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ABSTRACT

This paper considers the energy-efficient precoding matrixdesign
for relay-aided multiuser downlink multiple-input single-output
wireless systems. The precoders of the base station (BS) andthe
relay station (RS) are designed to maximize the transmit energy
efficiency, defined as the ratio between the system sum rate and the
total power consumption, under the quality-of-service constraints of
the users and the transmit power constraints on the BS and theRS.
In view of the fact that this precoder design problem is a nonconvex
fractional programming, a successive Dinkelbach and convex ap-
proximation (SDCA) algorithm is proposed to handle this problem.
Simulation results are provided to demonstrate the effectiveness of
the proposed SDCA algorithm, and significant EE improvementas
the number of antennas at the BS and the RS increases.

Index Terms— Convex optimization, energy efficiency, beam-
forming designs, relay-aided communications, fractionalprogram-
ming.

1. INTRODUCTION
The expeditious expansion of wireless networks has resulted in a
tremendous increase in energy consumption. Thus, the issueof en-
ergy efficiency (EE) in wireless communications has drawn increas-
ing attention in both academia and industry recently [1]. Among var-
ious definitions of EE, the most widely used is the ratio between the
achievable transmission rate and the total power consumption, which
is usually measured in bits/joule [2, 3]. The resource allocation for
EE optimization has been extensively studied under variousscenar-
ios, e.g.,frequency-selective interference channel [3],point-to-point
parallel AWGN channel [4], point-to-point multiple-inputmultiple-
output (MIMO) channel [5, 6], multiple access channel (MAC)[7].

The aforementioned works focus on one-hop networks. How-
ever, wireless relaying is indispensable for reliable transmission with
high throughput in the areas with severe shadowing effect, or re-
mote from the base stations (BSs) [8]. The energy-efficient transmis-
sion design for relay-aided networks is difficult since the signal-to-
interference-plus-noise ratio (SINR) of the users is inevitably a com-
plicated nonconvex function of the product of the transmission pre-
coders of the BS and the relay station (RS), making the transmission
design an involved nonconvex problem. Thus, there are few works
addressing EE of relay-aided networks. In the literature sofar, EE-
optimal relay placement is investigated for one-dimensional cellular
network [9], energy-efficient noncooperative power control strategy
is developed for relay-aided single-input single-output (SISO) inter-
ference channel [10], energy-efficient precoder design is devised for
relay-aided single-user MIMO downlink transmission [11, 12, 13],
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and a low complexity EE maximization method is proposed for mul-
tiuser uplink networks [14].

In this paper, we consider a relay-aided multiuser downlinksys-
tem consisting of one BS, one RS, andK users. Assuming amplify-
and-forward (AF) relay scheme, we design the precoding matrices
of the BS and the RS to maximize the EE under the quality-of-
service (QoS) constraints of each individual user and the transmit
power constraints of the BS and the RS. The resulting energy effi-
ciency maximization (EEM) problem is a nonconvex fractional pro-
gramming [15], and is difficult to solve. A special case, i.e., the
single-user case, of this EEM problem has been studied in [11] using
the Dinkelbach’s algorithm [15] and alternating optimization method
[16]. This method, however, is not directly applicable to the mul-
tiuser case due to the inter-user interference. We hence propose
a successive Dinkelbach and convex approximation (SDCA) algo-
rithm to obtain an approximate solution for the multiuser case. We
successively approximate the EEM problem by the Dinkelbach’s ap-
proximation and a conservative approximation based on the inequal-
ity of arithmetic and geometric means, leading to an approximation
problem that is convex in the the precoding matrices of the BSand
the RS, respectively. Then, we can apply the alternating optimization
method to handle the resulting problem. Finally, simulation results
are provided to demonstrate the efficacy of the SDCA algorithm.

2. SIGNAL MODEL AND PROBLEM STATEMENT

Consider a relay-aided downlink transmission system consisting of
one BS, one half-duplex AF RS, andK single-antenna users, where
the BS and the RS are equipped withMB andMR antennas, respec-
tively. Assuming no direct path between the BS and the users,the
downlink transmission is divided into two phases. In the first phase,
the BS transmitsK data streams (one for each user) to the RS, and
the transmitted signal can be expressed as

xB =

K∑

k=1

bksk,

wheresk ∈ C is the signal intended for userk, andbk∈C
MB is the

corresponding beamformer. In the second phase, the RS amplifies
and forwards the received signal to theK users by the AF precoding
matrixR∈C

