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ABSTRACT @ survived path

In this paper, we consider a detection problem of the under- [ Q={12..,N} ]
determined system when the input vector is sparse and its ele
ments are chosen from a set of finite alphabets. We propose a
greedy sparse recovery algorithm dubbed as the sparse detec
tion matching pursuit (SDMP) that is effective in recoverin
the sparse signals with integer constraint. In our perforcea
guarantee analysis and empirical simulations, we show that
SDMP is effective in recovering sparse signals in both noise >
less and noisy scenarios.
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1. INTRODUCTION % Tay =¥ — Oa i,

The relationship between a transmit sigraand a received | sncerl
signal vectoty in many wireless communication systems can . B A Support |
be expressed as \_ T = Pay selection J

y=Hx+v Q)

PR

) ) Fig. 1. lllustration of proposed SDMP algorithm.
whereH € CM*¥ is the channel matrixy ~ CN(0,21),

x is the transmit signal whose entries are from the finite sym-

bol constellation seX. In this work, we are concerned with

the scenario where 1) the input signals sparse (i.e., num- System is underdetermined, this approach, which in essence
ber of nonzero elements in a Signa| vector is Sma”) and Zyies to find the solution by inVerting the covariance matrix
the dimension of observation vectpiis smaller than that of Of the received vector, does not provide satisfactory tesul

the input vector { < N). Conventional way of detecting 9eneral.

the input signals is to use the estimation technique such as A better way to exploit the given underdetermined con-
linear minimum mean square error (LMMSE) estimation [1]Straint is to use the sparse recovery algorithm. Overadteth
followed by the symbol slicing. For instance, felandx be ~ are two distinct classes of sparse signal recovery algosth

the output of the LMMSE estimator and the symbol detector{1-norm minimization technique [2] and greedy approach. In

respectively, then our work, we are mainly interested in the greedy sparse re-
covery algorithm. Greedy algorithm attempts to find the sup-
x = (HH+0T) 'HYy (2)  port (index set of nonzero entries of the original signal-vec
x = Qx(%) (3) tor)in an iterative fashion, returning a sequence of egéma

] ) ] ) of the sparse input vector. In the orthogonal matching ptursu
whereQ_X(-) is a function mapping the input to t_he closest (OMP) algorithm [3], for example, an index of column¥
symbol inX (i.e., Qx(z) = arg g lz = €ll2). Since the  mayimally correlated to the observatigris selected in each
iteration. That is,
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Table 1. SDMP

Input: measuremenyg, sensing matrixp, sparsityX,
initial thresholde;
Output: Estimated signak
Initialization: :=0, S° := 0
©0=f(y, ® p)
while i < K do
ii=1+1, Sl = (Z), €itl = €
for I = 1to|S*~!| do
6:=0\571()
for j = 1to|¢| do
5= 87 () U {si(0))
if 51 € S* then
s =arg max || Syl

(pre-screeniny

(updatej-th path
(check the duplicated path
(support estimation
|s|=K—i
S = 8 UKL o = Qu(®lcy)
rsx =y — PorXor
if HI'§K ||2 <e€ then
.71 . .
St i=8'Us, I =51
if HI‘[* HQ < €i+1 then
€ir1 = |[rr+|l,
end if
end if
end if
end for
end for
end while

return X* = Qx (<I>Ly>

(pruning decisioh

(update pruning thresho)d

(signal reconstruction

whereh; is the j-th column ofH. The chosen index* is

indices) with minimal residual pow&rThat is,

A= i — Haxplo. 6
arglllgllg;(l\y AXAll2 (6)
Note that SDMP uses the sliced version of the estimated sig-
nalx,: = Qx(X,:) in the generation of the residual:

rpi :y—HAiQx(f{Ai) :y—HAi)A(A'i. (7)

Since multiple candidates are investigated in the treechear
SDMP improves the chance of selecting true indices (indices
in the support) significantly. Furthermore, even in the pres
ence of noise, exact reconstruction of sparse signals can be
achieved due to the symbol slicing in each layer.

