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ABSTRACT

Zero-forcing beamforming (ZFBF) is a popular pre-coding
scheme for MIMO systems. Most of the studies in the lit-
erature are under total power constraints. However, the per-
antenna power constraints (PAPC) are more realistic. The
state-of-the-art method is interior point method which is ex-
pensive to realize in practice due to the high computational
complexity. Hence, a low complexity zero-forcing precod-
ing scheme under the per-antenna power constraints is pro-
posed in this paper. This is achieved by introducing a reg-
ularized dual method. Simulations are carried out to show
the effectiveness of the proposed method, which has a low
computational complexity. In addition, the algorithm can be
implemented in parallel to further reduce the computational
complexity.

Index Terms— MIMO, zero-forcing beamforming (ZFBF),
per-antenna power constraint (PAPC), dual method, parallel
computation

1. INTRODUCTION

Transmitter design for the MU-MIMO systems has been stud-
ied intensively in the literature (see, for example, [1]-[3]).
The dirty paper coding (DPC) [1] is known as the capacity-
achieving scheme. However, it is difficult to be implemented
in practical systems due to high computational complexity.
Zero-forcing beamforming (ZFBF) is a popular linear pre-
coding method because it provides a good trade-off between
the complexity and the performance. Traditionally, ZFBF is
studied under the total power constraint. However, for real
world applications, each antenna of the transmitter has its own
amplifier. Thus, the per-antenna power constraints (PAPC)
(see, for example, [4, 5, 6, 7, 8, 9, 10]) are imposed.

ZFBF under the PAPC is a nontrivial problem. Although
this problem can be solved by the interior point method [4,
5, 7, 8, 9], it is expensive to apply in practice. This is due
to the fact that complex computations are involved, such as
a solving nonlinear equation to obtain the Newton step as it
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is shown in [11]. Thus, it is expensive to realize this method
with hardware in practice. For this, we focus on the develop-
ment of a low complexity algorithm. A new regularized dual
method is proposed in this paper. The idea is to solve the orig-
inal problem by solving its dual problem. This is achieved by
introducing the Lagrangian of the primal problem. However,
the resulted dual problem is non-differentiable. For this, a
Tikhonov regularization is applied to smooth the dual objec-
tive function by appending two prox-functions. The regular-
ized dual objective becomes differentiable. Moreover, the op-
timal solution of the Lagrangian can be written analytically
in a closed form. The convergence of the regularization is
proved and the effective of regularization is analyzed. The
computational complexity analysis shows that the complex-
ity of the proposed method is much lower than that of state-
of-the-art method. In addition, this algorithm can be imple-
mented in a parallel manner. Simulations are carried out to
show the effectiveness and efficiency of the proposed method.

2. PROBLEM FORMULATION

Consider the standard MISO multiuser broadcast channel

ym = hHmx + nm, m = 1, 2, . . . ,M, (1)

where ym is the received signal of the mth user, hm is the
channel vector of length N of the mth user, x is the transmit-
ted vector of lengthN , and nm is the complex Gaussian noise
with mean 0 and variance σ2. It can be written in a compact
form as given below:

y = Hx + n, (2)

where y = [y1, y2, . . . , yM ]
>, H = [h1,h2, . . . ,hM ]

H , n =

[n1, n2, . . . , nM ]
>, (·)> denotes the transpose, and (·)H de-

notes the conjugate transpose.
Here, the linear Zero-Forcing pre-coding transmitter is ap-

plied, i.e., x = Ws, HW =
√

Λ where s is the information
vector of length M such that E

{
ssH

}
= I, I denotes the

identity matrix of appropriate dimension, W is an N × M
complex matrix, and Λ denotes a real and positive diagonal
matrix.
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The minimum information rate is taken as the perfor-
mance measure, which is denoted by r(m) for each user and
is given by

min
m

r(m) = min
m

log2 (1 + SINR(m)), m = 1, 2, . . . ,M,

(3)
where SINR(m) is the signal-to-interference-plus-noise ra-
tio (SINR) for each user, which is given by SINR(m) =∣∣∣(HW)m,m

∣∣∣2/σ2, m = 1, 2, . . . ,M , as the mutual inter-

ferences are ‘zero-forced’. To limit the power on the ampli-
fier of each antenna, the per-antenna power constraints are
imposed as follows:

M∑
m=1

|eTnwm|2 ≤ P, n = 1, 2, . . . , N, (4)

where wm is the mth column vector of W, en is a vector
of length N with a 1 in the nth element while 0 in the other
elements, and P is the maximum allowable power on each
antenna.

