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ABSTRACT

In this paper, we consider a detection problem of the under-
determined system when the input vector is sparse and its ele-
ments are chosen from a set of finite alphabets. We propose a
greedy sparse recovery algorithm dubbed as the sparse detec-
tion matching pursuit (SDMP) that is effective in recovering
the sparse signals with integer constraint. In our performance
guarantee analysis and empirical simulations, we show that
SDMP is effective in recovering sparse signals in both noise-
less and noisy scenarios.

Index Terms— Sparse detection, tree search, compressed
sensing, greedy algorithm, underdetermined system

1. INTRODUCTION

The relationship between a transmit signalx and a received
signal vectory in many wireless communication systems can
be expressed as

y = Hx+ v (1)

whereH ∈ CM×N is the channel matrix,v ∼ CN (0, σ2
vI),

x is the transmit signal whose entries are from the finite sym-
bol constellation setX. In this work, we are concerned with
the scenario where 1) the input signalx is sparse (i.e., num-
ber of nonzero elements in a signal vector is small) and 2)
the dimension of observation vectory is smaller than that of
the input vector (M < N ). Conventional way of detecting
the input signals is to use the estimation technique such as
linear minimum mean square error (LMMSE) estimation [1]
followed by the symbol slicing. For instance, letx̃ andx̂ be
the output of the LMMSE estimator and the symbol detector,
respectively, then

x̃ = (H′H+ σ2I)−1H′y (2)

x̂ = QX(x̃) (3)

whereQX(·) is a function mapping the input to the closest
symbol inX (i.e., QX(x) = argmin

ξ∈X

‖x − ξ‖2). Since the
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Fig. 1. Illustration of proposed SDMP algorithm.

system is underdetermined, this approach, which in essence
tries to find the solution by inverting the covariance matrix
of the received vector, does not provide satisfactory result in
general.

A better way to exploit the given underdetermined con-
straint is to use the sparse recovery algorithm. Overall, there
are two distinct classes of sparse signal recovery algorithms:
ℓ1-norm minimization technique [2] and greedy approach. In
our work, we are mainly interested in the greedy sparse re-
covery algorithm. Greedy algorithm attempts to find the sup-
port (index set of nonzero entries of the original signal vec-
tor) in an iterative fashion, returning a sequence of estimates
of the sparse input vector. In the orthogonal matching pursuit
(OMP) algorithm [3], for example, an index of column inH
maximally correlated to the observationy is selected in each
iteration. That is,

i∗ = arg max
j∈{1,··· ,N}

|h′
jy| (4)
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Table 1. SDMP

Input: measurementy, sensing matrixΦ, sparsityK,
initial thresholdǫ1
Output: Estimated signal̂x
Initialization: i := 0, S0 := ∅
Θ = f (y, Φ, p) (pre-screening)
while i < K do
i := i+ 1, Si := ∅, ǫi+1 := ǫi
for l = 1 to |Si−1| do
θ := Θ \ ŝi−1

1 (l)
for j = 1 to |θ| do

ŝi1 := ŝi−1
1 (l) ∪ {si(j)} (updatej-th path)

if ŝi1 6∈ Si then (check the duplicated path)
s̃Ki+1=arg max

s⊂Ω,
|s|=K−i

‖Φ′
srŝi

1
‖2 (support estimation)

s̄K1 = ŝi1 ∪ s̃Ki+1, x̂s̄K
1

= QX(Φ
†

s̄K
1

y)

rs̄K
1

= y −Φs̄K
1
x̂s̄K

1

if ‖rs̄K
1
‖2 ≤ ǫi then (pruning decision)

Si := Si ∪ ŝi1, I∗ := s̄K1
if ‖rI∗‖2 ≤ ǫi+1 then
ǫi+1 := ‖rI∗‖2 (update pruning threshold)

end if
end if

end if
end for

end for
end while

return x̂∗ = QX

(

Φ
†
I∗y

)

(signal reconstruction)

wherehj is thej-th column ofH. The chosen indexi∗ is
added toΛi (the set of selected indices) and then the estimate
x̃Λi = H

†
Λiy of xΛi is generated. Finally, the residual is

updated as

rΛi = y −HΛi x̃Λi = y −HΛiH
†
Λiy. (5)

Well-known drawback of greedy approaches is that the final
candidate is often not the optimal solution due to the greedy
mechanism of the support selection process. Furthermore,
greedy algorithm in itself does not exploit the property that
the nonzero elements of the input signal are from finite sym-
bol constellation.

