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ABSTRACT

In this work we present a low-complexity detection
scheme for spatial modulation (SM) systems in the large-
scale multiple access channel (MAC). The proposed strategy
is based on compressive sensing (CS) and it exploits the
sparsity and structure of the transmitted SM signals in the
MAC to enhance the detection performance. The analytical
and simulation results presented in this paper show that the
proposed technique outperforms conventional CS and linear
detectors with a reduced signal processing complexity.

Index Terms— Spatial modulation, large-scale MIMO,
multiple access, compressive sensing.

1. INTRODUCTION

The severe growth in the achievable rate requirements of fu-
ture wireless communication systems has promoted the incor-
poration of a high number of antennas at the communication
ends [1, 2]. For instance, systems with large-scale multiple-
input multiple-output (MIMO) base stations (BSs) have been
shown to achieve significant performance gains when com-
pared to their small scale counterparts by using linear pre-
coding and detection techniques [2–4]. However, these im-
provements come at the expense of an increase in the cir-
cuit power consumption, which directly impacts on the global
energy efficiency [5, 6]. To cope with this, SM has been pre-
sented as a strategy that offers a trade-off between spectral
efficiency and total power consumption by reducing the num-
ber of antennas simultaneously active [1]. In this paper, we
focus on combining the benefits of having a massive BS with
the reduced power consumption offered by the use of SM-
based mobile stations (MSs) in the MAC.

As yet, the development of detection and pre-scaling
strategies particularly tailored for SM systems has been
mostly concentrated on peer-to-peer (P2P) systems [1, 7–9].
For example, a low-complexity detection based on com-
pressive sensing (CS) for P2P generalized space shift keying
(GSSK) systems was introduced in [9]. The proposed strategy
is based on normalizing the channel matrix before applying
conventional greedy CS algorithms to improve the detection
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accuracy. However, the application of the scheme developed
in [9] is restricted to P2P GSSK systems and the particular
structure of multi-user SM transmission is not considered.

The extension of SM to the MAC has been recently con-
sidered in [10–12]. In this scenario, each MS has a limited
number of radio frequency (RF) chains and only activates a
given number of antennas for transmission accordingly [10].
With the purpose of detecting the spatial-constellation sym-
bols, local search detection and message passing detection
(MPD) algorithms for large-scale systems are developed in
[12]. The MPD algorithm, which has also been shown to
be useful in CS [13], allows SM to outperform conventional
MIMO systems with identical spectral efficiency [12]. This
entails, however, an increase in the signal processing (SP)
load due to the significant number of messages that must be
constantly transmitted between a large amount of nodes [13].

In this paper we concentrate on reducing the detection
complexity of SM signals in the large-scale MAC via CS. In-
tuitively, the proposed strategy aims at offering an improved
performance by incorporating the knowledge of the number
of RF chains per user to the conventional CS-based detection.
In particular, the proposed technique reduces the complexity
of the algorithms developed in [12], while enabling the use of
CS-based strategies in SM multi-user systems thanks to the
exploitation of the MAC structure [9]. Additionally, in this
paper we perform a thorough complexity analysis to accu-
rately characterize the SP improvements offered by the pro-
posed scheme. This allows us to derive novel conclusions
when compared to [9, 14], where the more inaccurate com-
plexity order is used as a complexity metric.

2. SYSTEM MODEL

Consider a scenario where K MSs communicate with a BS
comprised of N � K receive antennas. Each MS incorpo-
rates nt antennas andM = K ·nt represents the total number
of antennas at the MSs. This system can be described by [2]

y = Hx + w, (1)

where y ∈ CN×1 is the signal received at the BS and x ∈
CM×1 denotes the signal transmitted by the MSs. More-
over, H ∈ CN×M represents a frequency flat Rayleigh fa-
ding channel satisfying hn,m = CN (0, 1), and w ∈ CN×1 ∼
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CN (0, σ2
nIN ) is the additive white Gaussian noise with vari-

ance σ2
n. Here, IN represents the N ×N identity matrix.

In the following and without loss of generality we con-
sider a single-RF SM transmission system in which each MS
activates a single antenna according to the input bit stream [1].
In this setting, a total of Bsp = log2(nt) bits are encoded into
the spatial antenna position whereas Bmod = log2(Q) bits are
transmitted via the amplitude and phase signal variations. In
the previous expression,Q denotes the modulation order. The
signal transmitted by the k-th user can be then expressed as

xk = [0 · · · sql · · · 0]
T
, (2)

where sq is the q-th symbol of the transmit constellation Q
and l ∈ [1, nt] denotes the index of the active antenna. The
joint transmit signal given by x =

[
xT
1 xT

2 · · · xT
K

]T
is only

comprised of P = K non-zero entries, where P represents
the total number of active antennas throughout the MSs [1,9].