2. SPARSE SYMBOL DETECTION VIA GREEDY
TREE SEARCH

Major components of SDMP are fije-screeningo put a lim-
itation on columns of the channel matrix and thep&)ning-
based tree searcto eliminate unpromising paths from the
tree. In the first stage of SDMP, indices that are highly {ikel
to be the elements of suppdrtare selected. In other words,
we do our best guess to find the columns of channel matrix
that are associated with nonzero elements of the sparse vec-
tor. If we denote the set abughly choserndices a®, then

the search set is reduced frah= {1,2,--- ,N} t0 ©, a
small subset of2 (i.e.,© C ). In generatingd, any sparse
recovery algorithm can be used. In this work, we use the gen-
eralized OMP (gOMP) algorithm [4]. Note that gOMP per-
forms K iterations and choosdsindices per iteration. Since
multiple indices are chosen per iteration, misdetectiabpr
ability of true indices decreases at the increase of the fals

added ta\? (the set of selected indices) and then the estimatg|arm rate.

Xpi = HLy of x,: is generated. Finally, the residual is

updated as

ryo =y - Hyky =y - HuHly. (5)

In the second stage of SDMP, pruning-based tree search
is performed to find a full-blown path with cardinality K
(|A] = K) minimizing the cost functio/(A). Since com-
puting cost function of full-blown path is not possible ireth
middle of the search, we combine the already selected isdice
(causal path and roughly estimated indicesdncausal st

Well-known drawback of greedy approaches is that the finaFor example, ini-th layer of the treei(< K), the noncausal
candidate is often not the optimal solution due to the greedgets;: ,, temporarily needed for each causal péthis gen-
mechanism of the support selection process. Furthermorgjated by choosing’ — i indices of columns if2 \ 8. That
greedy algorithm in itself does not exploit the propertyttha s,
the nonzero elements of the input signal are from finite sym-

: K
bol constellation. §jy, = arg max )Qgréi (8)
sCQ\5%, 2
In this paper, we propose a new sparse signal recovery |s|=K—i

algorithm dubbed as the sparse detection matching pursuit . . . . .
(SDMP). SDMP is effective in recovering the integer-based\'c’te that the re3|d~ual is updated using the sllcegl _estlmate a
sparse signals while imposing relatively small computatlo Fsi =Y — Héigx(xﬁi) A Hé’i_xé'i : After obtaining the
cost. SDMP accomplishes the mission by 1) the cost-effectivhoncausal set;’, ;, we combine this with the causal path
Free seargh baseq on tree pruning and 2) residual updaga usIm 1Since the cost function corresponds to fhenorm of the residual, min-
mFeQe_r sliced 95t|mate-_ In the tree 5_earChy SDMP attenapts fmizing the residual in magnitude is equivalent to minimigithe cost func-
minimize the cost function by selecting the candidate (et otion.

3025



to make a full-blown patsf = &% U Eﬁl and then compute Theorem 2 A true path is survived from the pruning process
cost function ofsi<. If the cost function associated wigf< if
is greater than the the pruning threshel@.e., J(55) > ¢),

we decide that further investigation is hopeless and prioee t min |zj| > max{p, v}|vl2 (10)
path from the tree. It is worth noting that by using the sliced

estimatelx (x;; ), the estimation performance of the true pathwhereu _ 2v/1=dar andy = 20=0x)

can be improved substantially. For examplegjif = 1 and 1=0mV1=0Kk =041 1=3021

I = 0.4, thenQx(#y) = 1 for X = {—1,+1}, and hence The third condition describes the condition that the sliced
the estimation error before and after the slicing gt¢ —  version is identical to the original signal when the sigsais-

k|2 = 0.6 and||zx — & |2 = 0, respectively. Clearly, slicing  timated by any true pat{ c 7'. In order to meet this require-
entirely removes the residual estimation error of the tatep  ment, the estimation errdic; —: |2 should be smaller than

