results, and Section 5 presents the
conclusion.

Notation: Vector x[i:j] represents a sub-vector in x from in-
dex i to index j. We allow j < i. If i < j, then x[i:j] =[
x[i], x[i+1], ..., x[j]

]
; if i > j, then x[i:j] =

[
x[i], x[i-1], ..., x[j]

]
.

x∗[i] represents the conjugate signal of x[i].

2. SYSTEMMODEL

A two-way relay network consists of two double-antenna relay
nodesR1,R2, assisting in the information exchange between single-
antenna terminals A and B, as shown in Fig. 1. Each node oper-
ates in half-duplex mode, which means nodes could not transmit
and receive at the same time. The cooperation between relays is
exploited to provide diversity gain in data transmission. In Phase
I, the channel fading coefficient from terminal J to Ri is hi,J ; in
Phase II, the channel fading coefficient from Ri to terminal J is
ĥi,J , where i = 1, 2 and J = A,B. The channel fading coeffi-
cient is known at the receiver side. The path delay between Ri and
terminal J is τi,J , where i = 1, 2 and J = A,B. The delay differ-
ence bound is denoted by T , where |τi,J −τî,Ĵ | ≤ T , [i, J ] �= [̂i, Ĵ ],
i, î ∈ {1, 2, ..., N} and J, Ĵ ∈ {A,B}. τi,J is an integer multiple of
symbol duration. The fractional part of τi,J can be regarded as mul-
tipath effects addressed by equalizers through oversampling [17].

The network employs ANC. In Phase I, the relays receive the
signal vector of sequence a from terminal A and the signal vector of
sequence b from terminal B. The relays then perform some trans-
formation on the received signals to obtain new signal vectors. In
Phase II, the relays amplify and forward their new signal vectors to
terminals A and B simultaneously. αi is the amplifying factor at Ri

to ensure same power on both relays, where i = 1, 2.

3. ZERO-PADDED TIME-REVERSAL SPACE-TIME
CODES

ZP-IR AC [30] achieves diversity order 2 with complexity
O(L|S|4). By using a different code construction method, we pro-

pose ZP-TR QOSTBC to achieve higher diversity order and lower
complexity order than that of ZP-IR AC for a network with two
double-antenna relays.

3.1. Code Structure

Terminal A transmits sequence a of 4� symbols, and terminal B
transmits sequence b of 4� symbols, where � ∈ Z+. Both a and b
adopt stretched constellations [31], such as c1 + k1c2, where c1, c2
∈ Z, and k1 is an irrational number like

√
2.

• In Phase I, terminals form groups of � symbols each, and insert
an all-zero row vector with T elements, 0T , between each group, to
construct â and b̂ as follows:

â =
[
a[1 : �],0T ,a[�+1 : 2�],0T , a[2�+1 : 3�],0T ,a[3�+1 : 4�]

]
b̂ =

[
b[1 : �],0T ,b[�+1 : 2�],0T ,a[2�+1 : 3�],0T , a[3�+1 : 4�]

]
.

Zero-padding is employed to accommodate symbol misalignment at
the relays. The signal matrix received by the two antennas on Ri is

YRi
=

√
PT [hi,A,hi,B ]

[
0τi,A â 0[Δi]

+

0τi,B b̂ 0[–Δi]
+

]
+NRi

where hi,A = [hi,A,1, hi,A,2]
T , hi,B = [hi,B,1, hi,B,2]

T , Δi �

τi,B–τi,A, and i = 1, 2.
Given that the two antennas ofRi receive two copies of the same

transmitted signal, Ri obtains the results of the combination as

yRi
= kiYRi

where ki is the signal combining row vector of length 2. As will
be seen later, ki can be any nonzero vector without losing the full
diversity.

yRi
is separated into four parts as

yRi,j [1 : �+|Δi|]

=yRi

[
min{τi,A, τi,B}+(j−1)�+(j−1)T+1 :

max{τi,A, τi,B}+j�+(j−1)T
]
,

where i = 1, 2, and j = 1, 2, 3, 4.
The relays will organize the four parts of the signals following

QOSTBC structure as follows.⎡
⎢⎣

yR1,1 yR1,2 yR1,3 yR1,4

–y∗
R1,2

y∗
R1,1

y∗
R1,4

–y∗
R1,3

–←−y ∗
R2,3

–←−y ∗
R2,4

←−y ∗
R2,1

←−y ∗
R2,2

–←−y R2,4
←−y R2,3 –←−y R2,2

←−y R2,1

⎤
⎥⎦ . (1)

To address the symbol misalignment issue, some zero padding
blocks are added at relays. Details of the signals design at relays are
given below.

