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ABSTRACT

In this paper, a blind equalizer based on probability density
function (pdf) fitting is proposed. It does not require any
prior information about the transmission channel or the emit-
ted constellation. We also investigate Automatic Modulation
Classification (AMC) for Quadrature Amplitude Modulation
(QAM) based on the pdf of the equalized signal. We propose
three new approaches for AMC. The first employs maximum
likelihood functions (ML) of the modulus of real and imag-
inary parts of the equalized signal. The second is based on
the lowest quadratic or Bhattacharyya distance between the
estimated pdf of the real and imaginary parts of the equalizer
output and the theoretical pdfs of M-QAM modulations. The
third approach is based on theoretical pdf dictionnary learn-
ing. The performance of the identification scheme is investi-
gated through simulations.

Index Terms— Blind equalization, AMC, ML, Bhat-
tacharyya distance, dictionary learning

1. INTRODUCTION

AMC is a high requirement of intelligent systems in both
military and civil domains. It has been of significant impor-
tance for cognitive radios when the receiver has no knowl-
edge about the channel and transmitted modulation. It is very
useful in adaptive modulation contexts where the transmitter
has to adapt the emitted modulation to the transmission con-
ditions. [1] gives a detailed overview on the techniques de-
veloped in the field of AMC. There are two approaches for
AMC [1]. One is based on likelihood functions where the
detected modulation is the one that maximises the likelihood
among all hypothesis [2] [3]. The second approach is based
on statistical characteristics of the received signal and their
comparison with the theoretical ones [4] [5].

Most of these techniques consider an additive white Gaus-
sian noise (AWGN) channel. However, in real scenarios, sig-
nal propagation undergoes multipaths. In this case, Intersym-
bols Interference (ISI) has to be reduced before proceeding
to AMC. In [6], Wu etal. proposed to estimate the multipah

channel from the moments of the received signal before using
a cumulant-based classifier. Instead of estimating the chan-
nel, an equalizer can be used to reduce the ISI. Among works
in the literature that addressed joint blind equalization and
AMC, we can mention [7], where S. Barbarossa etal. pro-
posed to use multiple equalizing branches, each one adapted
to a specific constellation. This leads to a complex architec-
ture system where the filter that provides the smallest cost
function indicates the correct constellation. In [8], the Con-
stant Modulus Algorithm (CMA) was used as a generic equal-
izer with radius equal to1 and the amplitude of the equalized
signal Characteristic Function (CF) as a technique to recog-
nize the transmitted modulation. In this paper, we propose
to use a generic Multi-Modulus Stohastic Quadratic Distane
(MSQD-ℓp) equalizer that is more efficient than the CMA [9].
Once the signal is equalized, we identify the transmitted con-
stellation via an ML approach or pdf distance based meth-
ods. More specifically, the modulation we detect has the pdf
that best fits, in some sense, that of the equalizer output. The
key idea here is that we assume that after equalization, we
roughly obtain a Gaussian mixture with modes centered on
constellation points. The Gaussian nature of equalizer output
conditional to transmitted symbol has been discussed in [10].
The rest of the paper is organized as follows. In section 2,
the system model and the generic MSQD-ℓp equalizer are in-
troduced. In section 3, the AMC approaches are detailed. In
section 4, simulation results are presented. Conclusions of
our work are given in section 5.

2. SYSTEM MODEL AND MSQD- ℓPGEN

EQUALIZER

2.1. System model

The baseband model of a transmission system with an
adaptive blind channel equalizer is shown in Fig.1, where
s(n), n ∈ Z, is the transmitted symbol at timen, that
is assumed to be drawn from an M-QAM modulation,
h = [h0, h1, ..., hLh−1]

T is the multipath channel finite
impulse response with lengthLh, while (.)T denotes the
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transpose operator,b(n) is an additive white Gaussian noise,
x(n) is the equalizer input,w = [w0, w1, ..., wLw−1]

T

is the equalizer impulse response, with lengthLw and
y(n) is the equalized signal at timen. x(n) andy(n) can
be modeled asx(n) =

∑Lh−1
i=0 his(n − i) + b(n) and

y(n) =
∑Lw−1

i=0 wix(n − i) = wTx(n), wherex(n) =
[x(n), x(n− 1), ..., x(n− Lw + 1)]T .