Motivated by the low complexity and close-to-optimal
performance of linear detection in large-scale MIMO [3], we
employ a linear detector at the BS in the form

g = Dy =
[(
HHH + ξIM

)−1
HH

]
(Hx + w) , (3)

where D =
(
HHH + ξIM

)−1
HH corresponds to the zero

forcing (ξ = 0) or the minimum mean square error (ξ =
Mσ2

n/K) linear detection matrix [3]. Here, (·)H and (·)−1
denote the Hermitian and the inverse matrices respectively.
Note that (3) can also be expressed via linear least squares
(LS) problem formulations [6]. From this decision vector, the
constellation symbol and the index of the antenna activated at
the k-th MS can be obtained as

l̂ = arg max
l
|g{k}l |, q̂ = D

(
g
{k}
l̂

)
, (4)

where g{k}
{l,l̂}

is the {l, l̂}-th entry of the decision vector of the

k-th user g{k}, and D is the demodulation function [1]. Ho-
wever, the fact that only P antennas are active (sparsity) and
the knowledge that each user can only activate a given num-
ber of antennas (structure) are not exploited in (3). Moreover,
the use of SM conventionally entails an increase in the num-
ber of antennas allocated at each MS to preserve the spec-
tral efficiency of conventional MIMO transmission BMIMO =
nt · log2(Q), which in turn harms the performance of conven-
tional linear detection [1, 12]. For these reasons, in spite of
being conventionally considered for systems with N < M ,
in this paper we consider the use of a CS-based detector that
translates the benefits of conventional linear detection in ma-
ssive MIMO to SM transmission in the large-scale MAC.

3. CS AND SM IN THE LARGE-SCALE MAC

3.1. The Straightforward Approach: Conventional CS

CS-based strategies take advantage of the signal sparsity in
the signal detection to increase performance [15, 16]. In par-

ticular, CS guarantees an accurate reconstruction of a sparse
signal x as long as the channel matrix H satisfies the restric-
ted isometry property (RIP) of order P given by [15, 16]

(1− δP )‖x‖22 ≤ ‖Hx‖22 ≤ (1 + δP )‖x‖22, (5)

where δP ∈ (0, 1) and ‖ · ‖2 denotes to the `2 norm. These
relationships are satisfied with δP ≤ 0.1 by matrices formed
by hn,m = CN (0, 1) independent entries as long as N ≥
cP log (M/P ) holds, where c is a small constant [15]. Note
that this kind of matrices represent highly scattered Rayleigh
fading scenarios, hence providing the possibility of perform-
ing an accurate signal detection by employing strategies such
as the `1-norm minimization [15, 16]

minimize
x

‖x‖1

subject to ‖Hx− y‖2 ≤ η (6)

Here, ‖ · ‖1, denotes the `1 norm and η bounds the noise
(‖w‖2 ≤ η). However, alternatives with a reduced comple-
xity such as greedy algorithms are more relevant to the signal
detection problem due to the real-time processing require-
ments [6]. Among these, in this paper we focus on the Com-
pressive Sampling Matching Pursuit (CoSaMP) algorithm
due to its reduced complexity when compared to other greedy
algorithms and its error guarantees under noisy conditions,
which jointly make their use convenient for detection [14].

At this point we remark that the poor detection accuracy
of the CS-based detectors highlighted in [9] is circumvented
by the availability of a high number of antennas at the BS.
Still, the straightforward use of CS strategies can lead to in-
accurate results in the MAC because the knowledge of the
structure that arises due to the limited number of active an-
tennas per user is not exploited. For this reason we explore an
alternative tailored for the MAC of SM systems that incorpo-
rates this knowledge to further improve the performance and
convergence speed of conventional CS-based algorithms.

3.2. Proposed Enhanced Technique: Exploiting the Sig-
nal Structure of SM in the Large-Scale MAC

In this section we describe a strategy to exploit the SM signal
structure in the MAC for the CoSaMP algorithm, although it
is clear that the same concept can be incorporated to other CS
algorithms such as the ones based on MPD [12, 13, 21]. The
structured CS-based detection in the large-scale MAC is re-
ferred to as spatial modulation matching pursuit (SMMP) and
its operation can be described as follows: Let the first signal
approximation be x̃0 , 0. Initially, the algorithm generates a
simple decision metric p ∈ CM×1 given by

p = HHr(i−1), (7)

where ri , H
(
x− x̃i

)
+ w is the residual signal at the i-th

iteration. Note that for the first iteration (i = 1), the out-
put of the matched filter (MF) detector p is expected to con-
centrate the signal energy on the components with the active
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Table 1: Complexity in number of real floating-point operations (flops) of different large-scale MIMO detectors.