R1 constructs ŷR1,1 and ŷR1,2 by inserting all-zero row vectors,
each with 2T − |Δ1| elements, between yR1,j as follows:

ŷR1,1 = α1

[
yR1,1,02T –|Δ1|,yR1,2,02T –|Δ1|,yR1,3,02T –|Δ1|,yR1,4

]
= n̂R1,1 + α1

√
PT [k1h1,A,k1h1,B ]

[
0[–Δ1]+

a[1 : �] 02T

0[Δ1]+
b[1 : �] 02T

a[�+1 : 2�] 02T a[2�+1 : 3�] 02T a[3�+1 : 4�] 0[Δ1]+

b[�+1 : 2�] 02T b[2�+1 : 3�] 02T b[3�+1 : 4�] 0[–Δ1]+

]
.

ŷR1,2 = α1

[
–y∗

R1,2
, 02T –|Δ1|, y

∗
R1,1

, 02T –|Δ1|,y
∗
R1,4, 02T –|Δ1|, –y

∗
R1,3

]
= n̂R1,2 + α1

√
PT [k∗

1h
∗
1,A,k

∗
1h

∗
1,B ]

[
0[–Δ1]+

–a∗[�+1 : 2�] 02T

0[Δ1]+
–b∗[�+1 : 2�] 02T

a∗[1 : �] 02T a∗[3�+1 : 4�] 02T –a∗[2�+1 : 3�] 0[Δ1]+

b∗[1 : �] 02T b∗[3�+1 : 4�] 02T –b∗[2�+1 : 3�] 0[–Δ1]+

]
.
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yA = n̂A +
√

PT [α1ĥ1,A,1k1h1,B , α1ĥ1,A,2k
∗
1h

∗
1,B , α2ĥ2,A,1k

∗
2h

∗
2,B , α2ĥ2,A,2k2h2,B ]⎡

⎢⎢⎣
0max{τ1,B ,τ1,A} b[1 : �] 02T b[�+1 : 2�] 02T b[2�+1 : 3�] 02T b[3�+1 : 4�] 0[ΔA]+

0max{τ1,B ,τ1,A} –b∗[�+1 : 2�] 02T b∗[1 : �] 02T b∗[3�+1 : 4�] 02T –b∗[2�+1 : 3�] 0[ΔA]+

0max{2τ2,A–τ2,B ,τ2,A} –b∗[3� : 2�+1] 02T –b∗[4� : 3�+1] 02T b∗[� : 1] 02T b∗[2� : �+1] 0[–ΔA]+

0max{2τ2,A–τ2,B ,τ2,A} –b[4� : 3�+1] 02T b[3� : 2�+1] 02T –b[2� : �+1] 02T b[� : 1] 0[–ΔA]+

⎤
⎥⎥⎦

︸ ︷︷ ︸
Xb

. (2)

ŷR1,1 and ŷR1,2 follow the first and second rows of (1), respec-
tively.

R2 constructs ŷR2,1 and ŷR2,2 by inserting all-zero row vectors,
each with 2T − |Δ2| elements, between the reverse order of yR2,j

as follows:

ŷR2,1 = α2

[
–←−y ∗

R2,3, 02T –|Δ2|, –
←−
y

∗
R2,4, 02T –|Δ2|,

←−
y

∗
R2,1, 02T –|Δ2|,

←−
y

∗
R2,2

]

= n̂R2,1 + α2

√
PT [k

∗
2h

∗
2,A, k

∗
2h

∗
2,B ]

