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ABSTRACT
Unimodular sequences with low autocorrelations are desired in many
applications, especially in the area of radar and code-division multi-
ple access (CDMA). In this paper, we propose a new algorithm to de-
sign unimodular sequences with low integrated sidelobe level (ISL),
which is a widely used measure of the goodness of a sequence’s cor-
relation property. The algorithm falls into the general framework
of majorization-minimization (MM) algorithms and thus shares the
monotonic property of such algorithms. In addition, the algorithm
can be implemented via fast Fourier transform (FFT) operations and
thus is computationally efficient. Numerical experiments show that
the proposed algorithm outperforms the state-of-the-art algorithm in
terms of both the quality of designed sequences and the computa-
tional complexity.

Index Terms— Unimodular sequences, integrated sidelobe level,
autocorrelation, majorization-minimization.

1. INTRODUCTION

Since the 1950s, digital communications engineers have sought to
identify sequences whose aperiodic autocorrelation sidelobes are col-
lectively as low as possible according to some suitable measure of
“goodness”. Applications range from synchronization to code di-
vision multiple access (CDMA) systems and especially radar [1, 2].
Low autocorrelation can improve the detection performance of weak
targets [3] in range compression radar and it is also desired for syn-
chronization purposes in CDMA systems. Additionally, due to the
limitations of sequence generation hardware components (such as
the maximum signal amplitude clip of analog-to-digital converters
and power amplifiers), it is desirable to transmit unimodular (i.e.,
constant modulus) sequences to maximize the transmitted power avail-
able in the system [4].

Owing to the practical importance and widespread applications
of sequences with good correlation properties, in particular with low
ISL values, a lot of effort has been devoted to identifying these se-
quences via either analytical construction methods or computational
approaches in the literature. Some sequences with good correla-
tion properties that can be constructed in closed-form have been
proposed in the literature, such as the Frank sequence [5] and the
Golomb sequence [6]. Computational approaches, such as exhaus-
tive search [7], evolutionary algorithms [8], heuristic search [9] and
stochastic optimization methods [10, 11], have also been suggested.
However, these computational methods are generally not capable of
designing long sequences, say of length N ∼ 103 or larger, due
to the increasing computational complexity. Recently, an algorithm
named CAN (cyclic algorithm new) was proposed in [12] that can
be used to produce unimodular sequences with low ISL of length
N ∼ 106 or even larger. But instead of minimizing the original ISL
metric, the CAN algorithm tries to minimize another criterion which
is stated to be “almost equivalent” to the ISL metric.
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In this paper, we develop a new algorithm named MISL (mono-
tonic minimizer for integrated sidelobe level) that directly minimizes
the ISL metric monotonically. MISL is derived via applying the gen-
eral majorization-minimization (MM) method twice and admits a
closed-form solution at every iteration. Similar to the CAN algo-
rithm, the proposed MISL algorithm can also be implemented via
fast Fourier transform (FFT) operations and is thus very efficient.
But due to the nature of double majorization, the MISL algorithm
may converge slow and we propose to apply an acceleration scheme
to fix this issue. Numerical experiments show that compared with
CAN the proposed MISL algorithm (with acceleration) can generate
sequences with lower ISL and also provides a complexity saving.

Notation: C denotes the complex field. Re(·) and arg(·) denote
the real part and the phase of a complex number, respectively. The
superscripts (·)T , (·)∗ and (·)H denote transpose, complex conju-
gate, and conjugate transpose, respectively. xi denotes the i-th ele-
ment of a vector x. Tr(·) denotes the trace of a matrix. Diag(x) is a
diagonal matrix formed with x as its principal diagonal. vec(X) is
a column vector consisting of all the columns of X stacked. In de-
notes an n×n identity matrix. X � 0 indicates that X is Hermitian
positive semidefinite.

