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ABSTRACT channel from the moments of the received signal before using
In this paper, a blind equalizer based on probability dgnsit@ cumulant-based classifier. Instead of estimating the-chan
function (pdf) fitting is proposed. It does not require anynel, an equalizer can be used to reduce the ISI. Among works
prior information about the transmission channel or thetemi in the literature that addressed joint blind equalization a
ted constellation. We also investigate Automatic Modolati AMC, we can mention [7], where S. Barbarossaakt pro-
Classification (AMC) for Quadrature Amplitude Modulation Posed to use multiple equalizing branches, each one adapted
(QAM) based on the pdf of the equalized signal. We propost @ specific constellation. This leads to a complex architec
three new approaches for AMC. The first employs maximuniure system where the filter that provides the smallest cost
likelihood functions (ML) of the modulus of real and imag- function indicates the correct constellation. In [8], thenc
inary parts of the equalized signal. The second is based dHant Modulus Algorithm (CMA) was used as a generic equal-
the lowest quadratic or Bhattacharyya distance between tHger with radius equal ta and the amplitude of the equalized
estimated pdf of the real and imaginary parts of the equalizesignal Characteristic Function (CF) as a technique to recog
output and the theoretical pdfs of M-QAM modulations. Thenize the transmitted modulation. In this paper, we propose
third approach is based on theoretical pdf dictionnaryriear to use a generic Multi-Modulus Stohastic Quadratic Distane
ing. The performance of the identification scheme is investi(MSQD-(p) equalizer that is more efficient than the CMA [9].
gated through simulations. Once the signal is equalized, we identify the transmitted co
stellation via an ML approach or pdf distance based meth-
ods. More specifically, the modulation we detect has the pdf
that best fits, in some sense, that of the equalizer outp@. Th
key idea here is that we assume that after equalization, we
1. INTRODUCTION roughly obtain a Gaussian mixture with modes centered on
constellation points. The Gaussian nature of equalizgrdut
AMC is a high requirement of intelligent systems in both conditional to transmitted symbol has been discussed i [10
military and civil domains. It has been of significant impor- The rest of the paper is organized as follows. In section 2,
tance for cognitive radios when the receiver has no knowline system model and the generic MS@Dequalizer are in-
edge about the channel and transmitted modulation. It is Vefroduced. In section 3, the AMC approaches are detailed. In

useful in adaptive modulation contexts where the tranemitt section 4, simulation results are presented. Conclusifns o
has to adapt the emitted modulation to the transmission coryr work are given in section 5.

ditions. [1] gives a detailed overview on the techniques de-

veloped in the field of AMC. There are two approaches for

AMC [1]. One is based on likelihood functions where the

detected modulation is the one that maximises the liketihoo

among_al_l hypothesis [_2] _[3]. The secon_d app_roach is _baseg_l_ System model

on statistical characteristics of the received signal 4 t

comparison with the theoretical ones [4] [5]. The baseband model of a transmission system with an
Most of these techniques consider an additive white Gausadaptive blind channel equalizer is shown in Fig.1, where

sian noise (AWGN) channel. However, in real scenarios, sigs(n),n € Z, is the transmitted symbol at time, that

nal propagation undergoes multipaths. In this case, lyiers is assumed to be drawn from an M-QAM modulation,

bols Interference (ISI) has to be reduced before proceediny = [ho, k1, ..., hr,—1]7 is the multipath channel finite

to AMC. In [6], Wu etal. proposed to estimate the multipah impulse response with length;,, while (.)7 denotes the

Index Terms— Blind equalization, AMC, ML, Bhat-
tacharyya distance, dictionary learning

2. SYSTEM MODEL AND MSQD- /Pgen
EQUALIZER
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transpose operatds(n) is an additive white Gaussian noise, 2.3. Output Constellations with MSQD+pgc,, (p=1,2)
x(n) is the equalizer inputw = [wg,w1,...,wr, 1]T ) . ) )
is the equalizer impulse response, with length, and We now discuss the performance of the generic equalizers in

y(n) is the equalized signal at time. z(n) andy(n) can terms of ISI. To check the reliability of both equalizers, we
Ln—1 tested them with different multipath channels. The eqealiz

be modeled asc = ; hi — i b and CTCC ) ; X
(n) 2o Ts(n i) + b(n) is initialized with a tap-centered strategy and its lengtket
to 21. The step size was blindly adapted to the transmitted

y(n) = S wa(n — i) = wlx(n), wherex(n) =
[z(n),z(n —1),...,2(n — Lw + 1)]T. ) _ 7 use?
modulation basing on the equalizer input powers = -
b(n) whereP,, is the power ofc. The values ofi§** andus® were
set tou$st = 6 x 1072 andus*t = 4 x 10~3 for MSQD-
s(n) x(n) y(n) 01,4, and MSQD¥#2,.,, respectively after testing the equal-
Transmitter Channelh [— Equalizerw ——— izers with a 16-QAM modulation. The kernel bandwidih,
of K,(x) was updated to control the convergence speed of
fihe equalizer and its residual ISI [9]. Since we have no prior
information about the emitted constellation, we propose to
update the kernel size by