The problem under consideration may now be formally
stated below:

Problem 2.1

max
wm,r0

r0 m = 1, 2, . . . ,M

s. t. log2

(
1 +

|hHmwm|2
σ2

)
≥ r0, m = 1, 2, . . . ,M,

M∑
m=1
|e>nwm|2 ≤ P, n = 1, 2, . . . , N

hHj wm = 0, ∀j 6= m,
1 ≤ j,m ≤M.

For convenience, we transform Problem 2.1 into a real form.
From [5], it follows from letting

x = [w1Re
> w1Im

> . . . wMRe
> wMIm

>]>,

where x ∈ R2NM , that Problem 2.1 can be written as the
following optimization problem.

Problem 2.2

min
x,t

−t (5)

s. t. H1x ≤ −t1, (6)
x>Anx ≤ P, n = 1, 2, . . . , N, (7)

H2x = 0, (8)

where 1 is a vector of ones with appropriate dimension, An =
diag {Bn Bn · · · Bn} ∈ R2NM×2NM , Bn ∈ R2N×2N is a
diagonal matrix with 1 appearing in the (n, n)th and (n +
N,n + N)th positions and 0 elsewhere, H1 ∈ RM×2NM ,
and H2 ∈ R(2M(M−1)+M)×2NM . For the structures of H1

and H2, we refer the readers to [7].

3. A REGULARIZED DUAL METHOD

The idea of the proposed method is to solve Problem 2.2 via
solving its dual problem. Towards this goal, we introduce the
Lagrangian of Problem 2.2

L (t,x, λ,v, µ) = −t+ λ> (H1x + t1) + v>H2x

+

N∑
n=1

µn
(
x>Anx− P

)
. (9)

Let d (λ,v, µ) = minx,t L (t,x, λ,v, µ) be the dual function.
Then the dual problem of Problem 2.2 can be written as

Problem 3.1

max
λ,v,µ

d (λ,v, µ) (10)

s. t. λ � 0 (11)
µ � 0, (12)

where a � 0 means each element of a is greater than or equal
to 0.

Since Problem 2.2 is convex and the Slater’s condition is
satisfied, the strong duality holds [11]. Thus, Problem 2.2 can
be solved through solving Problem 3.1.

3.1. Regularization

Note that the dual function is not differentiable. We apply
Tikhonov regularization to smooth the dual function as that in
[12]. To begin, we denote dt(t) = ρt2 and dx(x) = ρ‖x‖2
as two prox-functions, where ρ = Mα/((N2 + MN)P ) is
a smoothing parameter and α > 0. By appending dt(t) and
dx(x) into Lagrangian (9), we obtain

Lρ (t,x, λ,v, µ) = L (t,x, λ,v, µ) + dt(t) + dx(x) (13)

The optimal solution of min
t,x

Lρ (t,x, λ,v, µ) can be written

in a closed form as

t∗ =
1

2ρ

(
1−

M∑
m=1

λm

)
(14)

and
x∗ = −1

2
S(µ, ρ)

(
H>1 λ+ H>2 v

)
(15)

where S(µ, ρ) = diag (C C · · · C) ∈ R2MN×2MN and

C = diag

(
1

ρ+ µ1

1

ρ+ µ2
· · · 1

ρ+ µN

)
∈ RN×N .

From (13), (14) and (15), it follows that

dρ (λ,v, µ) = d (λ,v, µ) + dt(t) + dx(x)

= −1

4

(
H>1 λ+ H>2 v

)>
S(µ, ρ)

(
H>1 λ+ H>2 v

)
− 1

4ρ2

(
M∑
m=1

λm − 1

)2

− P
N∑
n=1

µn (16)
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We refer the regularized dual problem as Problem 3.1(ρ)
by replacing (10) in Problem 3.1 with (16). Then, we give
the error bound that introduced by the regularization with the
following theorem.