Transmitter Channelh +

b(n)

Equalizerw
s(n) x(n) y(n)

Fig. 1. Baseband model of a transmission system with an
adaptive blind channel equalizer.

2.2. MSQD-ℓpgen equalizer

The MSQD-ℓp algorithm [9] aims at minimizing the distance
error between observed and assumed pdfs for the real and
imaginary parts of the equalizer output. The MSQD-ℓp cost
function is given by

J(w) =

∫ ∞

−∞

(p̂|yr|p(z)− p̂|sr |p(z))
2dz

+

∫ ∞

−∞

(p̂|yi|p(z)− p̂|si|p(z))
2dz (1)

whereyr = ℜ{y(n)}, yi = ℑ{y(n)}. For instantaneous pdf
estimation, we use the Parzen window method [11]:

p̂u(z) =
1

Nu

Nu∑

k=1

Kσ(z − uk) (2)

whereu stands for|sr|p, |si|p, |yr|p or |yi|p. We letNu =
Ns for u = |sr,i|p andNu = Ny (previous symbols) for
u = |yr,i|p. Kσ is a Gaussian kernel with standard deviation
σ. Since, in this paper we do not know the transmitted mod-
ulation, we propose to use the MSQD-ℓp criterion adapted
for a 4-QAM modulation to equalize all emitted M-QAM
constellations. Then, expending (1) with this choice where
|sr|p = |si|p = 1 and lettingNs = 1 andNy = 1, we get the
following generic cost function for the MSQD-ℓpgen:

Jpgen
(w) = −Kσ(|yr(n)|p − 1)−Kσ(|yi(n)|p − 1) +Cst.

(3)
Thus, the equalizer coefficient weights are adapted by

w(n+ 1) = w(n) − µ∇wJgenp
(w) (4)

whereµ is a fixed step-size. In the following we focus, as
in [9], on the casesp = 2 andp = 1.

2.3. Output Constellations with MSQD-ℓpgen (p=1,2)

We now discuss the performance of the generic equalizers in
terms of ISI. To check the reliability of both equalizers, we
tested them with different multipath channels. The equalizer
is initialized with a tap-centered strategy and its length is set
to 21. The step size was blindly adapted to the transmitted

modulation basing on the equalizer input power:µ1,2 =
µcst
2,1

Px

wherePx is the power ofx. The values ofµcst
1 andµcst

2 were
set toµcst

1 = 6 × 10−3 andµcst
2 = 4 × 10−3 for MSQD-

ℓ1gen and MSQD-ℓ2gen respectively after testing the equal-
izers with a 16-QAM modulation. The kernel bandwidth,σ,
of Kσ(x) was updated to control the convergence speed of
the equalizer and its residual ISI [9]. Since we have no prior
information about the emitted constellation, we propose to
update the kernel size by

σ(n) = a G(n) + b (5)

where,

G(n) = αG(n− 1)+ (1−α) min
︸︷︷︸

k=1,...,Ns

(
(|y(n)|2 − |sk|2)2

)
.

(6)
α ∈]0, 1[ is a forgetting factor anda andb are fixed empiri-
cally. Ns is the number of points in the largest constellation
that transmitter may emit. In our case, we setNs to 256. In
figure 2, we show the ISI obtained with the generic equalizers
and the input and output constellations with the MSQD-ℓ2gen
equalizer for an emitted 16-QAM constellation. We used one
of typical digital radio channel [12].

According to figure 2(a), we notice that MSQD-ℓ2gen is
more efficient than MSQD-ℓ1gen in terms of ISI. We also no-
tice that the equalizer tends to output a constellation inside the
square[−1, 1]× [−1, 1]. We notice the same thing when we
use another channel like the Proakis A channel [13]. In the
next section we detail on how to calculate the constellation
scaling factor before proceeding to AMC.

