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ABSTRACT

We consider the general MIMO relay network with K user pairs and
R relays. The model to maximize the total signal to total interference
plus noise ratio, with individual relay transmit power constraints,
is set up. We constrain the precoding matrices to have orthogonal
columns to guarantee multiple stream transmission. By alternating
iteration method, we decompose the problem into several subprob-
lems. For the precoding subproblem, which is a nonconvex matrix
optimization problem, we apply the projected gradient method to its
dual problem and prove there is zero duality gap between the primal
and the dual problems. Simulation results show our proposed multi-
ple stream model is efficient to achieve high sum rate and outperform
the existing model in medium to high SNR scenarios.

Index Terms— MIMO relay, sum rate maximization, multiple
stream transmission, projected gradient, zero duality gap

1. INTRODUCTION

Relays are widely used in wireless communications. Aided by re-
lays, the network capacity is improved, and the stability is enhanced.
The non-regenerative relay, known as the amplify-and-forward (AF)
scheme, is especially in popular research for its simplicity.

There are many works related to MIMO relay AF networks,
discussing the design of the precoding, decoding and the relay AF
matrices [1–12]. Focusing on single antenna users and relays with
direct links between user pairs, [2] and [3] proposed algorithms to
maximize the sum rate and minimize the mean square error, respec-
tively. Considering the network with one multi-antenna relay, the
authors in [5] provided a tutorial of varies optimization problems
and the practical implementations. For the network with one multi-
antenna user pair and one multi-antenna relay, Tang et. al [6] studied
the upper and lower bound of the system capacity; Zhang et. al [7]
approximated the sum rate maximization problem by maximizing
its lower bound. Extending the network to that with multiple re-
lays, Zhao et. al [9] minimized the system mean square error with
both total and individual relay power constraints. For the gener-
al relay networks with multiple links and multiple relays, Truong
et. al [10] proposed a weighted mean square error minimization
(WMMSE) model to solve the source and relay AF matrices with
MMSE receiving filter, discussing both total and individual relay
transmit power constraints. Sun et. al [11, 12] proposed the models
to maximize the total signal to total interference plus noise ratio
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(TSTINR), to transmit single and multiple data streams, respective-
ly, both with total relay transmit power constraints. The multiple
stream TSTINR model in [12] guarantees to transmit multiple data
streams, which achieves higher sum rate than the WMMSE mod-
el and the single stream TSTINR model in medium to high SNR.
Moreover, the number of transmitted data streams has close rela-
tionship with the Degrees of Freedom (DoFs) of the network [12].
However, the total relay transmit power constraint in [12] is not
quite practical. With such constraint, the power allocation among
different relays might be unfair. In this paper, we propose the multi-
ple TSTINR model with individual relay transmit power constraints.
The system model is presented in Section 2. Different from the
model in [12], we will have several quadratic constraints in the
precoding subproblem, which makes the problem more difficult to
analysis. In Section 3, we will propose a new algorithm to solve the
dual problem of the new subproblem and guarantee zero duality gap.
The simulation results in section 4 show the superior performance
of our proposed model compared to the WMMSE model in [10] in
medium to high SNR regimes.

Notation: C represents the complex domain. (·)H means the
Hermitian. tr(A) and ∥A∥F are the trace and the Frobenius norm
of matrix A, respectively. Id represents the d× d identity matrix. K
and R represent the set of the user indices {1, 2, . . . ,K} and that of
relay indices {1, 2, . . . , R}, respectively. vec(A) means to compose
a long vector by the columns of matrix A. νd

min(A) is composed of
the eigenvectors of A corresponding to its d smallest eigenvalues.

2. SYSTEM MODEL

A two-hop half-duplex interference channel consisting of K user
pairs and R relays is considered. Suppose all the users and relays
have multiple antennas. For any k ∈ K and r ∈ R, Transmitter k,
Receiver k and Relay r have Mk, Nk and Lr antennas, respectively.
User k wants to transmit dk parallel data streams, and sk ∈ Cdk×1

denotes the transmit signal vector, where E(sksHk ) = Idk . In the
paper, we assume there is no direct links among users and perfect
channel state information (CSI) is available at a central controller.