In this paper, we propose a new sparse signal recovery
algorithm dubbed as the sparse detection matching pursuit
(SDMP). SDMP is effective in recovering the integer-based
sparse signals while imposing relatively small computational
cost. SDMP accomplishes the mission by 1) the cost-effective
tree search based on tree pruning and 2) residual update using
integer sliced estimate. In the tree search, SDMP attempts to
minimize the cost function by selecting the candidate (set of

indices) with minimal residual power1. That is,

Λ∗ = arg min
|Λ|=K

‖y −HΛx̂Λ‖2. (6)

Note that SDMP uses the sliced version of the estimated sig-
nal x̂Λi = QX(x̃Λi) in the generation of the residual:

rΛi = y −HΛiQX(x̃Λi) = y −HΛi x̂Λi . (7)

Since multiple candidates are investigated in the tree search,
SDMP improves the chance of selecting true indices (indices
in the support) significantly. Furthermore, even in the pres-
ence of noise, exact reconstruction of sparse signals can be
achieved due to the symbol slicing in each layer.

2. SPARSE SYMBOL DETECTION VIA GREEDY
TREE SEARCH

Major components of SDMP are 1)pre-screeningto put a lim-
itation on columns of the channel matrix and then 2)pruning-
based tree searchto eliminate unpromising paths from the
tree. In the first stage of SDMP, indices that are highly likely
to be the elements of supportT are selected. In other words,
we do our best guess to find the columns of channel matrix
that are associated with nonzero elements of the sparse vec-
tor. If we denote the set ofroughly chosenindices asΘ, then
the search set is reduced fromΩ = {1, 2, · · · , N} to Θ, a
small subset ofΩ (i.e.,Θ ⊂ Ω). In generatingΘ, any sparse
recovery algorithm can be used. In this work, we use the gen-
eralized OMP (gOMP) algorithm [4]. Note that gOMP per-
formsK iterations and choosesL indices per iteration. Since
multiple indices are chosen per iteration, misdetection prob-
ability of true indices decreases at the increase of the false
alarm rate.

In the second stage of SDMP, pruning-based tree search
is performed to find a full-blown pathΛ with cardinalityK
(|Λ| = K) minimizing the cost functionJ(Λ). Since com-
puting cost function of full-blown path is not possible in the
middle of the search, we combine the already selected indices
(causal path) and roughly estimated indices (noncausal set).
For example, ini-th layer of the tree (i < K), the noncausal
sets̃Ki+1, temporarily needed for each causal pathŝi1, is gen-
erated by choosingK − i indices of columns inΩ \ ŝi1. That
is,

s̃Ki+1 = arg max
s⊂Ω\ŝi

1
,

|s|=K−i

∥

∥

∥
Φ′

srŝi1

∥

∥

∥

2
. (8)

Note that the residual is updated using the sliced estimate as
rŝi

1
= y −Hŝi

1
QX(x̃ŝi

1
) = y −Hŝi

1
x̂ŝi

1
. After obtaining the

noncausal set̃sKi+1, we combine this with the causal pathŝi1

1Since the cost function corresponds to theℓ2-norm of the residual, min-
imizing the residual in magnitude is equivalent to minimizing the cost func-
tion.
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to make a full-blown path̄sK1 = ŝi1 ∪ s̃Ki+1 and then compute
cost function of̄sK1 . If the cost function associated with̄sK1
is greater than the the pruning thresholdǫ (i.e.,J(s̄K1 ) > ǫ),
we decide that further investigation is hopeless and prune the
path from the tree. It is worth noting that by using the sliced
estimateQX(x̃ŝi

1
), the estimation performance of the true path

can be improved substantially. For example, ifxk = 1 and
x̃k = 0.4, thenQX(x̃k) = 1 for X = {−1,+1}, and hence
the estimation error before and after the slicing are‖xk −
x̃k‖2 = 0.6 and‖xk−x̂k‖2 = 0, respectively. Clearly, slicing
entirely removes the residual estimation error of the true path.

3. PERFORMANCE GUARANTEE ANALYSIS

In this section, we provide the sufficient condition under
which SDMP accurately reconstructs the sparse signal whose
nonzero entries are from finite symbol constellation. Due
to the page limitation, we skip the details. The conditions
ensuring that SDMP accurately recovers the sparse signals
are as follows:

1. At least one true index (index contained in the support
T ) is selected by the pre-screening (Θ ∩ T 6= ∅).

2. A true patĥsi1 ⊂ T should be survived from the prun-
ing process.

3. For any true patĥsi1 ⊂ T , the sliced version of̃xŝi
1

should be true symbol (QX(x̃ŝi
1
) = xŝi

1
).

Since one or more true path should be investigated during
the tree search, at least one true index should be selected in
the pre-screening stage. In the tree search, the supportT

should not be removed by the pruning strategy. Even if the
pathŝi1 contains only true indices, exact reconstruction would
be achieved only when the sliced version of estimated sig-
nal equals the true symbols. In other words,QX(x̃ŝi

1
) = xŝi

1

should be satisfied for anŷsi1 ⊂ T . In order to meet this
requirement, the estimation error should be smaller than∆

2

(‖xŝi
1
− x̃ŝi

1
‖ < ∆

2 ) where∆ is the minimum distance be-
tween symbols.