MR×MR . LetH∈C
MR×MB denote the MIMO channel

between the BS and the RS, andgk∈C
MR denote the multiple-input

single-output (MISO) channel between the RS and thekth user for
k = 1, . . . ,K. Then, the received signal at thekth user is given by

yk = g
H
k R(HxB + zR) + zk

= g
H
k RH

(∑K
k=1bksk

)
+ g

H
k RzR + zk

wherezR ∼ CN (0, σ2
RIMR

) andzk ∼ CN (0, σ2
k) are the additive

Gaussian noises at the RS and thekth user, respectively.
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Assume that the information signals are standard complex Gaus-
sian distributed, i.e.,sk ∼ CN (0, 1), and that all the users decode
their received signals using a single-user detection scheme. Then,
the instantaneously achievable data rate to thekth user is given by

Rk(B,R) =
W

2
log2(1 + SINRk) (bits/sec), (1)

whereW is the transmission bandwidth (assumed to be 1 for simpl-
city), B , [b1, . . . , bK ], andSINRk is given by

SINRk =
|gH

k RHbk|2∑
j 6=k |gH

k RHbj |2 + σ2
R‖gH

k R‖2 + σ2
k

, (2)

where‖·‖ denotes the Euclidean norm. On the other hand, the trans-
mit powers of the BS and the RS can be respectively expressed as

PB(B) =
1

2ζB
Tr(BB

H), (3)

PR(B,R)=
1

2ζR

(
Tr(RHBB

H
H

H
R

H) + σ2
RTr(RR

H)
)
, (4)

whereTr(·) denotes the trace of a matrix,ζB andζR are the power
amplifier efficiencies at BS and RS, respectively, and the factor 1/2
is due to the two-phase transmission. For simplicity, We assume
ζB = ζR = 1. Other power consumptions, including circuit power,
signal processing power, cooling loss and so on, at BS and RS is also
taken into account, and is modeled as [17]

PC = αM + Psta, (5)

whereαM (a linear function of the number of active antennasM )
stands for the dynamic power consumption, andPsta stands for the
static power consumption of the baseband signal processing.

The EE of this relay-aided downlink system is defined as the
ratio of the achievable sum rate to the total transmitted power
PT (B,R) = PB(B) + PR(B,R) + PC , i.e.,

EE(B,R) =

∑K
k=1 Rk(B,R)

PT (B,R)
(bits/joule). (6)

Our goal is to maximize the transmission EE under QoS constraints
on each user and power constraints on the BS and the RS, i.e.,

max
B,R

EE(B,R) (7a)

s.t.SINRk ≥ γk, k = 1, . . . ,K, (7b)

PB(B) ≤ P̄B , PR(B,R) ≤ P̄R, (7c)

whereγk is the QoS requirement for userk; P̄B and P̄R are the
power budgets of BS and RS, respectively. Problem (7) is difficult
to solve since it is a noncovex fractional optimization problem.

3. SUCCESSIVE DINKELBACH AND CONVEX
APPROXIMATION (SDCA) ALGORITHM

3.1. Dinkelbach’s Algorithm

In view of the fractional objective function, we apply the Dinkel-
bach’s algorithm, which has been extensively used to handlefrac-
tional programming, to the EEM problem (7). Specifically, given
feasible precoding matricesB(n−1) and R(n−1) satisfying (7b),
(7c), we consider to solve the following optimization problem:

max
B,R

ÊE(B,R | B(n−1),R(n−1)) (8a)

s.t.SINRk ≥ γk, ∀k, (8b)

PB(B) ≤ P̄B , PR(B,R) ≤ P̄R, (8c)

where

ÊE(B,R | B(n−1),R(n−1))

,

K∑

k=1

Rk(B,R) − EE
(n−1) · PT (B,R), (9)

in which
EE

(n−1)
, EE(B(n−1),R(n−1)). (10)

Solving problem (8) is difficult due to the coupling structure of B
andR and the nonconcave SINR functions,SINR1, . . . , SINRK .

3.2. SCA-based Algorithm to Problem(8)

Since the variablesB andR are coupled in problem (8), we consider
the alternating optimization method, i.e., alternatinglyoptimize one
variable with the other fixed. However, the subproblems for optimiz-
ing B andR are still nonconvex due to the nonconcave SINR func-
tions, which appear in the objective function in (8a) and in constraint
(8b). To cope with this, let us defineρk(B,R) as the interference
plus noise power (the denominator ofSINRk given by (2)) at thekth
user, i.e.,

ρk(B,R) ,
∑

j 6=k

|gH
k RHbj |2 + σ2

R‖gH
k R‖2 + σ2

k, (11)

and equivalently reformulate constraint (8b) as [18, Appendix II]:

Re
{
g
H
k RHbk

}
≥ γ

1/2
k · ρk(B,R)1/2, k = 1, . . . ,K, (12)

where Re{·} denotes the real part of a complex number. Note that
the constraints in (12) are second-order cone constraints on B and
R, respectively. Next, we tackle the nonconcave objective function
based on the successive convex approximation (SCA) method.

