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ABSTRACT

We consider the joint channel and power allocation problem for the
OFDMA system. The problem is to find a joint channel and power
allocation strategy to minimize the total transmission power subject
to quality of service constraints and the OFDMA constraint (i.e, at
most one user is allowed to access each channel). Since the problem
is generally NP-hard, the idea of the existing algorithms is to heuris-
tically allocate the channel and power resources separately. In this
paper, we propose a novel iterative reweighted minimization frame-
work based on an effective relaxation, which is beneficial by refor-
mulating the combinatorial OFDMA constraint as an equivalent con-
tinuous optimization problem. The proposed framework simultane-
ously allocates the channel and power resources, and thus is sharply
different from the existing ones. Simulation results show the pro-
posed iterative reweighted minimization methods significantly out-
perform the existing algorithms.

1. INTRODUCTION

The Orthogonal Frequency Division Multiple Access (OFDMA)
technique has been popularly used in modern wireless communica-
tions due to its merit of mitigating the frequency selective fading.
In the OFDMA system, multiple users share multiple orthogonal
channels, but at most one user is allowed to transmit power on each
channel. A fundamental question for the OFDMA system is to
optimally allocate channels to users in a nonoverlapping way and
at the same time to determine the transmit powers on the allocated
channels. The joint channel and power allocation problem is often
formulated as two versions: the first is the one of maximizing a
system utility function subject to power budget constraints, and the
second is the one of minimizing the total transmit power subject to
rate requirement constraints. The later is usually called the mar-
gin adaptive (MA) problem [1]. Recently, the MA problem has
been re-addressed in the sense of energy efficiency and inter-cell
interference avoidance [2]. This paper focuses on the MA problem.

The MA problem is generally NP-hard except in some special
cases where the number of users and channels are equal [3, 4, 5].
The hardness of the MA problem is mainly due to the combinatorial
OFDMA constraint, which requires that at most one user is allowed
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to access each channel. Therefore, various heuristic approaches have
been proposed for solving the MA problem [2, 6, 7, 8]. The basic
idea of the existing approaches is to allocate channel and power re-
sources separately to leverage the difficulty of the simultaneous al-
location. For instance, one typical method in [6] (called Method A
in the sequel) first relaxes the binary channel indicator variables to
the continuous variables of [0, 1], solves the relaxed problem, and
rounds the obtained solutions to obtain an approximate channel allo-
cation strategy. Given the channel allocation, the transmit power is
regulated to satisfy the rate requirements. The other typical method
in [2] (called Method B in the sequel) determines the modulation
and code level based on average channel conditions and adjusts the
power to meet the signal-to-interference-plus-noise ratio (SINR) of
the corresponding modulation and code level. Given the power, the
remaining is to allocate channels to users. Another practical ap-
proach is to allocate the channels to the users with maximum channel
gains and then calculate the power by the water-filling algorithm.

In this paper, we propose a novel iterative reweighted minimiza-
tion framework for solving the MA problem, where a new reweight-
ing strategy is designed to connect channel and power allocation
variables. More specifically, we first rewrite the unfriendly OFDMA
constraint as an equivalent continuous minimization problem with
equality constraints. Then, we penalize the objective of the above
equivalent problem in the objective of the MA problem and obtain
an effective relaxation of the MA problem. Furthermore, we pro-
pose a novel iterative reweighted minimization framework for solv-
ing the relaxed MA problem. In the proposed iterative reweighted
minimization framework, the variables associated with channel and
power allocation are simultaneously updated and thus channel and
power are simultaneously allocated. Thanks to jointly allocating
channel and power, our proposed framework outperforms the afore-
mentioned methods.

2. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a multi-user single-cell OFDMA system where there are
K users sharing N channels and the base station (BS) implements
the resource allocation in a central way. Let K = {1, 2, ...,K} and
N = {1, 2, ..., N} denote the set of users and the set of channels,
respectively. Throughout the paper, we assume that N ≥ K (i.e.,
the number of channels is greater than or equal to the number of
users). The other case of N < K is associated with admission
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control [10, 11], which is out of scope of this paper. The cell is
assumed but not restricted to the downlink transmission mode.