Fig. 1. Baseband model of a transmission system with a
adaptive blind channel equalizer.

on)=aG(n)+>b (5)
2.2. MSQD+pg.,, equalizer

where,
The MSQD+#p algorithm [9] aims at minimizing the distance

_error_between observed an(_:i assumed pdfs for the real aragi(n) =aGn—1)+(1—a) min ((|y(n)|2 _ |8k|2)2).
imaginary parts of the equalizer output. The MS@beost ~
function is given by (6)
. a €]0, 1] is a forgetting factor and andb are fixed empiri-
J(w) = / (ﬁ‘yrlp(z) _ﬁ‘STlp(z))QdZ cally. Ny is the number of points in the largest constellation
-0 that transmitter may emit. In our case, we 3&tto 256. In
figure 2, we show the ISI obtained with the generic equalizers
and the input and output constellations with the MSEH:,,
equalizer for an emitted 16-QAM constellation. We used one
wherey,. = R{y(n)}, v = S{y(n)}. For instantaneous pdf of typical digital radio channel [12].
estimation, we use the Parzen window method [11]: According to figure 2(a), we notice that MSQR;..,, is
more efficient than MSQD¥4,,.,, in terms of ISI. We also no-
. tice that the equalizer tends to output a constellatiomiagie
Pulz) = N, > Kolz—w) ) squarg—1,1] x [—1,1]. We notice the same thing when we
- use another channel like the Proakis A channel [13]. In the
next section we detail on how to calculate the constellation
scaling factor before proceeding to AMC.

+ [w By (2) = Psp(2))°dz (1)

whereu stands fors, |, |s;|?, |y-|P or |y;|P. We letN, =
N, for v = |s,4|? and N, = N, (previous symbols) for
u = |yr;|P. K, is a Gaussian kernel with standard deviation
o. Since, in this paper we do not know the transmitted mod-
ulation, we propose to use the MSQP-criterion adapted
for a 4-QAM modulation to equalize all emitted M-QAM 3.1. ML existing approach based on the pdf of the re-
constellations. Then, expending (1) with this choice Wher%éi\./ed signal [3] (ML)
|sr|P =|s;|’ = 1 and lettingN; = 1 andN, = 1, we get the
following generic cost function for the MSQBpye,.: Assuming we havéd M-QAM modulations to classify. Ac-

cording to this approach, the detected modulation is the one
Tpgen (W) = =Ko (lyr (n)[” = 1) = Ko (Jys(n)[” = 1) + Cst. that maximiseg (y(n)|H,) whereH is the hypothesis to re-

B ceive thej** modulationj = 1,2, ..., K. The pdf ofy(n) is

Thus, the equalizer coefficient weights are adapted by supposed to be a Gaussian mixture with means on the scaled
constellation points and the same variaﬁ#e

3. NEW TECHNIQUES FOR AMC

'LU(n + 1) = ’LU(TL) - vaJge"p ('LU) (4)

M
1 J 1 2
n = e 75 7
1EnsN = 3 15:1 Vo (7)

wherey is a fixed step-size. In the following we focus, as Fly(n)|H;))
in [9], on the casep = 2 andp = 1. ’
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wherel; is the number of different positive real parts of sym-
bols under hypothesH;, sr; are their values ang} are their
probabilities:Zf;1 p; = 1. Note that in modulations such as
32-QAM, weightsp; can be not uniform. The standard de-
viation o; measures the dispersion around the constellation
points under each hypothesis and it is estimated by:

2N
0 : % atons ¢ : 1
o? = — n) —d;(n)|? 10
() ISI for MSQD#2,.,, and MSQD¥1,.,, algorithms J 2an::1|7( )= ()l (10)

scater i scater i whered;(n) is the absolute real value of the constellation

' i i symbols under hypothesks; that is the closest tg(n). The
signal scaling factot; is introduced to take into account the
effect of the generic equalizer rescales the constellatsatis-
cussed at the end of section 20l;.is calculated as a function
of the mean ofy, mest = E{~}, and the positive real parts of
the constellation under the hypothesis.