Transmission process has two time phases, from transmitters to
relays and from relays to receivers, respectively. First, each relay
receives precoded signals from all transmitters. Relay r receives
xr =

∑
k∈K GrkUksk + nr , where Uk ∈ CMk×dk is the precod-

ing matrix of User k, Grk ∈ CLr×Mk is the channel matrix between
the Transmitter k and Relay r, and nr with zero mean and variance
matrix σ2

rILr is the noise at Relay r. Next, Relay r multiplies the
received signal with AF matrix Wr ∈ CLr×Lr as tr = Wrxr ,
for all r ∈ R. By decoding the received signal at Receiver k with
decoding matrix Vk ∈ CNk×dk , it finally achieves
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ỹk = VH
k Tkksk︸ ︷︷ ︸

desired signal

+
∑

q∈K,q ̸=k

VH
k Tkqsq︸ ︷︷ ︸

interference

+
∑
r∈R

VH
k HkrWrnr +VH

k zk︸ ︷︷ ︸
noise

.

This signal consists of three terms: the desired signal, the inter-
ference from other users and the noise including relay enhanced
noise and the local noise. Here Hkr ∈ CNk×Lr is the channel
matrix between Relay r and Receiver k, and zk with zero mean
and variance matrix µ2

kINk is the noise at Receiver k. The effec-
tive channel from Transmitter q to Receiver k is given by Tkq =∑

r∈R HkrWrGrqUq . Suppose all the transmit signals and noise
in the system are independent of each other. The transmit pow-
er at Relay r is PR

r = E(∥tr∥2F ) =
∑

k∈K ∥WrGrkUk∥2F +

σ2
r∥Wr∥2F , for all r ∈ R.

For the sake of expression simplicity, we predefine some sym-
bols here: precoded and decoded effective channel from Transmitter
k to Relay r as Ḡrk = GrkUk and W̄rk = WrGrk, respectively;
precoded and decoded effective channel from Relay r to Receiver k
as H̄kr = HkrWr and V̄kr = VH

k Hkr , respectively, for all k ∈ K
and r ∈ R.

3. MULTIPLE STREAM MODEL

Under individual relay transmit power constraints, our aim is to de-
sign precoding matrices {U} = {Uk, k ∈ K}, decoding matrices
{V} = {Vk, k ∈ K} and relay AF matrices {W} = {Wr, r ∈
R} to maximize the system sum rate as

Rsum =
1

2

∑
k∈K

log2det(INk + F−1
k TkkT

H
kk), (1)

with Fk =
∑

q ̸=k,q∈K TkqT
H
kq +

∑
r∈R σ2

rH̄krH̄
H
kr + µ2

kINk .
However it is quite complicated to optimize the system sum rate di-
rectly. There are several approaches to approximate the sum rate
maximization model. Here we adopt the Total Signal to Total In-
terference plus Noise Ratio (TSTINR) maximization model, since it
works well in medium to high SNR scenarios [11]. We have

TSTINR =
PS

P I + PN
=

∑
k∈K PS

k∑
k∈K(P

I
k + PN

k )
,

and the desired signal power, the leakage interference and the noise
power at Receiver k are expressed as below, respectively:

PS
k = ∥VH

k

∑
r∈R

HkrWrGrkUk∥2F ,

P I
k =

∑
q∈K,q ̸=k

∥VH
k

∑
r∈R

HkrWrGrqUq∥2F ,

PN
k =

∑
r∈R

σ2
r∥VH

k HkrWr∥2F + µ2
k∥Vk∥2F .

It is proved that maximizing TSTINR guarantees to achieve the low-
er bound of the sum rate maximization [11].

With individual relay power constraints, the multiple stream
model to maximize TSTINR is as follows:

max
{U},{V},

{W}

TSTINR =

∑
k∈K PS

k∑
k∈K(P

I
k + PN

k )

s.t. UH
k Uk =

pUk
dk

Idk ,V
H
k Vk = Idk , k ∈ K,∑

k∈K

∥WrGrkUk∥2F + σ2
r∥Wr∥2F ≤ pRr , r ∈ R. (2)

Here pUk and pRr are the power budgets for User k and Relay r,
respectively. Similar to [12], in our model we assume each user
transmit with the full power pUk , and require equal power allocation
among parallel data streams for each user. This accords with the op-
timal power allocation scheme to maximize the system sum rate in
the high SNR scenarios [13]. The precoding matrices are required
to have orthogonal columns, to guarantee multiple data stream trans-
mission. The orthogonality constraints for the decoding matrices are
added to well define the problem. The optimal number of data stream
dk for all k ∈ K may be found by some heuristic selection, which is
left for our future work.