Let pnk be the transmit power to user k on channel n. The
received power of user k on channel n is given by αn

kp
n
k + ηnk ,

where αn
k := |hn

k |2 stands for the channel gain between the BS
and user k on channel n and hn

k ∈ C is the channel coefficient of
this link. Then, we can write the SINR of user k on channel n as

SINRn
k =

αn
kp

n
k

ηnk
, and user k’s achievable data rate Rk (bits/sec) as

Rk =
∑

n∈N
log2 (1 + SINRn

k ) , k ∈ K. (1)

In this paper, we consider the joint channel and power allocation
problem for the OFDMA system, which requires that at most one
user is allowed to access each channel. Mathematically, the OFDMA
constraint can be formulated as

0 ≤ pnk ≤ ynkPmax, ynk ∈ {0, 1}, k ∈ K, n ∈ N (2)

and ∑
k∈K

ynk ≤ 1, n ∈ N . (3)

In the above, the binary variable ynk = 1 if user k occupies channel n
and ynk = 0 otherwise; Pmax is the maximum transmit power. From
(2), we see that if ynk = 0 then pnk = 0; while if ynk = 1, then pnk
can be any value in [0, Pmax].

The MA problem is to minimize the total transmit power subject
to rate requirement and OFDMA constraints, which is expressed as

MA: min
{pn

k
,yn

k
}

∑
k∈K

∑
n∈N

pnk

s.t. Rk ≥ γk, ∀ k ∈ K,
(2) and (3).

In the above, γk represents the desired rate demand of user k.

3. AN ITERATIVE REWEIGHTED MINIMIZATION
FRAMEWORK

In this section, we first derive a relaxation of the MA problem and
then propose a novel iterative reweighted minimization framework
for solving the MA problem.

3.1. Relaxation

Letting xnk =
pnk
Pmax and βn

k =
αn
kP

n
k

ηnk
, the MA problem can be

equivalently rewritten as problem (4) in the following:

min
{xn

k
, yn

k
}

∑
k∈K

∑
n∈N

Pmaxxnk

s.t.
∑

n∈N
log2 (1 + βn

k x
n
k ) ≥ γk, k ∈ K, (4a)

ynk ≥ xnk ≥ 0, k ∈ K, n ∈ N , (4b)∑
k∈K

ynk = 1, n ∈ N . (4c)

ynk ∈ {0, 1}, n ∈ N . (4d)

Notice that (4c) in the above is different from (3). In fact, the MA
problem and problem (4) are equivalent to each other. On one hand,
any feasible point of problem (4) is feasible to the MA problem.
On the other hand, given any feasible point {x̂nk , ŷnk } of the MA
problem, we can construct a feasible point {x̄nk , ȳnk } of problem (4)
such that the two problems have the same objective value as follows:

x̄nk = x̂nk , k ∈ K, n ∈ N

and

ȳnk =

{
max

{
ŷnk , 1−

∑
k∈K

ŷnk

}
if k = 1;

ŷnk if k 6= 1,
, n ∈ N . (5)

The distinctive advantage of rewriting (3) into (4c) is that it allows
for a simple (optimization) reformulation of the OFDMA constraint.
In particular, {ynk } satisfies the constraints (4c) and (4d) if and only
if {ynk } solves the following minimization problem

min
{yn

k
}

∑
k∈K

∑
n∈N

(ynk + ε)q

s.t. (4c) and ynk ≥ 0, k ∈ K, n ∈ N ,
(6)

where q ∈ (0, 1) and ε can be any nonnegative value. We remark
that the above equivalence does not hold if q = 1.

Based on the above reformulation (6), we can relax problem (4)
to

min
{xn

k
,yn

k
}

∑
k∈K

∑
n∈N

Pmaxxnk + λ
∑
k∈K

∑
n∈N

(ynk + ε)q

s.t. (4a), (4b), and (4c),
(7)

where λ is a positive penalty parameter. We have the following the-
orem, which can be shown in a similar way as [16, Theorem 17.1].

Theorem 3.1 The solution of problem (7) converges to the one of
problem (4) (with any ε ≥ 0) as the parameter λ goes to infinity.

In practical computations, it is enough to solve problem (7) with
a relatively large λ. This is because the solution of problem (7) with a
relatively large λ must be close to the point satisfying (4c) and (4d)
according to Theorem 3.1. Therefore, we can round the solution
of problem (7), and obtain a feasible solution to problem (4). The
parameter λ can be chosen adaptively as in [16, Framework 17.1].
Moreover, the parameter ε should not be very small, since a large ε
will smooth out local minimizers of problem (7). Therefore, adap-
tively updating ε allows one to get close to the global minimizer of
problem (7).

