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ABSTRACT

Creating the optimal bipartite graph and decoding of a

Low Density Parity Check (LDPC) codeword on it is deemed

an NP-complete problem. Much work in the last decade has

gone into proper construction of LDPC codes with maxi-

mum girth and optimized stopping sets; to ensure the BER

approaches channel capacity. When an edge alteration to the

graph is proposed, it completely changes the performance of

the graph and usually leads to the re-analysis of the entire

graph’s properties. In this work we propose a method of

lowering the error floor experienced in an LDPC code by in-

telligently inserting a set of known bits in the message frame.

This deactivates paths in the graph located around trapping

sets without modification of edges in the graph, and provides

high log-likelihood information to the induced sub-graph for

improved performance.

Index Terms— Channel coding, Linear codes, Parity

check codes, Iterative decoding

1. INTRODUCTION

The proper design of a LDPC code is crucial in ensuring

transmission with bit error rates that are near the Shannon

limit. Chung et al. showed how a half rate LDPC code can op-

erate within 0.0045 dB of the Shannon limit for a binary input

additive white Gaussian noise channel [1]. These capacity ap-

proaching codes are obtained by finding code ensembles that

have near Shannon noise thresholds. The noise threshold for

a particular code ensemble is computed using an algorithm

such as density evolution [2]. These types of algorithms work

on the pair of degree distributions that completely describes

a particular code ensemble and dictates the distribution of the

connections used in the bipartite graph. Once the bipartite

graph is constructed from the code ensemble, a Belief Prop-

agation (BP) algorithm can be used to rapidly estimate the

received encoded bits [3].

This is all based on the assumption that long block lengths

are used in the code and that the bipartite graph has a tree

structure. This in turn allows active trails among all vari-

ables to ensure optimal messages are passed among different

variables nodes. However, the construction of these bipartite

graphs is not perfect and many impairments are introduced
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into the code. One such impairment is an observable error

floor at high Signal-to-Noise Ratios (SNRs) which is typical

for codes operating near the Shannon limit.

Several strategies have been devised to lower or remove

these error floors without affecting the LDPC’s ability to op-

erate near capacity [4, 5, 6]. In [7] a decoding method is pre-

sented to split the bipartite graph into clusters in an attempt to

isolate trapping sets. Another approach is to create a lookup

table of the most dominant trapping sets and use a bit flipping

approach to solve that sub-graph [8]. In this paper we pro-

pose to strategically embed a minimal number of known (pi-

lot) bits inside the message frame before encoding, with the

idea that the position of these pilot bits will positively affect

the messages passed by the belief propagation to dramatically

improve impairments in the graph which should result in the

lowering of the error floor. The placement of these pilot bits

has the effect of deactivating trails within the graph to pro-

vide high reliable log-likelihood probabilities to certain parts

of the graph and eliminate the effect of trapping sets and cy-

cles. Trapping sets and cycles are believed to contribute sig-

nificantly towards the observed error floors in LDPC codes.

The advantage of the pilot bits are that they are punctured be-

fore transmission and will only have a small effect on the code

rate.

The question of where to place these pilot bits, and how

many pilot bits to use is addressed in this paper. In [9], sev-

eral properties on trapping sets are listed and were used to

determine positions of the pilots bits. Results are presented

showing that the error floors at high SNR are reduced by uti-

lizing well placed pilots.

The paper is organized as follows. Section 2 we discuss

the concepts of cycles and trapping sets. In section 3 we

present our method for insert pilot bits into a graph, and sec-

tion 4 present our experimental results. Section 5 presents the

conclusions.

2. CYCLES AND TRAPPING SETS

LDPC codes allow for practical decoding of long codewords

with near Maximum Likelihood (ML) performance. How-

ever, reaching the noise threshold with a finite length code

for a particular code ensemble given that the decoding is NP-

complete is a daunting task. Given this scenario, the decod-

ing of the codeword has a probability, given the distribution
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of the erroneous log-likelihood ratios, of getting trapped in

cycles which causes a decrease in the rate of reduction in the

BER for an increase in SNR which ultimately results in an

observable error floor.
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Fig. 1. An example of a 6-cycle in a bipartite graph

One cause of an error floor is when cycles are present in

the graph. A cycle of length l is defined as an active path

in a graph that consists of l unique edges that moves through

the graph and ends on the same node of the graph where it

started. An example of a length 6 cycle for a LDPC code

with 6 variable nodes and 3 check nodes is shown in Figure

1. It is known that belief propagation passing messages on

a graph with a tree structure will approximate the true apos-

teriori probabilities of the variable nodes, but the conditions

for convergence in a graph with loops are still not well un-

derstood [10]. Even if tests for convergence are used, such as

EXIT charts, it still does not verify that aposterior probabili-

ties are correct. A known strategy for mitigating loops is to

increase the girth, where the girth of a code is the length of

the shortest cycle in the graph [11].
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Fig. 2. A (5,1) trapping set of the 96.33.964 code

A more prominent cause of the error floor is near code-

words, which are referred to as trapping sets. These are sets

in a graph with a relative small number of variable nodes such

that the induced sub-graph has a small number of odd degree

check nodes. These create the lower bound to the error floor.