For ease of exposition, let us introduce the slack variables
{tk}Kk=1 and equivalently reformulate problem (8) as

max
B,R,

{tk}
K

k=1

K∑

k=1

1

2
log2(1 + tk)− EE

(n−1) · PT (B,R) (13a)

s.t.SINRk ≥ tk, ∀k, (13b)

Re
{
g
H
k RHbk

}
≥ γ

1/2
k · ρk(B,R)1/2, ∀k, (13c)

PB(B) ≤ P̄B , PR(B,R) ≤ P̄R. (13d)

Similar to (8b), the constraints in (13b) can be written as

Re
{
g
H
k RHbk

}
≥ t

1/2
k · ρk(B,R)1/2, ∀k. (14)

However, the constraints in (14) are still hard to handle since, in
contrast toγk, tk is a variable fork = 1, . . . ,K. In view of this, we
consider the inequality of arithmetic and geometric means [19]:

φ−1a+ φb

2
≥

√
ab, ∀a, b ≥ 0, φ > 0, (15)

where the equality holds whenφ =
√

a/b. Therefore, by applying
(15) to (14), problem (13) can be conservatively approximated by

max
B,R,

{tk}
K

k=1

K∑

k=1

1

2
log2(1 + tk)− EE

(n−1) · PT (B,R) (16a)

s.t. Re
{
g
H
k RHbk

}
≥ φ−1

k ρk(B,R) + φktk
2

, ∀k, (16b)

Re
{
g
H
k RHbk

}
≥ γ

1/2
k · ρk(B,R)1/2,∀k, (16c)

PB(B) ≤ P̄B , PR(B,R) ≤ P̄R, (16d)
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whereφk > 0, k = 1, . . . ,K, are parameters to be judiciously
assigned. Observing that the optimal{tk}Kk=1 must satisfy the con-
straints in (16b) with equality, we further rewrite problem(16) as

max
B,R

K∑

k=1

1

2
log2(1+Tk(B,R, φk))− EE

(n−1)PT (B,R) (17a)

s.t. Re
{
g
H
k RHbk

}
≥ γ

1/2
k · ρk(B,R)1/2,∀k, (17b)

PB(B) ≤ P̄B, PR(B,R) ≤ P̄R, (17c)

where we have replacedtk by

Tk(B,R, φk) ,
[
2Re

{
g
H
k RHbk

}
−φ−1

k ρk(B,R)
]
· φ−1

k . (18)

Note that problem (17) is convex if eitherB orR is fixed, and hence
can be handled by alternating optimization method. Moreover, ac-
cording to (13b) and (15), we have

Tk(B,R, φk) ≤ SINRk, ∀φk > 0, k = 1, . . . ,K. (19)

Since the optimal solution of (17) must satisfy Re{gH
k RHbk} =

|gH
k RHbk|, k = 1, . . . ,K, (19) holds with equality when

φk =
ρk(B,R)

Re{gH
k RHbk}

, Φk(B,R), k = 1, . . . ,K. (20)

Therefore, given the feasible point(B(n−1),R(n−1)), of problem
(8), we chooseφk = Φk(B

(n−1),R(n−1)) for k = 1, . . . ,K, such
that, by optimizing eitherB or R in (17), we can achieve a higher
objective value to problem (8) compared with that achieved by
(B(n−1),R(n−1)), which isÊE(B(n−1),R(n−1) | B(n−1),R(n−1))
= 0. To see this, letJ(B,R, {φk}Kk=1) denote the objective func-
tion of problem (17). By (9) and (19), we have

ÊE(B(n),R(n−1) | B(n−1),R(n−1))

≥ J(B(n),R(n−1), {Φk(B
(n−1),R(n−1))}Kk=1)

≥ J(B(n−1),R(n−1), {Φk(B
(n−1),R(n−1))}Kk=1)

= ÊE(B(n−1),R(n−1) | B(n−1),R(n−1)) = 0, (21)

whereB(n) is obtained by optimizing problem (17) withR fixed to
R(n−1) andφk = Φk(B

