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ABSTRACT

Non-data aided channel estimation is discussed in this pa-
per to enable blind modulation classification in multiple-input
multiple-output fading channels. The channel parameters are
jointly estimated via expectation maximization under each
modulation hypothesis. Instead of pilot symbols, the initial-
ization of the channel matrix is achieved through a combi-
nation of fuzzy c-means clustering and maximum likelihood
mapping. The estimated channel matrix and noise power en-
able the blind classification of modulations using a maximum
likelihood classifier. Digital modulations are tested in simu-
lation to validate the proposed classifier. The classifier is able
to achieve excellent performance when SNR level is above 5
dB.

Index Terms— modulation classification, channel esti-
mation, fuzzy clustering, Bayesian inference, likelihood clas-
sifier, MIMO, Rayleigh fading

1. INTRODUCTION

Modulation classification (MC) has received increasing
amount of attention in the last decade or more from emerg-
ing intelligent communication systems, such as cognitive
radio and software defined radio [1]. The wide application
of adaptive modulation and coding provides the opportunity
for further improvement of bandwidth efficiency where MC
is employed to detect modulation automatically.

Much effect has been dedicated to MC in single-input and
single-output systems [2–6]. MIMO systems with associated
techniques such as spatial multiplexing (SM) and space-time
coding (STC) provides benefits including array gain and spa-
tial gain for improved spectrum efficiency and link reliability.
Some recent publications address the issue of blind modula-
tion classification (BMC) for MIMO systems. Choqueuse et
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al. developed the average likelihood ratio test (ARLT) classi-
fier for MC with perfect channel knowledge [7]. In the same
paper, they proposed to use independent component analysis
(ICA) with phase correction for channel matrix estimation in
order to achieve BMC. The ICA estimator is endorsed by the
following publications but accompanied with different clas-
sifiers [8, 9]. Muhlhaus et al. proposed high order cumu-
lants based likelihood ratio test classifier for low complexity
BMC [8]. Kanterakis and Su suggest complexity reduction
to the ALRT classifier by treating ICA recovered signal com-
ponents at different transmitting antennas as individual pro-
cesses [9].

In this paper, we propose a BMC solution which is more
practical in a blind channel with both unknown channel ma-
trix and unknow noise power. Given that pilot symbols are not
available for the classifier, expectation maximization (EM) is
adopted for non-data aided blind channel estimation. The ini-
tialization of EM is achieved using fuzzy c-means clustering
and maximum likelihood mapping. Compared to the ICA
estimator, the EM estimator provides the additional estima-
tion of noise variance while not needing the phase correction
for the channel matrix. The resulting estimate is used for the
maximum likelihood (ML) classifier for decision making.

2. SIGNAL MODEL

The MIMO system is composed of Nt transmitting antennas
and Nr receiving antennas. A Rayleigh fading channel with
time invariant path gains is considered. The resulting chan-
nel matrix H is given by a Nr × Nt complex matrix with
the element hj,i representing the path gain between ith trans-
mitting antenna and jth receiving antenna. Assuming perfect
synchronization, the nth received MIMO-SM signal sample
vector rn = [rn(1), rn(2), ..., rn(Nr)]

T in a total observation
of N samples is expressed as

rn = Hsn + ωn (1)

where sn = [sn(1), sn(2), ..., sn(Nt)]
T is the nth transmitted

signal symbol vector and ωn = [ωn(1), ωn(2), ..., ωn(Nr)]
T

is the additive noise observed at the nth signal sample. The
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Fig. 1: Signal received at a receiving antenna in a 2x4 MIMO
system.

transmitted symbol vector is assumed to be independent and
identically distributed with each symbol assigned from the
modulation alphabet with equal probability. The additive
noise is assumed to be white Gaussian with zero mean and
variance σ2 which gives ωn ∈ N (0, σ2INr ), where INr is
the identity matrix of size Nr ×Nr.