An (a, b) trapping set is defined as a decoder state with a bit

errors and b unsatisfied parity checks [9]. The more domi-

nant trapping sets are generally combinations of short cycles

with lower values for a and b and high ratio of a
b

[12]. An

example of a (5,1) trapping set is shown in Figure 2. Here,

the shaded variable nodes represent bit errors, and the shaded

check nodes represent unsatisfied parity checks.

Another cause of the error floor is when the decoder

chooses a valid but wrong codeword. In this case all parity

checks are satisfied, yet the codeword produced is wrong, and

hence b = 0 in this case. This does not often happen when

the block length is large, but in this paper we will provide

results for LDPC codes with smaller block length where this

does happen, and we show that the pilot bits will mitigate this

problem as well as the trapping sets.

3. IMPROVED DECODING USING PILOT BITS

Pilot bits are bits which position and value are known to both

the receiver and transmitter. They are traditionally used in

communication systems for a number of purposes, including

synchronization and channel estimation. We propose in this

paper the placing of pilot bits within the message frame that

will be located within the known trapping sets and cycles after

encoding. As everything about these bits are known they are

punctured before transmission assuming the code is system-

atic. When the message is received at the decoder, they are

re-inserted as high log-likelihood soft bits into their respec-

tive positions.

Using a Tanner graph representation of a (a, b) trapping

set we follow the notation of [13] where a • represent a

variable node, and a square represent an even degree check

node (and a filled square an odd degree check node). Fig-

ure 3 shows the sub-graph induced by a (4,4) trapping set

T = v1, v2, v3, v4 in a column-weight-three LDPC code. This

sub-graph is a trapping set as check nodes C1, C2, · · · , C4 are

satisfied if the variable nodes v1, v2, v3, v4 are either zero or

one. No message passing decoding strategy will be able to

resolve the variable nodes under these conditions. However

if any one of the variable nodes are known with a high prob-

ability (pilot bit), it enables high reliability messages for the

belief propagation when computing the aposterior probabili-

ties in Figure 3 which will result in the variable nodes being

correctly estimated; this process we call pilot bit insertion and

it effectively disables the trapping set. In the case of Figure

3 the use of one pilot bit at any one of the variable nodes

v1, v2, v3, v4 will disable this particular trapping set. Some

trapping sets will require more than one bit to be disabled,

but in general only a few pilot bits in a frame will be able to

disable most of the dominating trapping sets.

The drawback however is the effective code rate is re-

duced as the same number of parity check bits are generated

with less message bits. The effective code rate is Rp = k−p

n−p
,

k, p, n ∈ N, where n denotes the length of codeword, k the

length of the message and p the number of pilot bits. The

effective code rate dictates that the number of pilot bits p,

should be kept relatively small compared to k and n. As mes-

sage passing algorithms pass probabilistic message, the value

of the pilot bits are of no concern and deemed independent
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for the analysis. However, as p needs to be kept as small as

possible, the position of these p pilots needs to be optimized.

It was found that the trapping sets in optimized codes with

large girths tend to cluster together, which assist in keeping

the number of pilot bits p low [9].
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Fig. 3. The Tanner sub-graph representation of a (4,4) trap-

ping set.

3.1. PROPOSED ALGORITHM

An algorithm is given here that attempts to find the optimal

locations for the pilot bits for a particular LDPC code based

on empirical analysis of the most dominant trapping sets. The

proposed algorithm is explained below:

1. Search and identify trapping sets in a graph [13, 14, 15,

16, 17].

2. Compute the Hamming distance d between each trap-

ping set and the all zero codeword.

3. Compute the contribution that each trapping set makes

to the BER for a particular SNR γ using [14]

Pǫ(trapping set) ≈ Q
(

√

2.d2γ
)

. (1)

4. Create a histogram of the summation of the contribu-

tion of errors per bit in the code, i.e.

f(i) =
∑

trap. sets

{Pǫ|i ∈ Pǫ} . (2)

5. Insert a random orientated pilot into the bit position i
with the highest value.

6. Remove all trapping sets from the pool that contain this

pilot bit.

7. Repeat steps 3-6 until the desired amount of pilot bits

is reached.

An approximation of the reduction in BER can be com-

puted by computing the difference of
∑

Pǫ for before and

after that pilot bits.