Mest

Sy ol R}
(b) MSQD+2,., input (c) MSQD+2,.,, output wherep,, is the weight of the mode;;,. Then, we calculate
the logarithm of the likelihood function of a sequencedf
absolute real and imaginary parts 8fconsecutive symbols
and define the decision variableas

2N
D; = argmax Y In f(v(n)|H;) (12)

i p=1

(11)

@;j

Fig. 2. Convergence curves of MSQI2,.,, and MSQD-
014, algorithms for SNR= 20dB.

where); is the number of symbols in constellatign Then

the emitted modulation is decided according to (8) : 3.3. Bhattacharyya (DBch) or quadratic (DQ) pdf dis-

tance based approach for AMC

N
J= afgjfggxz In f(y(n)|H;) ) With this method, the real and imaginary parts of the equal-
oot ized signal are considered:
The calculation ofy; ando; will be detailed in the follow-  I' = [R{y(1)}, ... R{y(N)}, S{y(1)}, .., S{y(N)}]. un-

ing, where we introduce the three approaches that we propolike to the previous approach, here we take the real and imag-
for AMC. inary parts of the equalized symbols to make the Gaussian

mixture assumption and the use of the Gaussian kernel es-
timator, for observed data pdf estimation, more meaningful
The scaling factore; and the standard deviationg are esti-
mated as above except that the decisidy{a) are taken over
With this approach, the detected modulation is the one thdhe entire set of the real parts of the symbels under the
maximises (9) where hypothesigi;. The pdf ofT" is then estimated by a Gaussian

v =Ry, - | Ry, | 3y}, . | S{y(IV)}[]. kernel estimator:

Here, we take the absolute values of real and imaginary parts A 12N +—T(k)

of the equalized signal to increase the number of data and fr(z|H;) = SN ZK”J(T) (13)
decrease the number of modes in order to improve pdf cal- T k=1 J

culation. If we suppose that the pdf gfis a 2D Gaussian wheren, is the bandwidth smoothing parameter such as-
mixture, then the pdfs of{y} and3{y} are 1D Gaussian ( 402

. . ; m)% [14]. The theoretical pdfs are calculated supposing
mixture. Thus, the pdf ofy is a mixture of folded normal thaxlt ideally, after eliminating the ISI by the generic edgs,

3.2. ML approach based on the pdf of the modulus of real
and imaginary parts of the equalized signal (MLprop)

distribution: we get a Gaussian mixture pdf of the noisy emitted constella-
1 1 (v tagsgi)> tion with means the scaled constellation points. The thieore
f(y(n)|Hj)1<n<on = Zpii (e 205 cal pdfs are then given by:
Py oV 2m o
(v(n)—a ;s gi)? f = ~ 1
_ M5 PR [‘.Z'H' = 7ng.'1)*(1'§R Sik (14)
y S ® (o) =3 57 Koo = 03 R )
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Finally, we select the modulation basing on the quadratic oand Bhattacharyya distance approches. Figure 4 shows that

Bhattacharyya distances betweéﬁ(:de) and fr(z|H;)
such as

for the 32-QAM modulation the existing ML approach out-
performs other methods. In figure 5, a 64-QAM modula-
tion is considered. We notice that for low values of SNR,
the Bhattacharyya distance approach outperforms thesther
Quadratic distance approach offers a good compromise be-

5 = argminDB(fp(x|Hj)7fr(x|Hj)) (15)
1<j<K

j = arg_minDQ(fr(w|Hj)7fr($\H7)) (16)
1<j<K

where, Dp(p,q) = —In GZXx/p(w)q(fz:) and Dq(p,q) =
> Ip(x) — q(x)[*.

zeX

3.4. Dictionary learning based approach for AMC (DL)

With this method, we define a dictionadyof theoretical pdfs
of all constellations that the transmitter may enfig(x| H; ).

A is a matrix such as each columrepresents a samples
version of fr(z|H;). The idea of this approach consists in
minimising the following penalized criterion:

'f):argmin(HfF(l’)_A'UHE"')‘H'UHl) 17

Wherefp(rc) is the sampled pdf of the equalized signal that is
estimated by a Gaussian kernel estimator. The minirdum
(17) should be sparse due to thiepenalty term. Ideally, we
obtain a vectow that has only one element equalitand all
the others equal t0. The index; of 1 in ¥ indicates the right
hypothesidd; for the emitted modulation.

4. SIMULATION RESULTS

In this part, we show the results obtained with the complex
channel of section 2.1 [12]. Modulation detection is per-
formed in SNR intervals where modulations usually work.
Figure 3 shows the probability of correct classification)Pc
vs SNR for the four methods detailed in section 3 when a 16-
QAM constellation is transmitted. It shows that the quadrat

Pcc

Pcc

tween performance and detection curve slope.
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Fig. 4. Pcc for 32-QAM modulation.
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Fig. 5. Pcc for 64-QAM modulation.
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Fig. 3. Pcc for 16-QAM modulation.
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We can also notice from these figures that the two ML ap-
proahes have quite same performance and that the increase of
the number of symbols per mode does not provide a signifi-
cant benefit in terms of Pcc. However the proposed method is
less complex since it requires less computations of exponen
tials.

5. CONCLUSION

In this paper, a new joint blind equalization and AMC ap-
proach has been proposed. The key idea of the AMC process
is based on the assumption that the equalized signal can be
approximated as a Gaussian mixture with modes centered at
constellation points. The results show that the quadragic d

and dictionnary learning based methods outperform both Mitance approach is a good compromise.
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