3. NON-DATA-AIDED INITIALIZATION

The channel matrix in a MIMO fading channel is rather com-
plex given the number of paths and different channel effects.
When EM was first proposed for MIMO channel estimation,
the issue of initialization is achieved with data-aided meth-
ods [10]. However, the required pilot symbols may not be
available in certain applications. The application of MC in
military warfare, for example, requires the channel estimation
to be performed in a non-cooperative environment.

3.1. Fuzzy C-means Clustering

For MIMO systems, the received signal at each receiver is
a product of multiple transmission streams and the complex
channel matrix. While the example in 1a shows clear sep-
aration between received symbols, another example of the
received signal given in Figure 1b suggest that some of the
received symbol states maybe very close to each other. For
this reason, the fuzzy c-means algorithm is adopted. As the
additive noise is assumed to be Gaussian, we incorporate the
likelihood function of Gaussian process into the distance mea-
surement and membership evaluation. The likelihood of sam-
ple rn(j) belonging to the cluster m is given by

L (rn(j), cm) =
1

2πσ2
e−

(rn(j)−cm)2

2σ2 (2)

where cm is the mean of mth cluster. As the samples are re-
ceived at the same antenna, the noise variance σ2 is identical
for all clusters. Therefore, we propose the membership calcu-
lation of the nth sample in themth cluster using the following
equation

un,m =
1∑M

i=1 e
[(rn(j)−cm)2−(rn(j)−ci)2]

(3)

The centroid of the mth cluster is calculated using the mean
of the all samples weighted by their membership.

cm =

∑N
n u

2
n,mrn(j)∑M

i=1 u
2
n,m

(4)

3.2. Initial Channel Estimate

After clustering, the membership set and clustered centroid
set are used to provide the initial estimate of noise variance at
the jth receiver and the channel coefficients associated with
the jth receiver. The noise variance is calculated as

σ̂2
j =

∑M
m=1

∑N
n=1 un,m|rn(j)− cm|2∑M
m=1

∑N
n=1 un,m

(5)

For the initial estimation of the channel coefficient, the
matter is a bit more complicated because neither the trans-
mitted symbol vector nor the cluster centroids are ordered or
matched up. The relationship between them can be modelled
as.

cm = [hj,1, hj,2, ..., hj,Nt ]× Sk
T (6)

where Sk ∈ S is one of the possible sample sets being trans-
mitted with k = 1, 2, ..., LN

t

. The goal is to find the match-
ing m and k so that the correct channel matrix could be es-
timated for EM initialization. In this paper, we have taken
a semi-exhaustive likelihood based mapping approach to find
the matching m and k and the subsequent initial channel ma-
trix estimate. First, Nt number of estimated centroids are
selected randomly. Correspondingly, all possible combina-
tions of subset with Nt elements are constructed from S. For
a MIMO system with Nt transmitter and modulation candi-
date with L symbol states, there are a total number of I =
LN

t

!/[Nt!(L
Nt − Nt)!] combinations. For each combina-

tion, there exist a set of channel matrix hj,·(i) can be esti-
mated from the selected centroids and the transmitted symbol
set. To find the best match between the selected the transmit-
ted sample combination subset, the likelihood value for each
pairing can be calculated by

Li(r(j)|σ2, hj,·(i)) =

N∏
n=1

1

M

M∑
m=1

1

(πσ2)
Nr

exp(−
‖rn(j)− hj,·(i)Sm‖2F

2σ2
)

(7)

Using the maximum likelihood criterion, the final estimate of
the channel matrix can be determined by find the maximum
likelihood from all pairings.

ĥ(j, ·) = argmax
hj,·(i)∈hj,·(I)

L(R|σ2, hj,·(i)) (8)

This process is repeated for each receiver until the entire chan-
nel matrix is constructed.
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4. EM CHANNEL ESTIMATION

In MIMO systems, we consider the received signal R =
[r1, r2...rN ] as the observed data. Meanwhile, the member-
ship Z of the observed samples is considered as the latent
variables. Z is a M × N matrix with the (m,n)th element
being the membership of the nth signal sample rn, given
the transmitted symbol vector Sm. The possible transmitted
symbol set S = [S1, S2...SM ] gathers all the combinations
of transmitted symbols from Nt number of antennas. Given
a modulation with L number of states, there exist M = LNt

number of transmitted symbol vectors and a transmitted sym-
bol set of size Nt × LNt . With Θ = {H,σ2} representing
the channel parameters, the expected value of the complete
log-likelihood is derived as