2. PROBLEM STATEMENT

Let {xn ∈ C}Nn=1 be the complex unimodular (without loss of gen-
erality, we will assume the modulus to be 1) sequence to be designed
and

rk =

N∑
n=k+1

xnx
∗
n−k = r∗−k, k = 0, . . . , N − 1 (1)

be the autocorrelations of {xn}Nn=1. Then the integrated sidelobe
level (ISL) is defined as

ISL =
∑N−1
k=1 |rk|

2, (2)

which is highly related to another important goodness measure: merit
factor (MF), defined as the ratio of the central lobe energy to the total
energy of all other lobes [13], i.e.,

MF =
|r0|2

2
∑N−1
k=1 |rk|2

=
N2

2ISL
. (3)

The problem of interest is the design of a complex unimodular
sequence that minimizes the ISL metric, i.e.,

minimize
{xn}Nn=1

ISL

subject to |xn| = 1, n = 1, . . . , N.
(4)

It has been shown in [12] that the ISL metric can be expressed in the
frequency domain as

ISL =
1

4N

2N∑
p=1

∣∣∣∣∣
N∑
n=1

xne
−jωp(n−1)

∣∣∣∣∣
2

−N

2

, (5)
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where ωp = 2π
2N

(p− 1), p = 1, · · · , 2N . By further defining

x = [x1, · · · , xN ]T

ap =
[
1, ejωp , · · · , ejωp(N−1)

]T
,

the ISL minimization problem (4) can be rewritten as

minimize
x

2N∑
p=1

[∣∣aHp x
∣∣2 −N]2

subject to |xn| = 1, n = 1, . . . , N.

(6)

Expanding the square in the objective yields

2N∑
p=1

((
aHp xxHap

)2
− 2N

∣∣∣aHp x
∣∣∣2 +N2

)
, (7)

where the second term can be shown to be a constant (using Parse-
val’s theorem), i.e.,

∑2N
p=1

∣∣aHp x
∣∣2 = 2N ‖x‖22 = 2N2. Thus by

ignoring the constant terms, the problem (6) can be simplified as

minimize
x

2N∑
p=1

(
aHp xxHap

)2
subject to |xn| = 1, n = 1, . . . , N.

(8)

The problem (8) (or (6)) is hard to tackle, due to the nonconvex
unit-modulus constraints and also the quartic objective function. So,
instead of dealing with the quartic ISL metric directly, Stoica et al.
[12] proposed to solve the following simpler problem

minimize
x,{ψp}2Np=1

2N∑
p=1

∣∣∣aHp x−
√
Nejψp

∣∣∣2
subject to |xn| = 1, n = 1, . . . , N,

(9)

whose objective is a quadratic function of x. It was mentioned
in [12] that the problem (9) is “almost equivalent” to the original
problem (6) in some sense. An algorithm named CAN (cyclic algo-
rithm new) was then derived by solving the problem (9) with respect
to x and {ψp} alternately and it was shown numerically that CAN
could generate sequences with good correlation properties. More-
over, CAN is easy to implement via FFT and thus can be used to
design very long sequences. But as the authors also pointed out, the
two problems are not equivalent and they have different local and
global minima in general. We can expect that directly solving the
original problem will probably lead to better performance.

In the next section, we will develop an algorithm that directly
solves the problem (8), while at the same time is computationally as
efficient as CAN.

3. ISL MINIMIZATION VIA
MAJORIZATION-MINIMIZATION

The majorization-minimization (MM) method is an iterative approach
to solve optimization problems that are too difficult to solve directly.
Interested readers may refer to [14] and references therein for more
details (recent generalizations include [15, 16]).

Let f(x) denotes the objective function of the problem (8) and
X ∈ CN be the constraint set. Instead of minimizing f(x) directly,
the MM approach optimizes a sequence of approximate objective
functions that majorize f(x). Formally, a function u(x,x(k)) is said
to majorize the function f(x) at the point x(k) over X provided

u(x,x(k)) ≥ f(x), ∀x ∈ X , (10)

u(x(k),x(k)) = f(x(k)). (11)

In other words, the majorization function u(x,x(k)) is an upper
bound of f(x) overX and coincides with f(x) at x(k). To tackle the
problem (8) via MM, the key point is to find a majorization function
of f(x) at each iteration such that the majorized problem is easy to
solve. For that purpose we first present a simple result that will be
useful when constructing the majorization functions.

