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ABSTRACT
This paper presents a novel narrowband interference (NBI)
mitigation scheme for SC-FDMA systems. The proposed
scheme exploits the frequency domain sparsity of the un-
known NBI signal and adopts a low complexity Bayesian
sparse recovery procedure. In practice, however, the spar-
sity of the NBI is destroyed by a grid mismatch between NBI
sources and SC-FDMA system. Towards this end, an accurate
grid mismatch model is presented and a sparsifying transform
is utilized to restore the sparsity of the unknown signal. Nu-
merical results are presented that depict the suitability of the
proposed scheme for NBI mitigation.

Index Terms— NBI mitigation, Bayesian sparse recov-
ery, SC-FDMA, compressed sensing, LTE.

1. INTRODUCTION
Single carrier - frequency division multiple access (SC-
FDMA) has been adopted as the uplink multiple access
scheme in 3GPP long term evolution, due to its robustness
against multipath fading and low peak-to-average power ra-
tio [1]. However, the wideband nature of SC-FDMA makes
it highly susceptible to narrowband interference (NBI). The
NBI sources include other devices operating in the same
spectrum (e.g., cordless phones, garage openers etc.) and
communication systems operating in a cognitive manner. At
high signal-to-interference ratio (SIR), coding can be used to
mitigate the errors introduced by the NBI. However, at low
SIR levels, interference begins to overwhelm the code and
necessitates a receiver that is able to directly deal with it.

In this work, we exploit the sparse nature of the NBI to
recover it using a low complexity Bayesian sparse reconstruc-
tion procedure. Specifically, we utilize the recently proposed
support agnostic Bayesian matching pursuit (SABMP) [2] al-
gorithm for NBI recovery. The SABMP algorithm uses the
statistics of additive noise (which is assumed Gaussian), but
is agnostic to the distribution of the NBI - which is usually not
known at the victim receiver. Further, the practical scenario
of grid mismatch is also considered and the spreading effect
is more realistically modelled by allowing the various NBI
sources to have independent grid offsets. It is noted that the
spectral spillover caused by the grid mismatch destroys the
sparsity of the unknown signal. Hence, in this work, we uti-
lize the Haar transform as a sparsifying transform to sparsify
the unknown NBI signal.

The problem of NBI mitigation in OFDMA is the dual
of impulsive noise cancellation problem [3] and is relatively
well studied (see e.g., [4–6]). However, techniques devel-
oped for OFDMA do not readily apply to SC-FDMA as the

two systems are fundamentally different. The literature ad-
dressing the problem of NBI specifically for SC-FDMA is
seriously limited and only a handful of articles are available
(e.g., [7, 8]). Furthermore, these articles address specific
cases (e.g., single NBI sources that don’t change much over
multiple symbols) under idealistic assumptions (e.g., known
power and location). In this relation, the proposed scheme
is distinguishable from existing literature as it aims at a gen-
eral scenario of time-varying (changing completely from
symbol-to-symbol) multiple NBI sources with independent
grid offsets where no knowledge of the NBI location or power
is assumed. Though [6] and [9] exploit the sparsity of un-
known NBI for its mitigation, their work targets single-user
zero padded - OFDM systems, whereas the proposed scheme
is tailor made for multi-user SC-FDMA systems. Further,
the proposed scheme is low complexity (unlike [9] that opted
for `1-optimization), and doesn’t require the statistics of the
unknown (unlike [6] that assumes Gaussian prior on the un-
known and availability of second order statistics).

The remainder of the paper is organized as follows: Sec-
tion 2 introduces the data model for NBI impaired SC-FDMA
transmission. To mitigate the NBI, a Bayesian sparse recov-
ery procedure is presented in Section 3. Simulation results are
presented in Section 4 and Section 5 concludes the paper.

We set the stage by introducing our notation. Scalars, time
domain vectors, frequency domain vectors, and matrices are
represented respectively by italic letters (e.g., N ), Bold-face
lower-case letters (e.g., x), bold-face upper-case calligraphic
letters (e.g., X ), and Bold-face upper-case letters (e.g., X).
The symbols x̂, xH, x(i), and x∗(i) represent the estimate,
hermitian (conjugate transpose), ith entry, and the conjugated
ith entry of the vector x. The cardinality of a set T will be
denoted by |T |. Further, E[·], I, and 0 denote the expectation
operator, identity matrix, and the zero vector, respectively.