⎡⎢⎣ 0[Δ2]+
–a∗[3� : 2�+1] 02T

0[–Δ2]+
–b∗[3� : 2�+1] 02T

–a∗[4� : 3�+1] 02T a∗[� : 1] 02T a∗[2� : �+1] 0[–Δ2]+

–b∗[4� : 3�+1] 02T b∗[� : 1] 02T b∗[2� : �+1] 0[Δ2]+

⎤⎥⎦,
ŷR2,2 = α2

[
–←−y R2,4, 02T –|Δ2|,

←−
y R2,3, 02T –|Δ2|, –

←−
y R2,2, 02T –|Δ2|,

←−
y R2,1

]

= n̂R2,2 + α2

√
PT [k2h2,A, k2h2,B ]

⎡⎢⎣ 0[Δ2]+
–a[4� : 3�+1] 02T

0[–Δ2]+
–b[4� : 3�+1] 02T

a[3� : 2�+1] 02T –a[2� : �+1] 02T a[� : 1] 0[–Δ2]+

b[3� : 2�+1] 02T –b[2� : �+1] 02T b[� : 1] 0[Δ2]+

⎤⎥⎦.

where ←−y Ri,j = [yRi,j [�+|Δ2|],yRi,j [�+|Δ2|–1], ...,yRi,j [1]],
i = 1, 2 and j = 1, 2, 3, 4.

ŷR2,1 and ŷR2,2 follow the third and fourth rows of (1), respec-
tively.

• In Phase II, R1 transmits ŷR1,1 from its first antenna and
ŷR1,2 from its second antenna; R2 transmits ŷR2,1 from its first
antenna and ŷR2,2 from its second antenna.

At terminal A, after canceling the self-interference
on a, the received signal vector is (2), where ΔA �

max{2τ2,A–τ2,B , τ2,A}–max{τ1,B , τ1,A}.
Example 1: When � = 4, [τ1,A, τ1,B, τ2,A, τ2,B ] = [1, 1, 1, 0]

and T = 1. For simplicity, we let PT = 1 and α1 = α2 = 1.
According to (2), yA is

yA =n̂A+[ĥ1,A,1k1h1,B , ĥ1,A,2k
∗
1h

∗
1,B , ĥ2,A,1k

∗
2h

∗
2,B , ĥ2,A,2k2h2,B ]⎡⎢⎣ 0 b[1] b[2] 0 0 b[3] b[4] 0 0

0 –b∗[3] –b∗[4] 0 0 b∗[1] b∗[2] 0 0
0 0 –b∗[6] –b∗[5] 0 0 –b∗[8] –b∗[7] 0
0 0 –b[8] –b[7] 0 0 b[6] b[5] 0

b[5] b[6] 0 0 b[7] b[8] 0
b∗[7] b∗[8] 0 0 –b∗[5] –b∗[6] 0
0 b∗[2] b∗[1] 0 0 b∗[4] b∗[3]
0 –b[4] –b[3] 0 0 b[2] b[1]

⎤⎥⎦ . (3)

The matrix in (3) can be decomposed into QOSTBC and Alamouti
code matrices as⎡⎢⎣ b[2] b[4] b[6] b[8]

–b∗[4] b∗[2] b∗[8] –b∗[6]
–b∗[6] –b∗[8] b∗[2] b∗[4]
–b[8] b[6] –b[4] b[2]

⎤⎥⎦ ,

⎡⎢⎣ b[1] b[3] 0 0
–b∗[3] b∗[1] 0 0

0 0 b∗[1] b∗[3]
0 0 –b[3] b[1]

⎤⎥⎦ ,

⎡⎢⎣ 0 0 b[5] b[7]
0 0 b∗[7] –b∗[5]

–b∗[5] –b∗[7] 0 0
–b[7] b[5] 0 0

⎤⎥⎦
where (b[2], b[4], b[6], b[8]) form a QOSTBC matrix with stretched
signal constellation and (b[1], b[3]), (b[5], b[7]) form two Alamouti
code matrices. It was proved in that the QOSTBC [31] has single

Table 1: Comparison of ZP-TR QOSTBC, ZP-IR AC [30], and
Alamouti code [9] for a network with two single-antenna relays. L
is the code length.

Type Code Rate Diversity Complexity
ZP-TR QOSTBC 1 symbol/channel 4 O(L|S|)
ZP-IR AC 1 symbol/channel 2 O(

L|S|4)
Alamouti code 1 symbol/channel 2 O(L|S|)

symbol decoding complexity. By such decomposed procedure, the
ML decoding procedure is significantly facilitated.