3. NEW TECHNIQUES FOR AMC

3.1. ML existing approach based on the pdf of the re-
ceived signal [3] (ML)

Assuming we haveK M-QAM modulations to classify. Ac-
cording to this approach, the detected modulation is the one
that maximisesf(y(n)|Hj) whereHj is the hypothesis to re-
ceive thejth modulationj = 1, 2, ...,K. The pdf ofy(n) is
supposed to be a Gaussian mixture with means on the scaled
constellation points and the same varianceσ2

j :

f(y(n)|Hj))1≤n≤N =
1

Mj

Mj∑

l=1

1√
2πσj

e
−

|y(n)−αjsl|
2

2σ2
j (7)
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(b) MSQD-ℓ2gen input
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(c) MSQD-ℓ2gen output

Fig. 2. Convergence curves of MSQD-ℓ2gen and MSQD-
ℓ1gen algorithms for SNR= 20dB.

whereMj is the number of symbols in constellationj. Then
the emitted modulation is decided according to (8) :

ĵ = argmax
1≤j≤K

N∑

n=1

ln f(y(n)|Hj) (8)

The calculation ofαj andσj will be detailed in the follow-
ing, where we introduce the three approaches that we propose
for AMC.

3.2. ML approach based on the pdf of the modulus of real
and imaginary parts of the equalized signal (MLprop)

With this approach, the detected modulation is the one that
maximises (9) where
γ = [| ℜ{y(1)}|, .., | ℜ{y(N)}|, | ℑ{y(1)}|, .., | ℑ{y(N)}|].
Here, we take the absolute values of real and imaginary parts
of the equalized signal to increase the number of data and
decrease the number of modes in order to improve pdf cal-
culation. If we suppose that the pdf ofy is a 2D Gaussian
mixture, then the pdfs ofℜ{y} andℑ{y} are 1D Gaussian
mixture. Thus, the pdf ofγ is a mixture of folded normal
distribution:

f(γ(n)|Hj)1≤n≤2N =

Ij∑

i=1

pi
1

σj

√
2π

(
e
−

(γ(n)+αjsRi)
2

2σ2
j

+ e
−

(γ(n)−αjsRi)
2

2σ2
j

)
, 1γ(n)≥0 (9)

whereIj is the number of different positive real parts of sym-
bols under hypothesisHj , sRi are their values andpi are their

probabilities:
∑Ij

i=1 pi = 1. Note that in modulations such as
32-QAM, weightspi can be not uniform. The standard de-
viation σj measures the dispersion around the constellation
points under each hypothesis and it is estimated by:

σ2
j =

1

2N

2N∑

n=1

|γ(n)− dj(n)|2 (10)

wheredj(n) is the absolute real value of the constellation
symbols under hypothesisHj that is the closest toγ(n). The
signal scaling factorαj is introduced to take into account the
effect of the generic equalizer rescales the constellationas dis-
cussed at the end of section 2.1.αj is calculated as a function
of the mean ofγ, mest= E{γ}, and the positive real parts of
the constellation under the hypothesisHj :

αj =
mest

∑Mj

k=1 pk| ℜ{sjk}|
(11)

wherepk is the weight of the modesjk. Then, we calculate
the logarithm of the likelihood function of a sequence of2N
absolute real and imaginary parts ofN consecutive symbols
and define the decision variableD as

Dj = argmax
Hj

2N∑

n=1

ln f(γ(n)|Hj) (12)