To deal with the fraction objective function TSTINR, we use the
parameter C to reformulate the objective function It is updated as

C =
PS({U}, {V}, {W})

P I({U}, {V}, {W}) + PN ({U}, {V}, {W}) . (3)

The reformulated optimization problem is presented as (4). And the
two problems (2) and (4) share the same stationary points [11].

min
{U},{V},

{W}

f({U}, {V}, {W};C) = C(P I + PN )− PS

s.t. UH
k Uk =

pUk
dk

Idk ,V
H
k Vk = Idk , k ∈ K,∑

k∈K

∥WrGrkUk∥2F + σ2
r∥Wr∥2F ≤ pRr , r ∈ R. (4)

As (4) is nonconvex and nonlinear, we apply the alternating iter-
ation method to solve the precoders, decoders and relay AF matrices.
Efficient algorithms are developed for the subproblems.

3.1. Subproblem for decoding matrix

Firstly, we fix {U} and {W}, then all Vk, k ∈ K are independent
of each other. For any k ∈ K, the subproblem for Vk becomes:

min
X∈CNk×dk

tr(XHA0X)

s.t. XHX = Idk , (5)
where X represents the variable Vk, and A0 = CFk − TkkT

H
kk.

Since A0 is Hermitian, we obtain the closed form solution of (5)
from the eigenvalue decomposition of A0, as the eigenvectors cor-
responding to the dk smallest eigenvalues, X = ν

dk
min(A0).

3.2. Subproblem for relay AF matrix

Next, we consider the subproblem for Wr . Given a certain index
r ∈ R, we fix all the variables except Wr . Then the optimization
subproblem for Wr is equivalent to:

min
x∈CL2

r×1
f̄(x) = xHB1x+ bHx+ xHb (6a)

s.t. xHB2x ≤ pRr . (6b)
Here x = vec(Wr), B1 =

∑
k∈K(P

k
rr+Cσ2

rILr )
T ⊗(V̄H

krV̄kr),
and Pk

rl = C
∑

q ̸=k,q∈K ḠrqḠ
H
lq − ḠrkḠ

H
lk, for any k ∈ K and

r, l ∈ R; B2 = (
∑

k∈K ḠrkḠ
H
rk + σ2

rILr )
T ⊗ IL and b =

vec(
∑

k∈K
∑

l̸=r,l∈R V̄H
krV̄klWlP

k
rl).

As B2 is positive definite, problem (6) is equivalent to the
typical trust region (TR) subproblem in trust region optimiza-
tion method. [14, Chapter 6.1.1] provides an efficient algorithm
to achieve its optimal solution.

3.3. Subproblem for precoding matrix

For any k ∈ K, fix all the variables other than Uk. The subproblem
for the precoding matrix Uk has the following expression.
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min
X∈CMk×dk

tr(XHD0X) (7a)

s.t. XHX = ρIdk , (7b)
tr(XHDrX) ≤ ηr, r ∈ R, (7c)

Here X represents Uk, and

D0 =
∑
r∈R

∑
l∈R

W̄H
rk

C
∑

q ̸=k,q∈K

V̄qrV̄ql − V̄krV̄kl

W̄lk,

Dr = W̄H
rkW̄rk,

ηr = pRr −
∑

q ̸=k,q∈K

∥W̄rqUq∥2F − σ2
r∥Wr∥2F .

Although Dr are positive semi-definite for all r ∈ R, the
orthogonality constraint (7b) makes the problem (7) nonconvex.
Besides, the matrix D0 is indefinite in general.

Different from [12], there are R quadratic constraints in (7),
which is much more difficult to analyze. The method proposed
in [12] is not applicable here. In the following we apply the dual
method to deal with this nonconvex nonlinear matrix problem (7).
First we present its dual problem. Suppose θr for all r ∈ R are
the Lagrange multipliers for the R constraints (7c). Analyzed by the
duality theory [16], the dual problem of (7) is expressed as follows1:

min
θr,r∈R

h(θ1, θ2, . . . , θR)

=
∑
r∈R

θrηr − min
XHX=ρIdk

tr[XH(D0 +
∑
r∈R

θrDr)X]

s.t. θr ≥ 0, r ∈ R. (8)
Since (8) simply has bound constraints, we apply the projected gra-
dient method to solve it. Without loss of generality, we suppose
ρ = 1 in the following discussion and algorithm. For the case ρ ̸= 1
(ρ > 0), we can scale the other parameters to satisfy ρ = 1.