3.2. Full Diversity Proof

Theorem 1. In an asynchronous two-way relay network with two
double-antenna relays and maximum delay difference T , ZP-TR
QOSTBC achieves full diversity, that is, diversity order 4. The code
length is 4�, where � ∈ Z+.

Proof: See Appendix. � A key insight of designing (1)
is that the elements in each row are either all taking their conjugate
forms or not taking at all. By doing so, the signal combining vector
ki can be regarded as part of channel gain as in (2), facilitating the
full diversity proof.

3.3. Code Rate Analysis

The worst-case code rate R of ZP-TR QOSTBC is

R =
8�

8�+ 12T + 2min{τ1,A, τ1,B , τ2,A, τ2,B} ,

where 8� is the number of symbols exchanged in both directions.
It takes at most (4� + 4T + min{τ1,A, τ1,B , τ2,A, τ2,B}) sym-
bol duration to transmit in Phase I, and at most (4� + 8T +
min{τ1,A, τ1,B, τ2,A, τ2,B}) symbol duration to transmit in Phase
II. When � is sufficiently large, R approaches 1 symbol/channel.

3.4. Low-Complexity ML Decoding

Just like Example 1, the codeword Xb in (2) consists of two parts,
namely,Xb,1 with QOSTBC structure andXb,2 with Alamouti code
structure. For simplicity, the general forms of Xb is provided in (4)
in Appendix. Due to space limit,Xb,1 is marked with blue ofXb in
(4), and Xb,2 is the remaining columns of Xb in (4). For Xb,1 us-
ing stretched constellations,Xb,1 follows QOSTBC structure, which
is proven in [31] to have single symbol decoding complexity. For
Xb,2, we jointly decode two Alamouti codes. Therefore, the overall
decoding complexity of ZP-TR QOSTBC is O(

4�|S|), where |S|,
the cardinality of the constellation, represents the single symbol de-
coding complexity, and 4� is the code length.
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Xb(b) =

⎡
⎢⎣

0 ... 0 b[1] ... b[ΔA] b[ΔA+1] ... b[�] 0 ... 0
0 ... 0 –b∗[�+1] ... –b∗[�+ΔA] –b∗[�+ΔA+1] ... –b∗[2�] 0 ... 0
0 ... 0 0 ... 0 –b∗[3�] ... –b∗[2�+ΔA+1] –b∗[2�+ΔA] ... –b∗[2�+1]
0 ... 0 0 ... 0 –b[4�] ... –b[3�+ΔA+1] –b[3�+ΔA] ... –b[3�+1]

0 ... 0 b[�+1] ... b[�+ΔA] b[�+ΔA+1] ... b[2�] 0 ... 0
0 ... 0 b∗[1] ... b∗[ΔA] b∗[ΔA+1] ... b∗[�] 0 ... 0
0 ... 0 0 ... 0 –b∗[4�] ... –b∗[3�+ΔA+1] –b∗[3�+ΔA] ... –b∗[3�+1]
0 ... 0 0 ... 0 b[3�] ... b[2�+ΔA+1] b[2�+ΔA] ... b[2�+1]

0 ... 0 b[2�+1] ... b[2�+ΔA] b[2�+ΔA+1] ... b[3�] 0 ... 0
0 ... 0 b∗[3�+1] ... b∗[3�+ΔA] b∗[3�+ΔA+1] ... b∗[4�] 0 ... 0
0 ... 0 0 ... 0 b∗[�] ... b∗[ΔA+1] b∗[ΔA] ... b∗[1]
0 ... 0 0 ... 0 –b[2�] ... –b[�+ΔA+1] –b[�+ΔA] ... b[�+1]

0 ... 0 b[3�+1] ... b[3�+ΔA] b[3�+ΔA+1] ... b[4�] 0 ... 0
0 ... 0 –b∗[2�+1] ... –b∗[2�+ΔA] –b∗[2�+ΔA+1] ... –b∗[3�] 0 ... 0
0 ... 0 0 ... 0 b∗[2�] ... b∗[�+ΔA+1] b∗[�+ΔA] ... b∗[�+1]
0 ... 0 0 ... 0 b[�] ... b[ΔA+1] b[ΔA] ... b[1]