Detector Complexity in flops

Zero Forcing detector
• QR factorization [17–19]
• Cholesky factorization [18–20]
• Conjugate gradient [14, 19]

• CQR ' 8M2N − (8/3)M3 + 4N2 + 8NM

• CChol ' 4M2N + (4/3)M3 + 11M2 + 8NM

• CCG ' (8MN + 7M) +
[
ilsmax × (16MN + 27M)

]
Spatial Modulation Matching Pursuit
• Matched filter [17]
• Least Squares problem

– First SMMP iteration with CG
– Rest of SMMP iterations with CG

• Compute residual [17]

CSMMP ' imax × (8MN + 8PN) + C1
ls +

[
(imax − 1)× Cp>1

ls

]
• CMF = 8MN
• Least Squares problem (Cls)

– Ci=1
ls = (8PN + 7P ) +

[
ilsmax × (16PN + 27P )

]
– Ci>1

ls ≤ (16(2P )N + 18(2P )) +
[
ilsmax × (16(2P )N + 27(2P ))

]
• Cres ≈ 8PN

antennas [14]. Instead, for i > 1 the residual accumulates
the energy on the entries with a more significant error, which
helps to amend the mistakes in the active antenna detection of
the previous iterations. Based on the above, the set Ω is built
by selecting theK components with highest energy from p as
in the original CoSaMP algorithm but also considering that

‖xk‖0 = 1, k ∈ [1,K], (8)

holds. Here, ‖·‖0 denotes the `0-norm, i.e., the number of
non-zero entries [15, 16]. Note that in conventional CS al-
gorithms the additional constraint (8) is not accounted for,
which translates to a higher number of errors as shown here-
after [14, 15, 21]. The set that includes the possible active
antenna candidates for the current iteration S is then defined
as [14]

S , Ω ∪ supp
(
x̃i−1) , (9)

where supp (·) returns the K indexes of the non-zero entries.
The cardinality of S determines the dimensions of the zero
forcing (ZF) or, equivalently, LS problem

minimize
b|S

‖HSb|S − y‖22 . (10)

Here, b|S denotes the entries of the vector b ∈ CM×1 su-
pported in S, whereas HS refers to the submatrix obtained by
selecting the columns S of H. At this point, we remark that
2K < M in (10), which allows us to reduce the algorithmic
complexity of (3). Moreover, the benefits of using linear de-
tectors in large-scale MIMO systems can be exploited in (10)
since K � N holds [3]. Finally, the estimated signal x̃i is
computed from b by selecting the entries with highest energy
following (8). The pseudocode of the proposed detection al-
gorithm is provided in Algorithm 1 for clarity, where imax

refers to the maximum number of iterations.

4. COMPLEXITY ANALYSIS

In this section we perform an accurate characterization of the
complexity of the proposed strategy. This study is motivated
by the iterative structure of the CoSaMP and SMMP algo-
rithms, for which an analysis of the complexity order is of
limited utility. Indeed, the results of this section applied for

Algorithm 1 Structured Compressive Sensing SM Detection

Inputs: H, y, K, imax.
1: Output: x̃i , K-sparse approximation
2: x̃0← 0, r0← y, i← 0 {Initialization}
3: while convergence criterion false do
4: i← i + 1, b← 0
5: p←HHr(i−1) {MF to estimate active antenna indexes}
6: Ω← {Select indexes with highest energy per user from p}
7: S ← Ω ∪ supp

(
x̃i−1

)
{Combine supports}

8: b|S ← minimize ‖HSb|S − y‖22 {Least-squares}
9: x̃i ← {Select entries with highest energy per user from b}

10: ri← y −Hx̃i {Update residual}
11: end while

practical scenarios lead us to conclude that the detection com-
plexity is dominated by the need of solving (10), which con-
trasts with the results obtained in [9, 14].

As pointed out in [14], the critical operation of Algo-
rithm 1 is the LS operation (10), which can be solved ei-
ther via direct or iterative methods [19]. On the one hand,
direct methods such as the costly Cholesky and QR decompo-
sitions concentrate the complex operations at the beginning of
each channel coherence period [18]. On the other hand, ite-
rative algorithms such as the conjugate gradient (CG) avoid
the storage-intensive decompositions by refining an initial es-
timate. The convergence speed of iterative algorithms depend
on the accuracy of the initial solution and the condition num-
ber Θ ∈ [1,∞] of the LS matrix HS given by [19]

Θ (HS) =
λmax (HS)

λmin (HS)
, (11)

where λmin(·) and λmax(·) are the minimum and maximum
singular values respectively. This makes their use convenient
in Algorithm 1 due to the increasingly higher accuracy ob-
tained by using x̃|i−1S as an initial estimate in (10), and be-
cause N � K ensures a good conditioning of H [14,19,21].