Lemma 1. Let L be an n× n Hermitian matrix and M be another
n × n Hermitian matrix such that M − L � 0. Then for any point
x0 ∈ Cn, the quadratic function xHLx is majorized by xHMx +
2Re

(
xH(L−M)x0

)
+ xH0 (M− L)x0 at x0.

Proof. It is easy to check that the two functions are equal at point
x0. Since M− L � 0, we further have

xHLx

=xH0 Lx0 + 2Re
(
(x− x0)

HLx0

)
+ (x− x0)

HL(x− x0)

≤xH0 Lx0 + 2Re
(
(x− x0)

HLx0

)
+ (x− x0)

HM(x− x0)

=xHMx + 2Re
(
xH(L−M)x0

)
+ xH0 (M− L)x0

for any x ∈ Cn. The proof is complete.

The objective of the problem (8) is quartic with respect to x. To
construct a majorization function via Lemma 1, some reformulations
are necessary. Let us define X = xxH and Ap = apa

H
p , then the

problem (8) can be rewritten as

minimize
x,X

2N∑
p=1

Tr(XAp)
2

subject to X = xxH

|xn| = 1, n = 1, . . . , N.

(12)

Since Tr(XAp) = vec(X)Hvec(Ap), the objective in (12) is just

vec(X)HΦvec(X), (13)

where Φ =
∑2N
p=1 vec(Ap)vec(Ap)

H . We can see that the objec-
tive (13) is a quadratic function of X now. Given X(k) = x(k)(x(k))H

at iteration k, by choosing M = λmax(Φ)I in Lemma 1 we know
that the objective (13) is majorized by the following function at
X(k):

u1(X,X
(k))

=λmax(Φ)vec(X)Hvec(X)

+ 2Re
(
vec(X)H(Φ− λmax(Φ)I)vec(X(k))

)
+ vec(X(k))H(λmax(Φ)I−Φ)vec(X(k)),

(14)

where λmax(Φ) is the maximum eigenvalue of Φ and can be shown
to be 2N2. Since vec(X)Hvec(X) = (xHx)2 = N2, the first term
of (14) is just a constant. After ignoring the constant terms in (14),
the majorized problem of (12) is given by

minimize
x,X

Re
(
vec(X)H

(
Φ− 2N2I

)
vec(X(k))

)
subject to X = xxH

|xn| = 1, n = 1, . . . , N,

(15)
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which can be rewritten as

minimize
x

2N∑
p=1

∣∣∣aHp x(k)
∣∣∣2 xHapa

H
p x− 2N2

∣∣∣xHx(k)
∣∣∣2

subject to |xn| = 1, n = 1, . . . , N.
(16)

By defining A = [a1, . . . ,a2N ], we can write problem (16) more
compactly as

minimize
x

xH
(
ADiag(p(k))AH − 2N2x(k)(x(k))H

)
x

subject to |xn| = 1, n = 1, . . . , N,
(17)

where p(k) =

[∣∣∣aH1 x(k)
∣∣∣2 , . . . , ∣∣∣aH2Nx(k)

∣∣∣2]T . We can clearly see

that the objective function in (17) is quadratic in x and by choos-
ing M = p

(k)
maxAAH in Lemma 1 it is majorized by the following

function at x(k):

u2(x,x
(k))

=p(k)maxx
HAAHx + 2Re

(
xH(Ã− 2N2x(k)(x(k))H)x(k)

)
+ (x(k))H(2N2x(k)(x(k))H − Ã)x(k)