(n−1),R(n−1)), k = 1, . . . ,K, i.e.,

B
(n)=argmax

B

J(B,R(n−1), {Φk(B
(n−1),R(n−1))}Kk=1) (22a)

s.t. Re
{
g
H
kR

(n−1)
Hbk

}
≥ [γkρ(B,R(n−1))]

1

2 ,∀k, (22b)

PB(B) ≤ P̄B , PR(B,R(n−1)) ≤ P̄R. (22c)

Analogous to (21) and (22), updatingR by

R
(n)=argmax

R

J(B(n),R, {Φk(B
(n),R(n−1))}Kk=1) (23a)

s.t. Re
{
g
H
kRHb

(n)
k

}
≥ [γkρ(B

(n),R)]
1

2 ,∀k, (23b)

PR(B
(n),R) ≤ P̄R, (23c)

we have

ÊE(B(n),R(n) | B(n),R(n−1))

≥ ÊE(B(n),R(n−1) | B(n),R(n−1)) = 0. (24)

From (21), (24) and (9), one can further prove that

EE(B(n),R(n)) ≥ EE(B(n−1),R(n−1)).

Algorithm 1 SDCA algorithm to problem (7)

1: Input (B(0),R(0)) satisfying (7b) and (7c); set solution accu-
racyǫ > 0;

2: Setn := 0;
3: repeat
4: n = n+ 1;
5: ObtainB(n) by (22);
6: ObtainR(n) by (23);
7: until

EE
(n) − EE

(n−1)

EE
(n−1)

≤ ǫ;

8: Output (B(n),R(n)) as an approximate solution to (7).

Hence, alternatively solving problem (22) and problem (23)achieves
a nondecreasing sequence of energy efficiency values,{EE(n)}∞n=0,
which eventually converges since the achievable energy efficiency is
upper bounded. Therefore, we come up with the SDCA algorithm
constituted by the above successive optimization procedures to han-
dle problem (7) as summarized in Algorithm 1.

3.3. Initialization of the SDCA Algorithm

The SDCA algorithm needs to be initialized by a feasible point of
problem (7). However, finding a feasible point of the nonconvex
constraint set, (7b) and (7c), is difficult. Next, we presenta heuristic
approach based on the idea of zero-forcing beamforming to find a
feasible point.

Assume thatMB ≥ K andMR ≥ K. Let ĝk = gk/‖gk‖
and ĥk = hk/‖hk‖, wherehk is thekth column ofH, for k =
1, . . . ,K, and define

Ĝ−k , [ĝ1, . . . , ĝk−1, ĝk+1, . . . , ĝK ], k = 1, . . . , K,

Ĥ−k , [ĥ1, . . . , ĥk−1, ĥk+1, . . . , ĥK ], k = 1, . . . ,K.

Under the assumption thatMB ≥ K andMR ≥ K, we can elimi-
nate the inter-user interference by makingR(0) andB(0) in the fol-
lowing structure:

B
(0) =

[
Diag(

√
pB1, . . . ,

√
pBK)

0(MB−K)×K

]
(25a)

R
(0) =

K∑

k=1

√
pRkĝ

⊥
k (ĥ⊥

k )
H , (25b)

whereĝ⊥
k and ĥ⊥

k are the unit-norm zero-forcing vectors obtained
through complement orthogonal projection associated withĜ−k and
Ĥ−k, respectively, i.e.,

ĝ
⊥
k ,

(IMR
− Ĝ−k(Ĝ

H
−kĜ−k)

−1ĜH
−k)ĝk

‖(IMR
− Ĝ−k(ĜH

−kĜ−k)−1ĜH
−k)ĝk‖

,

ĥ
⊥
k ,

(IMR
− Ĥ−k(Ĥ

H
−kĤ−k)

−1ĤH
−k)ĥk

‖(IMR
− Ĥ−k(ĤH

−kĤ−k)−1ĤH
−k)ĥk‖

.

By (25), we have

|gH
k R

(0)
Hb

(0)
j |2 =

{
pRkpBj · ‖gk‖2‖hj‖2, if j = k,
0, if j 6=k.

With the precoder structures given in (25), we aim to allocate the
transmission powerspBk, pRk, k = 1, . . . ,K, such thatB(0) and

3100



0 5 10 15 20 25
0

20

40

60

80

100

120

140

160

Iteration number

E
ne

rg
y 

E
ffi

ci
en

cy
 (

bi
ts

/jo
ul

e)

 

 

SDCA, K=2
SDCA, K=4
SDCA, K=6
PM, K=2
PM, K=4
PM, K=6

Fig. 1. Performance of energy efficiency versus iteration number
of the SDCA algorithm and the PM algorithm forK = 2, 4, 6 and
MB = MR = 6.