3.3. Bhattacharyya (DBch) or quadratic (DQ) pdf dis-
tance based approach for AMC

With this method, the real and imaginary parts of the equal-
ized signal are considered:
Γ = [ℜ{y(1)}, ..,ℜ{y(N)},ℑ{y(1)}, ..,ℑ{y(N)}]. un-
like to the previous approach, here we take the real and imag-
inary parts of the equalized symbols to make the Gaussian
mixture assumption and the use of the Gaussian kernel es-
timator, for observed data pdf estimation, more meaningful.
The scaling factorsαj and the standard deviationsσj are esti-
mated as above except that the decisionsdj(n) are taken over
the entire set of the real parts of the symbolssjk under the
hypothesisHj . The pdf ofΓ is then estimated by a Gaussian
kernel estimator:

f̂Γ(x|Hj) =
1

2Nhj

2N∑

k=1

Kσj
(
x− Γ(k)

hj

) (13)

wherehj is the bandwidth smoothing parameter such ashj =

(
4σ2

j

3×2N )
1
5 [14]. The theoretical pdfs are calculated supposing

that ideally, after eliminating the ISI by the generic equalizer,
we get a Gaussian mixture pdf of the noisy emitted constella-
tion with means the scaled constellation points. The theoreti-
cal pdfs are then given by:

fΓ(x|Hj) =

Mj∑

k=1

1

Mj

Kσj
(x− αj ℜ{sjk}) (14)
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Finally, we select the modulation basing on the quadratic or
Bhattacharyya distances between̂fΓ(x|Hj) and fΓ(x|Hj)
such as

ĵ = argmin
1≤j≤K

DB

(
f̂Γ(x|Hj), fΓ(x|Hj)

)
(15)

ĵ = argmin
1≤j≤K

DQ

(
f̂Γ(x|Hj), fΓ(x|Hj)

)
(16)

where,DB(p, q) = − ln
∑

x∈X

√

p(x)q(x) andDQ(p, q) =
∑

x∈X

|p(x)− q(x)|2.

3.4. Dictionary learning based approach for AMC (DL)

With this method, we define a dictionaryA of theoretical pdfs
of all constellations that the transmitter may emit:fΓ(x|Hj).
A is a matrix such as each columnj represents a samples
version offΓ(x|Hj). The idea of this approach consists in
minimising the following penalized criterion:

v̂ = argmin
v

(
||f̂Γ(x)−Av||22 + λ||v||1

)
(17)

wheref̂Γ(x) is the sampled pdf of the equalized signal that is
estimated by a Gaussian kernel estimator. The minimumv̂ in
(17) should be sparse due to theℓ1 penalty term. Ideally, we
obtain a vector̂v that has only one element equal to1 and all
the others equal to0. The indexj of 1 in v̂ indicates the right
hypothesisHj for the emitted modulation.

4. SIMULATION RESULTS

In this part, we show the results obtained with the complex
channel of section 2.1 [12]. Modulation detection is per-
formed in SNR intervals where modulations usually work.
Figure 3 shows the probability of correct classification (Pcc)
vs SNR for the four methods detailed in section 3 when a 16-
QAM constellation is transmitted. It shows that the quadratic
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Fig. 3. Pcc for 16-QAM modulation.

and dictionnary learning based methods outperform both ML

and Bhattacharyya distance approches. Figure 4 shows that
for the 32-QAM modulation the existing ML approach out-
performs other methods. In figure 5, a 64-QAM modula-
tion is considered. We notice that for low values of SNR,
the Bhattacharyya distance approach outperforms the others.
Quadratic distance approach offers a good compromise be-
tween performance and detection curve slope.
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Fig. 4. Pcc for 32-QAM modulation.
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Fig. 5. Pcc for 64-QAM modulation.

We can also notice from these figures that the two ML ap-
proahes have quite same performance and that the increase of
the number of symbols per mode does not provide a signifi-
cant benefit in terms of Pcc. However the proposed method is
less complex since it requires less computations of exponen-
tials.

5. CONCLUSION

In this paper, a new joint blind equalization and AMC ap-
proach has been proposed. The key idea of the AMC process
is based on the assumption that the equalized signal can be
approximated as a Gaussian mixture with modes centered at
constellation points. The results show that the quadratic dis-
tance approach is a good compromise.
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