(18)
where Ã = A

(
Diag(p(k))− p(k)maxI

)
AH and p(k)max = maxp{p(k)p :

p = 1, . . . , 2N}. Since xHAAHx = 2NxHx = 2N2, the first
term of (18) is a constant. By ignoring the constant terms in (18), we
have the majorized problem of (17) at x(k):

minimize
x

Re
(
xH
(
Ã− 2N2x(k)(x(k))H

)
x(k)

)
subject to |xn| = 1, n = 1, . . . , N,

(19)

which can be rewritten as

minimize
x

‖x− y‖2
subject to |xn| = 1, n = 1, . . . , N,

(20)

where

y = −
(
Ã− 2N2x(k)(x(k))H)x(k)

= −A
(
Diag(p(k))− p(k)maxI−N2I

)
AHx(k).

(21)

It is easy to see that the problem (20) has a closed form solution,
which is given by

xn = ejarg(yn), n = 1, . . . , N. (22)

Now we can summarize the overall algorithm and it is given in
Algorithm 1. Note that although in the derivation we have majorized
the objective twice, it can be viewed as directly majorizing the objec-
tive of the problem (8) at x(k) over the constraint set by the following
function:

u(x,x(k)) = 2u2(x,x
(k)) + 4N4 −

2N∑
p=1

∣∣∣aHp x(k)
∣∣∣4 , (23)

where u2(x,x
(k)) is defined in (18). Thus, the algorithm preserves

the monotonicity of the general majorization-minimization scheme
and we call it MISL (Monotonic minimizer for Integrated Sidelobe
Level).

From Algorithm 1, we can see that the per iteration computa-
tional complexity of MISL is dominated by two matrix vector mul-
tiplications involving A. It is worth noting that they can be easily
computed via FFT and IFFT operations. Thus the MISL algorithm is
very efficient and can be used for the design of very long sequences.

Algorithm 1 MISL - Monotonic minimizer for Integrated Sidelobe
Level.
Require: sequence length N

1: Set k = 0, initialize x(0).
2: repeat
3: p

(k)
p =

∣∣∣aHp x(k)
∣∣∣2 , p = 1, . . . , 2N

4: p
(k)
max = maxp{p(k)p : p = 1, . . . , 2N}

5: y = −A
(
Diag(p(k))− p(k)maxI−N2I

)
AHx(k)

6: x
(k+1)
n = ejarg(yn), n = 1, . . . , N

7: k ← k + 1
8: until convergence

4. ACCELERATION VIA FIXED POINT THEORY

As described in the previous section, the derivation of MISL is based
on majorization-minimization principle, and the nature of the ma-
jorization functions will dictate the convergence speed of the algo-
rithm. Due to the double majorization scheme that we carried out in
the derivation, the convergence of MISL seems to be slow, especially
for large N . One option to fix this issue is to employ some acceler-
ation schemes to accelerate the convergence of MISL, and there are
various acceleration schemes available in the literature to accelerate
MM algorithms.

In this section, we briefly introduce one such acceleration scheme
and show how it can be used to accelerate MISL. It is the so called
squared iterative method (SQUAREM), which was originally pro-
posed in [17] to accelerate any EM algorithms. SQUAREM follows
the idea of the Cauchy-Barzilai-Borwein (CBB) method [18], which
combines the classical steepest descent method and the two-point
step size gradient method [19], to solve the nonlinear fixed-point
problem of EM. It only requires the EM updating scheme and can be
readily implemented as an ’off-the-shelf’ accelerator. Since MM is
a generalization of EM and the update rule is also just a fixed-point
iteration, SQUAREM can be readily applied to MM algorithms.