Theorem 3.1 Suppose the Slater conditions hold and let(
t∗ρ,x

∗
ρ

)
and (t∗,x∗) be optimal solutions of Problem 3.1(ρ)

and Problem 2.2, respectively. Then, for any ρ,

t∗ − t∗ρ ≤ α. (17)

Proof Under the Slater condition, both Problem 2.2 and Prob-
lem 3.1(ρ) have solutions. We can easily prove that

t∗ − t∗ρ < ρt∗2 + ρ‖x∗‖2 (18)

From (8), we have
N∑
i=1

x>Aix ≤ NP. Note that
N∑
i=1

Ai =

IN , where IN is an N × N identity matrix. Then, it follows
that

‖x‖2 ≤ NP. (19)

By adding all the rows of H1 and all the components of −t1
in (6), we have L>x ≥Mt, where

L =
[

h>1Re h>1Im · · · · · · h>MRe h>MIm

]
.

Since t∗ > 0, then it follows that

t2 ≤ ‖L‖2‖x‖2/M2. (20)

By considering the definition of Euclidian norm, we know
that ‖L‖2 = MN . Thus, from (19) and (20), we obtain

t2 ≤ N2P/M. (21)

Combining (18), (19) and (21) and knowing that ρ =
Mα/((N2 + MN)P ), we obtain the desired relation. This
completes the proof.

Remark 3.1 (19) and (21) provide a ‘good’ bound for this
problem. In fact, this is achieved by taking the conjugate
of channel as the weights of the beamformer under the total
power constraint. This is known as matched filter in signal
processing, which provides the best signal to noise ratio. We
can refer to this as an ‘idealized’ scenario. This ‘idealized’
bound may not be achieved in this problem since the feasible
set bounded by PAPC is a subset of that bounded by the total
power constraint.

From the definition of ρ, we know that ρ only depends
on α for a specified scenario, where N , M and P are fixed.
Thus, we can give a rule of choosing ρ according to Theorem
3.1. For this, we define α = βN

√
P/M , where β is called

error bound parameter. In fact, β is the portion of the bound of
the regularization error to the performance of the ‘idealized’
scenario according to (21) and Remark 3.1. In addition, the
definition of α shows that the error bound t∗ − t∗ρ depends on
N and square root of 1/M linearly.

3.2. Algorithm

In the kth iteration, the primal variables x(k) and t(k) can be
updated in parallel with (14)-(15). The dual variables λ, v
and µ can be updated by

λ(k+1) = max
{

0, λ(k) + 1
Lλ

∂dρ
∂λ

}
v(k+1) = v(k) + 1

Lv

∂dρ
∂v

µ(k+1) = max
{

0, µ(k) + 1
Lµ

∂dρ
∂µ

} (22)

where g(x) = [g1(x) g2(x) · · · gN (x)]
> and gn(x) =

x>Anx− P , n = 1, 2, . . . , N . Lλ, Lv and Lµ are Lipschitz
constants and they can be obtained as in [13]. The gradients
of (16) with respect to λ, v and µ are:

∂dρ
∂λ

= H1x + t1,
∂dρ
∂v

= H2x,

∂dρ
∂µn

= x>Anx− P, n = 1, 2, . . . , N.

Particularly, according to (15) and the structure of S, the
primal variables x can be updated in parallel as in (23), where
v =

[
v>1 v>2 · · ·v>2M+1

]> ∈ R2M(M−1)+M is the dual vari-
able and vij is the ith element of vj . The stopping criterion
is the duality gap, the difference between the function value
of the primal problem and that of the dual problem, meets a
tolerance.

3.3. Convergence Analysis

We present the convergence results in the following theorems.

Theorem 3.2 Let
(
t∗ρk ,x

∗
ρk

)
be an optimal solution of Prob-

lem 3.1(ρk), and lim
k→+∞

ρk = 0. Then, there exits a subse-

quence
{(
t∗ρk̄ ,x

∗
ρk̄

)}
of the sequence

{(
t∗ρk ,x

∗
ρk

)}+∞
k=1

such
that it converges to an optimal solution of Problem 2.2 as
k → +∞.

Proof Since
(
t∗ρk ,x

∗
ρk

)
is bounded for all ρk, there exits a

subsequence
{(
t∗ρk̄ ,x

∗
ρk̄

)}
such that

(
t∗ρk̄ ,x

∗
ρk̄

)
→ (t̄, x̄) as

k → +∞. We will show that (t̄, x̄) is an optimal solution of
Problem 2.2. We can prove that (t̄, x̄) is an optimal solution of
Problem 2.2 with the fact that the limit of the objective func-
tion of the corresponding primal problem of Problem 3.1(ρk̄)
is −t̄. This completes the proof.

From Proposition 1.3.3 in [13], we can obtain that the con-
vergence rate of the algorithm is o

(
1
k

)
.