Q(R,S|Θt) = log

N∏
n=1

M∏
m=1

p(rn, Sm|Ht, σ
2
t )
zmn

= −
N∑
n=1

M∑
m=1

zmn

[
Nr log(πσ2

t ) +
‖rn −HtSm‖2F

σ2
t

]
(9)

where p(rn, Sm|Ht, σt) is the probability of the nth received
signal vector being observed given the current estimation of
channel matrix Ht and noise variance σ2

t . ‖·‖2F is the Frobe-
nius norm. The soft membership zmn is evaluated using the
following equation

zmn =
p(rn|Sm,Θt)
M∑
m=1

p(rn|Sm,Θt)

=
exp(−‖rn−HSm‖

2
F

σ2 )
M∑
m=1

exp(−‖rn−HSm‖
2
F

σ2 )

.

(10)

4.1. Maximization Step

The update of the parameter estimation is achieved through
the maximization of the current expected log-likelihood (M-
step). To derive the close form update function for the chan-
nel matrix and noise variance, we first find the derivatives
of Q(R,S|Θt) with respect to H and σ2 separately. The
derivative of Q(R,S|Θt) with respect to the individual ele-
ment h(j, i) of the channel matrix is given by

∂Q(R,S|Θt)

∂hj,i

= −
N∑
n=1

M∑
m=1

zmn

Nt∑
i=1

hj,i
∗|Sm(i)|2 − rn(j)∗Sm(i)

σ2
(11)

In the same way, the derivative ofQ(R,S|Θt) with respect to
the noise variance σ2 is found as

∂Q(R,S|Θt)

∂σ2
= −

N∑
n=1

M∑
m=1

zmn

(
−Nr
σ2

+
‖rn −HSm‖2F

σ4

)
(12)

When the derivatives are set to zero, the update functions
of hj,i and σ2 can be derived from Equation (11) and (12).
However, it is obvious that different channel parameters are
coupled. To simplify the maximization process, the coupled
channel parameters are estimated in turns. The path gain hj,i
is estimated with the rest of the channel matrix known and
represented with the latest estimate for each path gain. The
path gains are updated in ascending order with respect to j
and i. The resulting update function for hj,i is given by

ht+1
j,i

=

N∑
n=1

M∑
m=1

zmn

[
rn(j)Sm(i)

∗ − Sm(i)
∗ Nt∑
k=1,k 6=i

h′k,iSm(k)

]
N∑
n=1

M∑
m=1

zmn|Sm(i)|2

(13)

where h′k,i is the lasted estimate of path gain hk,i. At tth it-
eration, h′k,i = htk,i if it has not been updated or h′k,i = ht+1

k,i

if it has been updated. After the channel matrix is completely
updated, Ht+1 is used to acquire the noise variance estima-
tion.

σ2
t+1 =

N∑
n=1

M∑
m=1

zmn
Nr∑
j=1

∣∣∣∣rn(j)−
Nt∑
i=1

ht+1
j,i Sm(i)

∣∣∣∣2
Nr

N∑
n=1

M∑
m=1

zmn

(14)

The EM algorithm with such maximization process is known
as expectation conditional maximization (ECM). ECM shares
the convergence property of EM [11] and can be constructed
to converge at similar rate as the EM algorithm [12]. The
ECM joint estimation of channel parameters has previously
been successfully applied in BMC for SISO systems [13–15].