3.2. A Novel Iterative Reweighted Minimization (IRM) Frame-
work

In this subsection, we propose a novel iterative reweighted mini-
mization framework for solving the relaxed problem (7); see Al-
gorithm 1. The idea is to solve a series of convex subproblems
(8) wherein the weights {wn

k (t)} at the t-th iteration are calculated
based on its solution at the last iteration. The proposed iterative
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Algorithm 1 The IRM Framework for Solving MA
1: Initialization:
λ = NPmax, q ∈ (0, 1), σ1 ∈ (0, 1), σ2 ∈ (0, 1), and
τ > 1;wn

k (0) = 1 for all k ∈ K and n ∈ N and ε(0) = 1.
2: while true do
3: for t=1, 2,..., MaxItr do
4: Solve the subproblem for {xnk (t+ 1), ynk (t+ 1)}:

min
{xn

k
,yn

k
}

∑
k∈K

∑
n∈N

Pmaxxnk + λq
∑
k∈K

∑
n∈N

wn
k (t)ynk

s.t. (4a), (4b), and (4c).
(8)

5: Update

wn
k (t+ 1) = [(xnk (t+ 1)) + ε(t+ 1)]q−1 (9)

and ε(t+ 1) for all k ∈ K and n ∈ N .
6: if

∑
k

∑
n
|xnk (t+ 1)− xnk (t)| < σ1 then

7: break;
8: end if
9: end for

10: if f({ynk (t+ 1)}) < σ2 then
11: Stop.
12: else
13: λ = τλ

14: end if
15: end while

reweighted minimization framework is given in Algorithm 1 as fol-
lows. Several remarks on Algorithm 1 are in order.

First, the subproblem (8) in Algorithm 1 is jointly convex with
respect to {xnk} and {ynk } and thus it can be efficiently solved to
global optimality by general-purpose solvers like CVX [13].

Second, according to (9), the weights wn
k (t + 1) in Algorithm

1 is updated based on xnk (t + 1), which is in sharp contrast to the
existing ones [9, 12] based on ynk (t+1), i.e., the reweighted strategy

wn
k (t+ 1) = [(ynk (t+ 1)) + ε(t+ 1)]q−1 . (10)

At first glance, one might say that it is not intuitive. Recall that our
goal is to find {xnk} that minimizes the objective of problem (4) and
at the same time satisfies (4a) and

0 ≤ xnk ≤ 1, xnkx
n
j = 0, ∀ k 6= j, k, j ∈ K, n ∈ N . (11)

However, this problem is hard to deal with and we thus relax it to
problem (7) by introducing the variables {ynk }. The constraint (4b)
connects the “original” variables {xnk} and the “auxiliary” variables
{ynk } . Then, we solve problem (7) with a large λ to obtain a sparse
{ynk } (that approximately satisfies (4c) and (4d)) and thus a sparse
{xnk} (that satisfies (11)) by (4b). Therefore, our primary goal is
to find a sparse {xnk} and to achieve this goal we replace the spar-
sity conditions of {xnk} with the ones of {ynk } . However, a gap of
the sparsity of {ynk } and {xnk} occurs when the iterative reweighted
minimization framework is used to solve problem (8). More specifi-
cally, although the solution {x̂nk} of problem (8) with wn

k (t) = 1 is

unique, its solution {ŷnk } is not, which can be arbitrary ones in the
set {

{ynk } | ynk ≥ x̂nk ,
∑

k∈K
ynk = 1, k ∈ K, n ∈ N

}
.

The update strategy in (9) is actually to push the sparsity of {ynk }
to agree with that of {xnk} . This is the idea behind the proposed
reweighted strategy (9).
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Fig. 1. Comparison of IRM based on the proposed reweighted strat-
egy (9) and the reweighted strategy (10) for solving problem (7)
where there are 2 users and 4 channels. (a) x11, x12. (b) y11 , y12 .

The effectiveness of the proposed reweighted strategy (9) is
illustrated in Fig.1. Fig.1 shows that the oscillation (unconver-
gence) phenomenon occurs for Algorithm 1 based on the existing
reweighted strategy (10). However, Algorithm 1 equipped with
the proposed reweighted strategy (9) converges very fast (albeit its
convergence is not rigorously proved), taking only 4 iterations to
converge. Algorithm 1 with the reweighted strategy (10), even after
about 300 iterations, returns positive x11 and x12, which implies both
user 1 and 2 transmit positive power on channel 1. Obviously, this
is not we want, since it does not satisfy the OFDMA constraint.
In contrast to this, Algorithm 1 equipped with the new reweighted
strategy (9) returns an OFDMA solution, i.e., only user 1 transmits
positive power on channel 1, since y12 is very close to 0 and so x12;
see Fig.1 (b).

Third, the parameters {ε(t)} in Algorithm 1 must be positive to
guarantee (9) well defined. There are some possible ways of updat-
ing ε(t+ 1): (a) fix it to be a positive constant (e.g., ε(t) = 1e−4);
(b) set it to be a positive decreasing sequence (e.g., ε(t) = ε(0)γt,
where γ ∈ (0, 1)); (c) update it adaptively [9] according to

ε(t+ 1) = min
{
ε(t), γ · f({xnk (t)})

}
, (12)

where f ({xnk (t)}) = maxn∈N
(
{xnk (t)}k∈K

)
2

and
(
{xnk (t)}k∈K

)
2

is the second largest element of {xnk (t)}k∈K . Our simulation results
show that the updating strategy (c) performs the best, (b) the second,
and (c) the last; see Section 4.