Let FMISL(·) denote the nonlinear fixed-point iteration map of
the MISL algorithm:

x(k+1) = FMISL(x
(k)), (24)

whose form can be defined by the following equation:

x(k+1) = e
jarg

(
−A

(
Diag(p(k))−p(k)

maxI−N2I
)
AHx(k)

)
, (25)

where p(k) and p(k)max are the same as in Algorithm 1 and functions
e(·) and arg(·) are applied element-wise to the vectors. With this,
the steps of the accelerated-MISL based on SQUAREM are sum-
marized in Algorithm 2. Note that we have made some changes
to the original SQUAREM to deal with some potential problems.
The first problem of the general SQUAREM is that it may violate
the nonlinear constraints, so in Algorithm 2 the function ejarg(·) has
been applied to project wayward points back to the feasible region.
A second problem of SQUAREM is that it can violate the descent
property of the original MM algorithm. To ensure the descent prop-
erty, a strategy based on backtracking is adopted, which repeatedly
halves the distance between α and −1:α← (α− 1)/2 until the de-
scent property is maintained. To see why this works, we first note
that x = ejarg(x

(k)−2αr+α2v) = x2 if α = −1. In addition, since
ISL(x2) ≤ ISL(x(k)) due to the descent property of original MM
steps, ISL(x) ≤ ISL(x(k)) is guaranteed to hold as α → −1. In
practice, usually only a few backtracking steps are needed to main-
tain the monotonicity of the algorithm.
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Algorithm 2 Accelerated-MISL.
Require: sequence length N

1: Set k = 0, initialize x(0).
2: repeat
3: x1 = FMISL(x

(k))
4: x2 = FMISL(x1)

5: r = x1 − x(k)

6: v = x2 − x1 − r
7: Compute the step-length α = − ‖r‖‖v‖
8: x = ejarg(x

(k)−2αr+α2v)

9: while ISL(x) > ISL(x(k)) do
10: α← (α− 1)/2

11: x = ejarg(x
(k)−2αr+α2v)

12: end while
13: x(k+1) = x
14: k ← k + 1
15: until convergence

5. NUMERICAL EXPERIMENTS

In this section, we present numerical results on applying the pro-
posed accelerated-MISL algorithm to design unimodular sequences
with low ISL and compare the performance with the state-of-the-art
algorithm CAN [12]. All experiments were performed on a PC with
a 3.20GHz i5-3470 CPU and 8GB RAM. The Matlab code of the
benchmark algorithm, i.e., CAN, was downloaded from the website1

of the book [4].
In the experiment, for both algorithms, the stopping criterion

was
∣∣∣ISL(x(k+1))− ISL(x(k))

∣∣∣ /max
(
1, ISL(x(k))

)
≤ 10−5 and

the initial sequence {x(0)n }Nn=1 was chosen to be {ej2πθn}Nn=1, where
{θn}Nn=1 are independent random variables uniformly distributed in
[0, 1]. Each algorithm was repeated 100 times for each of the follow-
ing lengths: N = 25, 26, . . . , 213. The average merit factor (defined
in (3), the larger the better) of the output sequences and the average
running time are shown in Fig. 1 and Fig. 2, respectively. From
Fig. 1, we can see that the proposed accelerated-MISL algorithm
can generate sequences with consistently larger merit factor (lower
ISL) than the CAN algorithm for all lengths and at the same time it is
several times faster, as can be seen from Fig. 2. The correlation level
of two example sequences of length N = 512 and 4096 generated
by the accelerated-MISL algorithm are shown in Fig. 3, where the
correlation level is defined as

correlation level = 20 log10

∣∣∣∣rkr0
∣∣∣∣ , k = 1, . . . , N − 1.

From the figure we can see that the correlation sidelobes have been
suppressed a lot.

6. CONCLUSION

We have presented a new algorithm named MISL for the minimiza-
tion of the ISL metric of unimodular sequences. The MISL al-
gorithm is derived based on the general majorization-minimization
framework and can be implemented via FFT operations. An acceler-
ation scheme has also been considered to speed up MISL. Numerical
results show that the proposed accelerated-MISL algorithm can gen-
erate sequences with larger merit factor (lower ISL) than the state-
of-the-art method and at the same time is much faster.