Based on the above, the number of floating point opera-
tions required by the ZF and SMMP detectors is shown in Ta-
ble 1 for an arbitrary number of active antennas P . To obtain
these results, the assumption that a real multiplication (divi-
sion) has the same complexity of a summation (subtraction)
has been adopted [17]. In particular, the computational load
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of ZF detection is only determined by the complexity of solv-
ing a LS problem whereas in the case of SMMP and CoSaMP
is also influenced by the complexity of the MF in (7) and the
residual update. Moreover, the fact that the complexity of the
CG algorithm varies depending on the availability of an ini-
tial estimate is also considered in Table 1, where ilsmax limits
the number of CG iterations. We remark that the results also
reflect that the LS matrix for the CS-based schemes has P
columns for i = 1 whereas it has a number of columns less or
equal than 2P for i > 1, which can be derived by inspecting
(9) and noting that supp

(
x̃0
)

= ∅, where ∅ is the empty set.
Finally, we point out that, in spite of having a higher com-

plexity in the initial detection, most of the computations per-
formed by the ZF-SM or MMSE-SM detectors with direct
methods can be reused in subsequent channel uses [6, 18].
Specifically, only C = 8MN+8M2 flops must be computed
after the first symbol detection by the ZF-SM detector with
Cholesky decomposition [18]. This does not apply to CS-
based algorithms due to the constant variation of S in (10),
which leads us to conclude that the use of CS for SM detection
is specially convenient in fast fading scenarios where the cha-
nnel needs to be constantly updated. Moreover, as opposed
to [9,14], the results of Table 1 allows us to determine that, in
spite of having a smaller complexity order, the complexity of
solving the LS problem dominates the global complexity for
realistic system dimensions as shown in the following.

5. SIMULATION RESULTS

In this section we present the numerical results to evaluate
the complexity and performance improvements offered by the
proposed technique. In particular, we compare the proposed
strategy in the large-scale MAC with conventional MIMO
systems with spatial multiplexing and the same spectral effi-
ciency Se in coherence with [12, 22]. Moreover, to quan-
tify the improvements of SMMP in systems with SM trans-
mission, we also depict the performance of the conventional
linear detectors detailed in (3) and the CoSaMP algorithm.

Fig. 1(a) shows the bit error rates (BERs) of the consi-
dered techniques in a system with N = 128, K = 32, and
increasing signal-to-noise ratios (SNRs). The number of an-
tennas allocated at the MSs is nt = 4 for SM transmission
whereas the modulation order and nt is varied for conven-
tional MIMO transmission to guarantee a fixed spectral effi-
ciency of Se = 128 bits per channel use (bpcu). The results
show that the proposed strategy outperforms the rest of the al-
ternatives for a range of practical SNRs. Specifically, it can be
seen that incorporating nt = 2 antennas in each MS allows
obtaining the closest performance to the proposed scheme.
However, this comes at the cost of incorporating additional
RF circuitry, a complication avoided when single-RF SM is
used. Similar results are shown in Fig. 1(b), where the BERs
are depicted for varying number of users K and SNR = 6
dB. It can be seen that the benefits of the proposed strategy
are maximized for a small number of users whereas the use of
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Fig. 1: (a) BER vs. SNR for N = 128, K = 32. (b) BER vs. K for
N = 128 and SNR = 6 dB. SMMP and CoSaMP with imax = 3.
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Fig. 2: BER vs. complexity (ilsmax) for N = 128, K = 16, SNR =
6 dB, Se = 64 bpcu. SMMP with imax = 2.

conventional MIMO transmission is beneficial for large K.
The evolution of the performance for increasing levels of

complexity obtained from the results of Table 1 is shown in
Fig. 2 for a large-scale MAC with N = 128, K = 16 and
SNR = 6 dB. The results of this figure show that, in spite of
having a higher complexity than conventional single-antenna
MIMO transmission, significant performance improvements
can be obtained when SM mobile stations are used. Moreover,
it can be seen that SMMP allows obtaining a performance im-
provement of an order of magnitude w.r.t. conventional ZF de-
tection with similar complexity. It should also be noted that in
this scenario the CG algorithm requires ilsmax = 3 iterations
to achieve convergence and that it accounts for 70% of the
global detection complexity, hence corroborating the impor-
tance of performing an accurate complexity characterization.

6. CONCLUSION

In this paper, a low-complexity strategy based on CS to detect
SM signals in the large-scale MAC has been introduced. The
proposed scheme aims at improving the system performance
by exploiting the signal structure of SM signals in the MAC.
The complexity analysis and the simulation results characte-
rize the computational and performance enhancements that
the proposed technique offers in the large-scale MAC.
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