Let θ = (θ1, θ2, . . . , θR)
T . Given θ,

g(θ) = min
XHX=Idk

tr[XH(D0 +
∑
r∈R

θrDr)X]

is the sum of the smallest dk eigenvalues of matrix D0+
∑

r∈R θrDr .
Then the gradient of g(θ) with respect to θr should be [17]:

∂g

∂θr
=

dk∑
i=1

xH
i Drxi

xH
i xi

,

for any r ∈ R. Here xi is the eigenvector corresponding to the
ith smallest eigenvalue of D0 +

∑
r∈R θrDr . If we require these

eigenvectors to be unified and orthogonal to each other2, then ∂g
∂θr

=

tr(XHDrX) with XHX = Idk , where the columns of X are con-
sisted of xi, for i = 1, . . . , dk. Thus we have the gradient of the
objective function y = (y1, y2, . . . , yR)

T , where yr = ∂h
∂θr

=

ηr − tr(XHDrX).
Let θj and yj be the iterative point and its gradient in the jth

iteration, respectively. By the projected gradient method, in the jth
iteration the dual variables should be updated as θj+1 = (θj −
αjy

j)+, where (a)+ means max(a, 0) componentwisely. Here we
take αj as the Barzilai-Borwein stepsize [18], to accelerate the algo-

rithm: αj =
sTj tj

tTj tj
, where sj = θj − θj−1 and tj = yj − yj−1.

From the above analysis, we summarize the algorithm to solve
problem (7) as follows:

1Originally, it should be “maximization” in the dual problem. Here we
have converted the maximization into minimization by multiplying the ob-
jective function with −1 for analysis convenience.

2This can be done because the matrices D0 and Dr are all symmetric,
for all r ∈ R.

input : Random initial point θ ≥ 0, ϵ ≥ 0, j = 1
output: the solution of (8) θ∗ = θj , the solution of (7)

X∗ = ν
dk
min(D0 +

∑
r∈R θ∗rDr)

repeat
Update the iterative point: θj+1 = (θj − αjy

j)+;
j := j + 1;

until ∥sj∥2 < ϵ;

Algorithm 1: Algorithm for subproblem (7)

The projected gradient method guarantees to achieve the station-
ary point of the dual problem (8) [14, Theorem 11.5.5]. As the dual
problem of (7), (8) is convex [16]. Its stationary point is actually
the optimal solution. Thus we achieve the optimal solution of (8)
as θ∗. However, as we analyzed above, the primal problem (7) is
nonconvex, and there might be a positive dual gap between the two
problems (7) and (8). That is, the solution X∗ achieved from Al-
gorithm 1 might not be the optimal solution of (7). Fortunately, in
Theorem 1 we are able to prove there is zero duality gap between (7)
and (8), that is, X∗ is the optimal solution of (7).

Theorem 1 Given θ∗ as the optimal solution of the dual problem
(8), X∗ is the optimal solution of (7), where X∗ is constructed by θ∗

as X∗ = ν
dk
min(D0 +

∑
r∈R θ∗rDr).

Proof : As the optimal solution, θ∗ satisfies the KKT conditions
of (8). Let t∗r be the corresponding Lagrange multiplier for the rth
bound constraint “θr ≥ 0”, for any r ∈ R. Then the KKT condi-
tions are listed below.
KKT1. The gradient of the Lagrangian function being 0:

ηr − tr[(X∗)HDrX
∗]− t∗r = 0.

KKT2. Complementary conditions: for all r ∈ R, θ∗r t∗r = 0.
KKT3. Feasibility conditions: for all r ∈ R, θ∗r ≥ 0, t∗r ≥ 0.
From condition KKT1 and KKT3, it is easy to deduce the inequali-
ties ηr − tr[(X∗)HDrX

∗] ≥ 0 hold for all r ∈ R. This proves X∗

is a feasible solution of (7).
Noticing the dual problem (8) is to minimize h(θ), we have the

duality gap between the two problems (7) and (8) expressed as the
sum of the two objective function values [16]. The duality gap is
always no less than 0 with any X and θ which are feasible for the
two problems, respectively. If the sum equals to 0, there is zero du-
ality gap between the two problems, and the corresponding feasible
solutions are actually the optimal solutions for both problems. With
X∗ and θ∗ as the feasible solutions, respectively, the duality gap is

tr[(X∗)HD0X
∗] + h(θ∗)

= tr[(X∗)HD0X
∗] +

∑
r∈R

θ∗rηr − g(θ∗)

= tr[(X∗)HD0X
∗] +

∑
r∈R

θ∗r{tr[(X∗)HDrX
∗] + t∗r}

−tr[(X∗)H(D0 +
∑
r∈R

θ∗rDr)X
∗]

=
∑
r∈R

θ∗r t
∗
r

= 0.