5. MAXIMUM LIKELIHOOD CLASSIFIER

For classification likelihood evaluation, average likelihood ra-
tio test (ALRT) is adopted [7]. In the case of BMC, the chan-
nel matrix and noise variance estimated by EM is used to sub-
stitute the known values in the ALRT likelihood evaluation
for each modulation hypothesis. The likelihood evaluation of
modulation candidateM is given by

logL(R|SMΘM) = −NNt log(M)−NNrlog(πσ2
M)

+

N∑
n=1

log

 M∑
m=1

1

(πσ2
M)

Nr
exp(−

∥∥∥rn − ĤMSMm ∥∥∥2
F

2σ2
M

)


(15)

where SM is the transmitted symbol set defined by modula-
tionM and ΘM is the channel estimation for the same mod-
ulation candidate. The resulting classification decision M̂ is
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Fig. 2: The classification results of different modulation sig-
nals in Rayleigh fading channel with varying AWGN noise
level and 512 samples from each transmitter.

found using the maximum likelihood criterion.

M̂ = argmax
M∈M

(logL(R|SM,ΘM)) (16)

6. SIMULATION AND RESULTS

To validate the proposed BMC algorithm, MIMO systems in
Rayleigh fading channel with AWGN noise is simulated for
BMC. Four popular digital modulations are included in the
modulation candidate pool: BPSK, QPSK, 8-PSK, 16-QAM.

First, 1,000 testing realizations of modulation signals are
generated for each modulation candidate at SNR varying from
-10 dB to 10 dB. Each signal realization consists of 512 ob-
served signal samples at each receiving antenna. In Figure
2, classification results averaged over 1,000 realizations are
listed. BPSK signals can be correctly classified with SNR
above 3 dB. The performance degradation is slow between
-3 dB and 3 dB. However, a dramatic decrease in classifica-
tion accuracy is observed below -3 dB. The QPSK signals
require higher SNR (above 8 dB) to achieve perfect classi-
fication with. The same pattern is observed for the 8-PSK
signals with misclassification for both modulations accounted
to 16-QAM. The classification result of 16-QAM concurs the
biased behaviour of the classifier. The classification accuracy
sees little degradation between -3 dB and 1 dB. Despite the
decreasing level of SNR, the classification accuracy of 16-
QAM signals remain at around 75%.

Second, 1,000 testing realizations of modulation signals
are generated for each modulation candidate with signal
length varying from 25 to 500. The SNR level is fixed at 5
dB in all experiments. The classification of BPSK is almost
independent of the signal length. With only 25 samples from
each receiving antenna, the classification of BPSK signals
is able to achieve a 100% accuracy as shown in Figure 3.
The robust performance for BPSK signal is mostly due to its
lower modulation order. For QPSK, a very slow degradation
can be observed with reduced signal length. Meanwhile,
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Fig. 3: The classification results of different modulation sig-
nals in Rayleigh fading channel with varying observation
length and SNR at 5 dB.

the degradation is rather moderate giving 84% classification
accuracy with 25 sample at each receiving antenna. It is ob-
vious that limited number of observed samples has a more
significant impact on the classification of 8-PSK signal. It is
often observed for high order modulations because of their
denser symbol population. This, however, is contradicted
by the classification accuracy of 16-QAM. The amount of
degradation for successful classification of 16-QAM signal
with shorter signal is minimal resulting a classification ac-
curacy of 89% when given 25 samples for analysis. Given
that the accuracy surpasses the other modulations, it is fair to
conclude the classifier biased towards 16-QAM modulations.

7. CONCLUSION

A classifier with fuzzy c-means clustering initial channel
estimation, expectation/conditional maximization channel
estimation, and maximum likelihood classification is pro-
posed.The employment of expectation maximization pro-
vides estimation of noise variance which is not enjoyed by
the popular ICA estimator. The likelihood of each modulation
candidate is evaluated with channel parameters estimated for
the specific candidate. The classification of simulated signals
in various settings shows that the classifier is able to provide
excellent classification accuracy with SNR above 5 dB for
BPSK, QPSK, 8-PSK, and 16QAM. In addition, the classifi-
cation is robust even with the number of signal samples as low
as 25 from each transmitter stream. Meanwhile, the classifier
shows a biased character towards high-order modulations,
especially 16-QAM modulation. Future research is expected
to understand better the biased behaviour of the classifier as
well as reducing its complexity for higher-order modulations
and high dimension MIMO systems.
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