1http://www.sal.ufl.edu/book/
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N = 4096, generated by the accelerated-MISL algorithm.

3036



7. REFERENCES

[1] R. Turyn, “Sequences with small correlation,” Error correcting
codes, pp. 195–228, 1968.

[2] S. W. Golomb and G. Gong, Signal Design for Good Correla-
tion: For Wireless Communication, Cryptography, and Radar.
Cambridge University Press, 2005.

[3] N. Levanon and E. Mozeson, Radar Signals. John Wiley &
Sons, 2004.

[4] H. He, J. Li, and P. Stoica, Waveform Design for Active Sensing
Systems: A Computational Approach. Cambridge University
Press, 2012.

[5] R. L. Frank, “Polyphase codes with good nonperiodic corre-
lation properties,” IEEE Transactions on Information Theory,
vol. 9, no. 1, pp. 43–45, Jan 1963.

[6] N. Zhang and S. W. Golomb, “Polyphase sequence with low
autocorrelations,” IEEE Transactions on Information Theory,
vol. 39, no. 3, pp. 1085–1089, 1993.

[7] S. Mertens, “Exhaustive search for low-autocorrelation binary
sequences,” Journal of Physics A: Mathematical and General,
vol. 29, no. 18, pp. 473–481, 1996.

[8] S. Kocabas and A. Atalar, “Binary sequences with low ape-
riodic autocorrelation for synchronization purposes,” IEEE
Communications Letters, vol. 7, no. 1, pp. 36–38, Jan 2003.

[9] S. Wang, “Efficient heuristic method of search for binary
sequences with good aperiodic autocorrelations,” Electronics
Letters, vol. 44, no. 12, pp. 731–732, 2008.

[10] P. Borwein and R. Ferguson, “Polyphase sequences with low
autocorrelation,” IEEE Transactions on Information Theory,
vol. 51, no. 4, pp. 1564–1567, 2005.

[11] C. Nunn and G. Coxson, “Polyphase pulse compression codes
with optimal peak and integrated sidelobes,” IEEE Transac-
tions on Aerospace and Electronic Systems, vol. 45, no. 2, pp.
775–781, April 2009.

[12] P. Stoica, H. He, and J. Li, “New algorithms for designing
unimodular sequences with good correlation properties,” IEEE
Transactions on Signal Processing, vol. 57, no. 4, pp. 1415–
1425, 2009.

[13] M. Golay, “A class of finite binary sequences with alternate
auto-correlation values equal to zero (corresp.),” IEEE Trans-
actions on Information Theory, vol. 18, no. 3, pp. 449–450,
May 1972.

[14] D. R. Hunter and K. Lange, “A tutorial on MM algorithms,”
The American Statistician, vol. 58, no. 1, pp. 30–37, 2004.

[15] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified con-
vergence analysis of block successive minimization methods
for nonsmooth optimization,” SIAM Journal on Optimization,
vol. 23, no. 2, pp. 1126–1153, 2013.

[16] G. Scutari, F. Facchinei, P. Song, D. P. Palomar, and J.-S. Pang,
“Decomposition by partial linearization: Parallel optimization
of multi-agent systems,” IEEE Transactions on Signal Process-
ing, vol. 62, no. 3, pp. 641–656, Feb 2014.

[17] R. Varadhan and C. Roland, “Simple and globally convergent
methods for accelerating the convergence of any EM algo-
rithm,” Scandinavian Journal of Statistics, vol. 35, no. 2, pp.
335–353, 2008.

[18] M. Raydan and B. F. Svaiter, “Relaxed steepest descent and
Cauchy-Barzilai-Borwein method,” Computational Optimiza-
tion and Applications, vol. 21, no. 2, pp. 155–167, 2002.

[19] J. Barzilai and J. M. Borwein, “Two-point step size gradient
methods,” IMA Journal of Numerical Analysis, vol. 8, no. 1,
pp. 141–148, 1988.

3037