4. NUMERICAL RESULTS AND COMPUTATIONAL
COMPLEXITY ANALYSIS

The base station array considered in the numerical studies is
a uniform planar circular array. It consists of N isotropic el-
ements and the inter-element spacing is equal to 0.5λ. There
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
xk2i−1 = − 1

2C

(
−λki hiRe +

M∑
j=1,j 6=i

(
vij
)k

hjRe −
2M∑

j=M+1,j 6=M−i

(
vij
)k

hj−MIm −
(
vi2M+1

)k
hiIm

)

xk2i = − 1
2C

(
−λki hiIm +

M∑
j=1,j 6=i

(
vij
)k

hjIm +
2M∑

j=M+1,j 6=M−i

(
vij
)k

hj−MRe +
(
vi2M+1

)k
hiRe

) (23)
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Fig. 1. ZFBF under PAPC as a function of N with different ρ.

are M users around the base station. Set σ2 = 0.001. The
simulation is implemented in the Matlab environment. We
implement Algorithm 1 within a deterministic line-of-sight
channel tested by The Commonwealth Scientific and Indus-
trial Research Organization (CSIRO) in rural Australia [15].
We plot the performances with different values of the error
bound parameter β as a function of SNR in Fig. 1. As it
is shown in Fig. 1, the performance converges to the opti-
mum, which is denoted as PAPC, as β decreases. We can
see that the performance is already very closed to the optimal
performance when β = 0.3. Recalling Theorem 3.1 and the
definition of α, we know that, in this case, the bound of the
regularization error is 30% of the ‘idealized’ scenario. We
cannot tight the bound error further since the ‘idealized’ sce-
nario only serves as a reference and could not be achieved as
explained in Remark 3.1.

Then, we compare the computational complexity per it-
eration of the proposed method with that of state-of-the-art
interior point method in [7, 8, 9]. The details of the com-
parison are shown in Table 1. From the comparison, we can
see that there is a trade off between the complexity per itera-
tion and the convergence rate. More specifically, the interior
point method gains convergence rate at the expense of a much
higher cost on the computational complexity per iteration, re-
sulting in much higher expense on the hardware implementa-
tion. Moreover, it cannot be implemented in a parallel man-
ner. Hence, the proposed algorithm is much more attractive
from the practical point of view. Then, we compare the com-
plexity per iteration between the interior point method and
proposed method with different N and M . The results are

Table 1. Computational Complexity Comparison
[7, 8, 9] Proposed

Iteration Complexity O
(
M3N3

)
O
(
M2N2

)
Convergence Rate O (ln(1/ε)) O (1/ε)

Table 2. Iteration Complexity Comparison
N ,M [7, 8, 9] Proposed

N = 12,M = 4 1.11× 105 2.30× 103

N = 12,M = 6 3.73× 105 5.18× 103

N = 12,M = 12 2.99× 106 2.07× 104

N = 24,M = 4 8.85× 105 9.22× 103

N = 24,M = 6 2.99× 106 2.07× 104

N = 24,M = 12 2.39× 107 8.29× 104

N = 24,M = 18 8.06× 107 1.87× 105

shown in Table 2. From Table 2, we can see that the com-
putational complexity per iteration of the proposed method
is much lower than that of the interior point method. Then,
we shall study how much computational complexity we can
reduce by implementing the parallel computation. By com-
paring (15) with (23), we can see that the primal update in
(15) can be decomposed into 2M streams. We compare the
occupational complexity of the primal updates between (15)
and (23) in Table 3. As it is shown in Table 3, we can further
reduce the complexity by exploring the parallelism.

5. CONCLUSIONS

A low complexity beamformer design is proposed by means
of a regularized dual method. An O

(
M2N2

)
iteration com-

plexity is achieved by applying the proposed mehtod while
for the state-of-the-art method it is O

(
M3N3

)
. Furthermore,

the proposed method can further reduce the complexity to
O
(
N2
)

by exploring the parallelism. Thus, the proposed al-
gorithm is more attractive in practice. The smoothing param-
eter ρ can be chosen by setting the error bound parameter β.
It shows that when β decreases the performance goes to the
optimal performance. However, as it is shown, β cannot be
set too small as well.

Table 3. Complexity Reduction by Exploring Parallelism
(15) (23)

Computational Complexity O
(
M2N2

)
O
(
N2
)
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