£ foranyst C T.
3. PERFORMANCE GUARANTEE ANALYSIS _ _ _
Theorem 3 For any true paths} C T, the estimated signal

In this section, we provide the sufficient condition underis detected to true symbol@f (x;: ) = x;:) if
which SDMP accurately reconstructs the sparse signal whose

nonzero entries are from finite symbol constellation. Due (1-0k)% A |Ix]|2
IVl < =5 — 77— (11)

to the page limitation, we skip the details. The conditions 1+d0r 2  V1—-0x
ensuring that SDMP accurately recovers the sparse signals '
are as follows: foranyl <i < K — 1.

1. At least one true index (index contained in the support  Finally, SDMP exactly reconstructs the sparse signals if
T) is selected by the pre-screenirtgy(\ ' # 0). Theorem 1, 2, and 3 are jointly satisfied. Next theorem pro-
vides the overall sufficient condition ensuring exact recon

2. Atrue pathsi C T should be survived from the prun- struction of sparse signals by SDMP.

ing process.

Theorem 4 When(11) s satisfied, SDMP accurately recon-
structs the sparse signals whose nonzero elements are from
finite set of symbol constellation if

Since one or more true path should be investigated during )
the tree search, at least one true index should be selected in min |z;| > (1 - 0x)"A

the pre-screening stage. In the tree search, the sufiport i€ T 214 6k ) (v + VI = 0k)
should not be removed by the pruning strategy. Even if the

pathé; contains only true indices, exact reconstruction wouldVNee = max{1, 11, v}.

be achieved only when the sliced version 0f~est|mated SO is worth noting that when the condition (11) and (12) are
nal equals the true symbols. In other wor@s;(Xs;) = Xsi  jointly satisfied, the support is accurately identified ahel t
should be satisfied for an§; C 7'. In order to meet this sparse coefficients are also reconstructed accuratetyesit
requirement, the estimation error should be smaller t%an ingly, when the signal power is sufficiently large, SDMP ex-
(lxg — x5 [ < %) whereA is the minimum distance be- actly reconstructs the original sparse signal even in the-pr
tween symbols. ence of noise. To be specific, under Theorem 4, any true

In our analysis, we use the gOMP algorithm as the prepaths? C T is survived from the tree search and the signal
screening algorithm [4]. The following theorem provides th is accurately reconstructed (i.&;: = x;:) for each layer.
condition under which at least one support index is chosen biventually, SDMP obtains the overdetermined system model
the pre-screening. y = Hrxp+v, and the final outputis identical to the original
signal (i.e.xr = Qx(Xr) = x7).

3. For any true patd! C T, the sliced version ok
should be true symbotdx (x;; ) = x3:).

(12)

Theorem 1 The gOMP algorithm identifies at least one sup-

port element if the nonzero entriessofatisfy
4. SIMULATION AND DISCUSSION

min [z;] > nl[v]2 ©) o
7€ 4.1. Simulation Setup
wheren = (VEFVI)/1+0n 41 In this section, we provide the empirical performance of

VI —VEdLixc” sparse recovery algorithms including the proposed SDMP al-

Next theorem provides the condition under which the pattgorithm. The simulation is based on the channel mdtiaf
containing true indices is found exclusively in the treereba size24 x 48 whose entries are from the independent Gaussian

process. distributionCA (0, 4;). We generate thé -sparse vectok
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Fig. 2. ERR performance of sparse detection at SNB5=
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Fig. 3. SER performance of sparse detection whés- 5.

constant gap (arountd5 dB when|0| = 8K) from Oracle

whose nonzero positions are randomly chosen. Elements gstimator.

nonzero positions are chosen fratQAM symbol constel-

lation. Two performance measures are used to evaluate the
effectiveness of SDMP: 1) exact recovery ratio (ERR) and
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