R(0) satisfy constraints (7b) and (7c). This can be formulated asthe
following optimization problem

min
pBk,pRk≥0,
k=1,...,K

PR(B
(0),R(0))=

K∑

k=1

pRk(pBk‖hk‖2+σ2
R) (26a)

s.t.
pRkpBk · ‖gk‖2‖hk‖2
σ2
R‖gk‖2pRk + σ2

k

≥ γk, ∀k, (26b)

K∑

k=1

pBk ≤ P̄B. (26c)

By the change of variables,̃pRk = ln(pRk) and p̃Bk = ln(pBk),
k = 1, . . . ,K, problem (26) can be converted into the following
convex optimization problem:

min
p̃Bk,p̃Rk∈R

k=1,...,K

K∑

k=1

(
‖hk‖2ep̃Rk+p̃Bk + σ2

Re
p̃Rk

)
(27a)

s.t.
γkσ

2
R

‖hk‖2
e−p̃Bk+

γkσ
2
k

‖gk‖2‖hk‖2
e−p̃Rk−p̃Bk ≤ 1, ∀k,

(27b)
K∑

k=1

ep̃Bk ≤ P̄B . (27c)

Consequently, if the optimal value of problem (27) is less than or
equal toP̄R, then the associated precoder given by (25) is a feasible
point of problem (7).

Note that, since the associated feasibility problem of problem
(7) is itself a nonconvex problem, there is no efficient method to effi-
ciently determine the feasibility or obtain a feasible point of problem
(7). Nevertheless, the above zero-forcing beamforming scheme suc-
cessfully yields feasible points for more than 95% of the randomly
generated channel realizations in our simulations.

4. SIMULATION RESULTS AND CONCLUSIONS

This section shows some simulation results to demonstrate the effi-
cacy of the proposed SDCA algorithm. In the simulation, we set the
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Fig. 2. Performance of energy efficiency versusMB = MR , M
of the SDCA algorithm forK = 2, ..., 6, andM ≥ K.

power budgets of the BS and the RS tōPB = P̄R = 10 dB, the
SINR requirements for all the users areγ1 = · · · = γK = 5 dB, and
the noise variances areσ2

R = σ2
1 = · · · = σ2

K = 0.01. The general
circuit power model is given byPC = 0.005M + 0.005. All the
simulation results are obtained by averaging over 200 sets of chan-
nel realizations, in which every component ofH andg1, . . . , gK is
independently generated according to the standard complexGaus-
sian distribution. We set solution accuracyǫ = 10−3. To the best
of our knowledge, there is no existing state-of-the-art algorithm for
performance comparison. Thus we compare the performance ofthe
proposed algorithm with that of a heuristic algorithm motivated by
[18]. In [18], the total powerPT (B,R) is minimized under the
users’ QoS constraints (7b). Adding the transmit power constraint
(7c) to this problem results in an optimization problem thatis con-
vex inB and inR, respectively. Therefore, the heuristic algorithm,
which is referred to as power minimization (PM) algorithm below, is
to solve this PM problem by alternating optimization and is initial-
ized by the scheme presented in Subsection 3.3.

Fig. 1 shows the EE performances of the SDCA algorithm and
the PM algorithm forMB = MR = 6 andK = 2, 4, 6. It is
observed that the SDCA algorithm outperforms the PM algorithm;
moreover, the performance difference is significant whenK is small
because, in this case, there are sufficient spatial degrees of freedom
to enhance the transmission rate without significantly increasing the
transmit power. On the other hand, both of the two algorithmscon-
verge quickly, indicating promising computational efficiency.

Fig. 2 demonstrates the EE performance of the proposed SDCA
algorithm versus the number of antennas,MB = MR , M , at the
BS and the RS. It is observed that the achieved EE increases with the
number of antennasM , demonstrating the efficiency of the SDCA
algorithm in exploiting the spatial degrees of freedom. However, the
increment eventually saturates asM increases. The reason is that
the increasing circuit power consumption (cf. (5)) would constrain
the effectiveness of activating more antennas.

In conclusion, we have presented an SDCA algorithm for the de-
sign of the precoding matrices of the multiple-antenna BS and RS by
maximizing the EE under each user’s QoS constraint and the trans-
mit power constraints of the BS and the RS. Some simulation results
were provided to demonstrate its effectiveness and fast monotone
convergence.
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