4. SIMULATION RESULTS

In our experiments we initially investigated the use of pilot

bits to increase the girth of a code, by inserting pilots into

the shortest cycles and also positions were several cycles of

different lengths cross. This would deactivate the cycles’ ac-

tive path in the graph. This approach however offered no real

improvement on well design codes.

The next approach was used to target dominant trapping

sets in the code. By using the proposed algorithm in sec-

tion 3.1, we successfully eliminate the targeted trapping sets

which in turn reduced the error floor.

The proposed algorithm was tested on three different

LDPC codes1 shown in table 1, each with relative short block

code length. This explains why some decoding errors are

attributed to wrong codewords being produced by the BP

decoder 2. LDPC codes with long block code length will not

have this issue, and the error floor under those conditions can

be attributed to trapping sets only.

Table 1. The three different LDPC codes used in our experi-

ments.
Code name n (bits) k (bits) Code rate

96.33.964 96 48 0.5

PEGReg252x504 504 252 0.5

PEGirReg252x504 504 252 0.5

The algorithm estimated the maximum number of pilots

needed and the position of each pilot. This is summarized

along with the new effective code rate in table 2.

Table 2. Pilot bit locations selected by the proposed algorithm

Code name Pilot Bit Effective #Pilots

positions code-rate (p)

96.33.964 {91, 55, 79} 0.484 3

PEGReg252x504 {493, 503, 0.496 4

473, 486}
PEGirReg252x504 {279, 352, 0.496 4

374, 258}

A descending list of trapping sets (a,b) and wrong code-

word errors for both with and without pilot bits according to

their respective percentage of failures is shown in table 3. The

1Available from http://www.inference.phy.cam.ac.uk/mackay/codes/data.html
2By wrong codewords we mean a valid decoded codeword, that is incor-

rect and result in errors at the receiver.
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96.33.964 LDPC code at an Eb/N0 of 6.5dB was used. It

was observed that pilots mitigated the high failure rate on the

dominant (6,0) source of error for this particular code.

Table 3. The trapping set distribution and incorrectly decoded

codewords of the 96.33.964 LDPC code on a AWGN channel
Source of errors %failures Source of errors %failures

(No pilots) (3 pilots)

(6,0) 66.0 (5,1) 22.8

(5,1) 20.6 (7,1) 21.5

(8,0) 5.1 (6,2) 19.0

(7,1) 3.1 (8,0) 12.7

(4,2) 2.1 (4,2) 7.6

(8,2) 2.1 (8,2) 6.3

(10,0) 1.0 (9,1) 3.7

(11,1) 2.5

(9,3) 1.3

As stated previously the main trade-off was the decrease

in the effective code rate. There is a point where loss in

throughput by adding more pilot bits do not justify the gain in

the BER. However significant gain in BER performance was

achieved by using only a few pilot bits, which resulted in a

negligible reduction in code rate. To ensure that a fair com-

parison was made for the slight differences in code rates, the

standard deviation of the additive white Gaussian noise was

scaled accordingly for the effective code rate and was plotted

on a Eb/N0 axis.

The BER performance in the AWGN channel for the three

codes running with and without pilot bits are shown in figure

4. The maximum number of message passing iterations al-

lowed in the belief propagation was set to 150.
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Fig. 4. Performance of the three LDPC codes with and with-

out the assistance of the pilot bits in an AWGN channel.

The BER performance in a frequency non-selective fading

channel was investigated using the fading model proposed in

[18]. The channel was again scaled for the effective code rate

as in the AWGN case for fair comparison.
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Fig. 5. Performance of the 96.33.964 LDPC in a frequency

non-selective fading channel.

In both experiments shown in figure 4 and 5 it can be seen

that the noise threshold on the codes do not improve, but at

higher SNRs the error floor is visibly lower.

5. CONCLUSIONS

In this work we showed that the error floor could be effec-

tively lowered by the insertion of just a few pilot bits. The pi-

lot bits are used to deactivate paths in the bipartite graph and

providing high reliable likelihood probabilities to the trapping

sets found in the induced sub-graphs. The other advantage of

this approach is that there is no change in the bipartite graph

structure and only requires minimal modification at the en-

coder and decoder. The trade off however is the loss in effec-

tive code rate, which restrains the total number of pilot bits

that can be inserted. We proposed an algorithm that can be

used to determine the position and number of pilot bits and

showed empirical simulations to show that the gain in lower-

ing the error floor is large enough to support the loss in effec-

tive code rate. The method can also be applied to LDPCs with

relative short block lengths (n < 100), but more pilots can be

used with codes using larger block lengths. The method is ef-

fective when used with well designed bipartite graphs as the

number of pilots must be kept to a minimum and will be less

effective for codes with large number of trapping sets.
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