Finally, the termination criterion of Algorithm 1 is f({ynk (t +

1)}) < σ2. Therefore, Algorithm 1, when terminated, returns an
approximate OFDMA solution. The quality of the returned solution
depends on the tolerance σ2. The less the tolerance is, the better the
returned solution. In particular, if σ2 = 0, then Algorithm 1 returns
an OFDMA solution.
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4. NUMERICAL RESULTS

In this section, we do numerical simulations to evaluate the effective-
ness of the proposed iterative reweighted minimization framework
(Algorithm 1) for solving the MA problem. We employ an OFDMA
small cell network as our simulation scenario [14, 15], i.e., the cell
radius is 20 m; the location of each user is uniformly generated in
the cell; channel gains are given by

αn
k = 10Ln

k/10ξnk , L
n
k = 38.48 + 20 log(dk),

where dk is the Euclidean distance from the BS to user k and ξnk ∼
CN (0, 1) accounts the Rayleigh fading. The maximum transmit
power per channel is set to be Pmax = 5 mW, and without loss
of generality the number of channels is set to be three times larger
than the number of users, i.e., N = 3K. To guarantee the feasibility
in the simulation, we assume that each user has a channel demand of
two and its rate target ({γk}) is calculated by Method B. Other pa-
rameters in Algorithm 1 are MaxItr= 100, τ = 10, σ1 = 1e−4 and
σ2 = 1e− 3. All of the following results are obtained by averaging
over 100 channel realizations.
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Fig. 2. IRM with different updating strategies.
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Fig. 3. Comparison of Method 4 with existing methods.

We first test the performance of the proposed framework

equipped with different update strategies of {wn
k (t)} and ε(t), since

different choices of these parameters lead to different methods:
Method 1, where w(t+ 1) = 1/(x(t) + ε(t+ 1)) and ε(t+ 1)

is updated by (12);
Method 2, where w(t + 1) is updated by (9) and ε(t + 1) =

0.5ε(t);
Method 3, where w(t+ 1) is updated by (9) and ε(t) = 1e− 4;
Method 4, where w(t + 1) is updated by (9) and ε(t + 1) is

updated by (12).
In our simulation, q is set to be 0.8. Fig 2 plots the total transmit

power performance of the above four methods. We can see from Fig
2 that Method 4 outperforms the others. This is consistent with our
analysis that both {wn

k (t)} and ε(t) should be updated adaptively.
Next, we compare Method 4 with the other two existing methods

in [6] and [2]. Fig. 3 shows the performance comparison of Method
4 with Method A in [6] and Method B in [2]. As we can see in
Fig. 3, the total transmit power increases as the number of total
users in the network increases for all of the three methods. However,
the proposed IRM framework with adaptive update strategies (i.e.,
Method 4) exhibits a significant better performance than Method A
and Method B in saving the total transmit power. The performance
loss of Method A is due to its loose relaxation and the one of Method
B is due to its fixed transmission mode.

Finally, we check the gaps between the solution returned by the
proposed Method 4 and the global solution. Generally there do not
exist polynomial time algorithms which can solve the MA prob-
lem to global optimality, since the problem is NP-hard. However,
the problem with the same number of users and subcarriers (i.e.,
N = K) can be solved by the Hungarian method in polynomial time
[3]. Therefore, we apply the proposed Method 4 to solve the MA
problem with N = K and compute its optimality gap in this special
case. For each channel realization, denote the objective values of the
MA problem at the solution returned by Method 4 and at the global
solution by P̂ and P ∗, respectively. We use (P̂ − P ∗)/P ∗ to mea-
sure the optimality gap of Method 4. Table 1 summarizes the average
optimality gap over 100 channel realizations. It can be seen from Ta-
ble 1 that the average optimality gap between the solution obtained
by the proposed method and the global solution is smaller than 11%,
which means that the proposed Method 4 can find a solution close to
the global solution.

Table 1. Average optimality gap when N = K
N 2 4 6 8 10

gap 10.63% 7.56% 0.82% 6.18% 7.67%

5. CONCLUDING REMARKS

In this paper, we consider the NP-hard joint channel and power allo-
cation problem in the OFDMA system. We propose a novel iterative
reweighted minimization framework for solving the problem. Sim-
ulations results show the proposed framework with adaptive weight
update strategies is very effective.
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