The second equality and the last equality hold from condition KKT1
and KKT2, respectively. We deduce that the duality gap equals to 0,
and consequently X∗ is the optimal solution of (7). �

Shown by Theorem 1, the optimal solution of (7) is achieved by
Algorithm 1.
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3.4. Algorithm for the multiple stream TSTINR model

We conclude the algorithm to solve the multiple stream model prob-
lem (2) as follows.

input : initial value of Uk, k ∈ K and Wr, r ∈ R, C = 1
output: Uk,Vk, k ∈ K and Wr, r ∈ R
repeat

Update decoder Vk by solving (5), k ∈ K;
Update relay AF matrix Wr by solving (6), r ∈ R;
Update precoder Uk by solving (7), k ∈ K;

Update C as C := PS

P I+PN ;
until Objective function value converges;

Algorithm 2: Algorithm for multiple stream TSTINR model

Because each subproblem is solved optimally, the objective
function value of (4) reduces monotonically, and consequently the
objective function value of (2) “TSTINR” converges [11]. However
as the variables have been separated into more than two blocks,
there is no theoretical guarantee that the algorithm converges to the
stationary point of (2).

4. SIMULATIONS

In this section, our proposed multiple stream TSTINR model is
evaluated by simulations. Each element of Grk and Hkr, k ∈
K, r ∈ R are generated as i.i.d complex Gaussian distribution
with zero mean and unit variance. The noise variances are set as
σ2
r = σ2 = 1 and µ2

k = µ2 = 1, for any r ∈ R and k ∈ K. Initial
values of {U} and {W} are randomly generated, and scaled to be
feasible. Initially, the parameter C is set as 1. 100 random realiza-
tions of different channel coefficients are generated to evaluate the

average performance. Here we define SNR as SNR= pUk
µ2 =

pRr
σ2 ,

thus for all r ∈ R and k ∈ K, pUk = pRr =SNR. We use system sum
rate Rsum as the measure of QoS.

We first compare our TSTINR model with the WMMSE
model in [10], which is an effective model for the sum rate maxi-
mization problems. Consider the (4 × 4, 2)3 + 43 network, which
means K = R = 3, Mk = Nk = Lr = 4 and dk = 2 for all
k ∈ K and r ∈ R. Fig. 1 shows the average achieved sum rate
with respect to different SNR values by both the multiple stream
TSTINR model and the WMMSE model. The two curves repre-
senting the two models intersect at about SNR= 20dB. With SNR
above 20dB, our proposed TSTINR model achieves more sum rate
than the WMMSE model3. In the simulation results we observe that
the WMMSE model usually results in rank one precoding matrices.
This might be the reason to restrain the WMMSE model to achieve
high sum rate in medium to high SNR scenarios.

In Fig. 2 the multiple TSTINR models with individual and total
relay power constraints [12] are compared. We consider the 2×2×2
networks (K = R = 2) with 2 antennas for each user and 4 anten-
nas for each relay. The achieved sum rate by transmitting different
number of data streams with respect to different SNR values are de-
picted. “(1, 1) data streams” means each user pair transmit single
data stream. In multiple stream cases, we apply the multiple stream
TSTINR model proposed here and in [12]. In single stream cases

3The result of the WMMSE model is almost the same as the data in [10,
Fig. 4], but scaled with 1

2
here due to our different expression of sum rate

from [10].

with both individual and total relay power constraints, the achieved
sum rates are the maximum between the WMMSE model [10] and
the TSTINR model. Indicated in Fig. 2, from one aspect, the mul-
tiple stream TSTINR model with individual relay power constraints
has almost the same performance as that with total relay constraint4;
from the other aspect, the achieved sum rate indeed benefits from the
multiple stream transmission.
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Fig. 1 Comparison between TSTINR and WMMSE
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Fig. 2 Comparison of total and individual relay transmit power constraints

5. CONCLUSION

In this paper, we have built up the multiple stream TSTINR
model with individual relay transmit power constraints. Applying
the alternating iteration method, we have decomposed the optimiza-
tion problem into several subproblems. The nonconvex precoding
subproblem is solved by the dual method. And zero duality gap is
proved between the primal and dual problems. Simulation results
show our proposed new model outperforms the WMMSE model
in [10] in medium to high SNR scenarios, and the new model with
individual relay transmit power constraints achieved almost the same
sum rate as that with total relay power constraint in [12].

4This performance is similar as that in [10, Fig. 4]
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