⎤
⎥⎦ (4)

8 12 16 20 24 28 32 36 40
10−6

10−5

10−4

10−3

10−2

10−1

100

Overall Power P (dB)

B
E
R

[0,0,0,0]

[0,0,1,0]

[0,1,1,0]

[1,1,1,0]

ZP-TR QOSTBC ZP-IR AC

Fig. 2: Comparison among the bit error rate of ZP-TR QOSTBC and
ZP-IR AC with 2 bits/symbol and code length 4� = 16.

3.5. Comparisons with Other Codes

Table.1 shows a comparison of ZP-TR QOSTBC, ZP-IR AC [30]
and Alamouti code [9]. The code rate of ZP-TR QOSTBC and ZP-
IR AC in Table.1 is asymptotic code rate whenL is sufficiently large.
In ZP-IR AC, interleave reversal procedure causes inter-symbol in-
terference, which adds up the decoding complexity order. In ZP-TR
QOSTBC, time reversal, a different construction procedure, avoids
such inter-symbol interference and leads to low-complexity ML de-
coding.

4. SIMULATION RESULTS

The simulation results on the performance of the proposed codes
with ML decoding are presented in this section. The channel fading
coefficients follow an i.i.d. complex Gaussian distribution with zero
mean and unit variance. The maximum delay difference T = 1.

Fig. 2 shows the bit error rate (BER) performance of ZP-TR
QOSTBC using two double-antenna relays and ZP-IR AC [30] us-
ing two single-antenna relays with respect to the total transmit power
P , where the transmit power at each terminal and relay is P/4, that

is, PT = P/4. The performance of ZP-TR QOSTBC in delay
profile [0, 0, 0, 0] can be regarded as that of QOSTBC in the syn-
chronous case. And the performance of ZP-IR AC in delay profile
[0, 0, 0, 0] is regarded as that of Alamouti code [9]. The slope dif-
ference among these two sets of lines shows the advantage of diver-
sity order 4 over diversity order 2. To achieve BER 10−5, ZP-TR
QOSTBC requires overall power around 30 dB, whereas ZP-IR AC
requires overall power around 40 dB. Such phenomenon means that
considerable power can be saved by using double-antenna relays to
achieve the same BER. In asynchronous cases, the code structure of
ZP-TR QOSTBC can be decomposed into QOSTBC [31] and Alam-
outi codes. Such phenomenon is shown in Example 1 by decompos-
ing (3) into a QOSTBCmatrix and two Alamouti code matrices. Be-
cause of such similarity in code structure between the decomposed
code matrices and QOSTBC, the performance of ZP-TR QOSTBC
in the asynchronous cases is similar to that of QOSTBC [31] in the
synchronous case.

5. CONCLUSION

In this paper, we have proposed a zero-padded time-reversal quasi-
orthogonal space-time block code for asynchronous two-way relay
networks. The proposed code achieves full diversity order 4 with
single symbol ML decoding complexity. Full diversity proof, code
rate and decoding complexity analysis were provided for the pro-
posed code design. The simulation verifies the full diversity.

6. APPENDIX - PROOF OF THEOREM 1

Only the case of max{2τ2,A–τ2,B, τ2,A} > max{τ1,B , τ1,A} is
discussed because of space constraint. Since ki does not ap-
pear in the codeword matrix, any nonzero vector ki will not affect
the full diversity gain. Codeword matrix Xb(b) is shown in (4).
Xb(b) is decomposed into two parts, namely, Xb,1 marked in blue
of (4) and Xb,2, the remaining black columns of (4). Xb,1 includes
columns with a QOSTBC structure, andXb,2 includes columns with
an Alamouti code structure.

Considering that Xb,1 has a QOSTBC structure, Xb,1 main-
tains full rank by stretched constellations, which is proven in [31]
for QOSTBC. ForXb,2, the Alamouti code structure appears on the
first two rows and last two rows. Hence, Xb,2 guarantees full rank.
Therefore, Xb(b) is full rank in codeword difference matrix, and
ZP-TR QOSTBC achieves full diversity.
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