In our analysis, we use the gOMP algorithm as the pre-
screening algorithm [4]. The following theorem provides the
condition under which at least one support index is chosen by
the pre-screening.

Theorem 1 The gOMP algorithm identifies at least one sup-
port element if the nonzero entries ofx satisfy

min
j∈T

|xj | > η‖v‖2 (9)

whereη =
(
√
K+

√
L)
√

1+δL+K√
L(1−δK)−

√
KδL+K

.

Next theorem provides the condition under which the path
containing true indices is found exclusively in the tree search
process.

Theorem 2 A true path is survived from the pruning process
if

min
j∈T

|xj | > max{µ, ν}‖v‖2 (10)

whereµ = 2
√
1−δM√

1−δM
√
1−δK−δK+1

andν = 2(1−δK)
1−3δ2K

.

The third condition describes the condition that the sliced
version is identical to the original signal when the signal is es-
timated by any true patĥsi1 ⊂ T . In order to meet this require-
ment, the estimation error‖xŝi

1
−x̃ŝi

1
‖2 should be smaller than

∆
2 for anyŝi1 ⊂ T .

Theorem 3 For any true patĥsi1 ⊂ T , the estimated signal
is detected to true symbols (QX(x̃ŝi

1
) = xŝi

1
) if

‖v‖2 <
(1− δK)

3
2

1 + δK

∆

2
− ‖x‖2√

1− δK
(11)

for any1 ≤ i ≤ K − 1.

Finally, SDMP exactly reconstructs the sparse signals if
Theorem 1, 2, and 3 are jointly satisfied. Next theorem pro-
vides the overall sufficient condition ensuring exact recon-
struction of sparse signals by SDMP.

Theorem 4 When(11) is satisfied, SDMP accurately recon-
structs the sparse signals whose nonzero elements are from
finite set of symbol constellation if

min
j∈T

|xj | >
γ(1− δK)2∆

2(1 + δK)(γ +
√
1− δK)

(12)

whereγ = max{η, µ, ν}.

It is worth noting that when the condition (11) and (12) are
jointly satisfied, the support is accurately identified and the
sparse coefficients are also reconstructed accurately. Interest-
ingly, when the signal power is sufficiently large, SDMP ex-
actly reconstructs the original sparse signal even in the pres-
ence of noise. To be specific, under Theorem 4, any true
path ŝi1 ⊂ T is survived from the tree search and the signal
is accurately reconstructed (i.e.,x̂ŝi

1
= xŝi

1
) for each layer.

Eventually, SDMP obtains the overdetermined system model
y = HTxT+v, and the final output is identical to the original
signal (i.e.,̂xT = QX(x̃T ) = xT ).

4. SIMULATION AND DISCUSSION

4.1. Simulation Setup

In this section, we provide the empirical performance of
sparse recovery algorithms including the proposed SDMP al-
gorithm. The simulation is based on the channel matrixH of
size24×48 whose entries are from the independent Gaussian
distributionCN (0, 1

M
). We generate theK-sparse vectorx
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Fig. 2. ERR performance of sparse detection at SNR =25
(dB).

whose nonzero positions are randomly chosen. Elements of
nonzero positions are chosen from16-QAM symbol constel-
lation. Two performance measures are used to evaluate the
effectiveness of SDMP: 1) exact recovery ratio (ERR) and
2) symbol error rate (SER). In our simulations, we observe
the performance of SDMP when|Θ| = 4K and8K. Other
than SDMP, we test OMP, CoSaMP [5], LMMSE estima-
tion, and Oracle LMMSE estimation2. Note that the Oracle
estimator has the prior knowledge on the support and hence
solves the problem using the overdetermined system model
y = HTxT + v.

4.2. Simulation Results and Discussion

In Fig. 2, we plot the ERR performance when signal-to-noise
ratio (SNR) is set to25 dB. Since the system is underdeter-
mined, we observe that the performance of LMMSE estimator
exploiting whole channel matrix to estimate the signal vector
is not working well. We also observe that the ERR of SDMP
is higher than other approaches.

Fig. 3 provides the SER performance whenK = 5 (10%
of original signal is nonzero) as a function of SNR. Since
multiple candidates are investigated, SDMP shows the best
performance among all sparse recovery algorithms under test.
Also, we observe that while performance improvement of
conventional algorithms diminishes with SNR, performance
of the proposed SDMP improves with SNR and maintains

2In all greedy algorithms under test, we added the slicing after each iter-
ation.
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Fig. 3. SER performance of sparse detection whenK = 5.

constant gap (around1.5 dB when|Θ| = 8K) from Oracle
estimator.
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