2. SC-FDMA AND NBI MODEL
Consider an uplink SC-FDMA system with U users. In
such a system, the uth user converts the incoming high
rate bit stream into P parallel streams. These low rate
bit streams are modulated using a Q-ary QAM alphabet
{A0,A1, · · · ,AQ−1}, resulting in a P dimensional data vec-
tor xu. The data xu is Fourier pre-coded using the P × P
discrete Fourier matrix FP to lower the PAPR of the trans-
mission signal. The (k, l)th element of FP is given by

fP (k, l)=P−1/2 exp

(
−2πkl

P

)
, k, l ∈ 0, 1, · · ·, P−1. (1)

The pre-coded data FPxu is now mapped to the sub-carriers
designated for the uth user. In this work, we use interleaved
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resource allocation due to the robustness of this setting to fre-
quency selective fading [1]. For the uth user, the data FPxu
is mapped to the designated sub-carriers by using an N×P
(N = PU ) resource allocation matrix Mu. For interleaved
assignment, the (k, l)th element of Mu is given by

mu(k, l) =

{
1, k = u+ Ul, 0 ≤ l ≤ P − 1,

0, otherwise.
(2)

This makes the resource allocation matrices belonging to
different users orthonormal, i.e., MH

i Mj = IP , when i =
j and 0P , when i 6= j. Now, the N dimensional inverse
DFT (IDFT) operation (i.e., FH

N ) on X u = MuFPxu re-
sults in the desired time domain transmission signal. Af-
ter adding the cyclic prefix, the time domain signal is fed
to a finite impulse response channel of length Nc, hu =
[h∗u(0), h∗u(1), · · · , h∗u(Nc − 1)]H. The channel tap coeffi-
cients form a zero mean, complex Gaussian, i.i.d collection.
After removing the cyclic prefixes at the base-station (BS),
the received time domain signal (in the absence of NBI) can
be written as1

y =

U−1∑
u=0

HuF
H
NX u + z, (3)

where Hu is the circulant channel matrix for the uth user
and z is the additive white Gaussian noise (AWGN) with
z ∼ CN (0, σ2

zIN ). The circulant nature of Hu allows
us to diagonalize it using the DFT matrix FN and write
Hu = FH

NΛuFN , where Λu is a diagonal matrix with chan-
nel frequency response on its diagonal. In this work, the
channel impulse response is assumed known at the receiver
and hence Hu and Λu are readily available. The frequency
domain received data vector Y is now given by

Y = FNy =

U−1∑
u=0

ΛuX u + Z, (4)

where Λu = FNHuF
H
N and Z = FNz. At the receiver,

the data vector xu can be estimated using the minimum mean
square error - frequency domain equalization (MMSE-FDE)
[11] to obtain the following estimate

x̂u = RxAH
(
ARxAH + σ2

zI
)−1

MH
uY , (5)

where Rx , E[xux
H
u ] = σ2

xI is the auto-correlation matrix
of the data vector and A , MH

uΛuMuFP . As MMSE esti-
mator is linear in Y , we can simply write x̂u = EuY , where
Eu = σ2

xA
H
(
σ2
xAAH + σ2

zI
)−1

MH
u . Using the definition

of Eu, we can write an approximate equality x̂u = xu+EuZ ,
which is true because EuΛuMuFP ≈ I (the approximation
tends to equality as σ2

z → 0).
In the following subsection, we explain how the NBI af-

fects the SC-FDMA system.

2.1. The NBI Impaired SC-FDMA
The received SC-FDMA signal might be impaired by a single
or multiple time-variant NBI sources. Let IL be an L di-
mensional vector representing the active NBI sources. Using
IL, we obtain anN dimensional NBI signal I = FN F̄H

NIL,
where F̄H

N is an N × L partial IDFT matrix containing the
columns corresponding to the frequencies of active NBI
sources. Here, it is important to understand that channels
between the NBI sources and the BS are absorbed into IL.

1Bayesian NBI mitigation for SIMO systems is addressed in [10].

In other words, we can say that IL = ΛIL
ĪL, where ΛIL

is a diagonal L×L matrix containing the frequency domain
channel gains between the interference sources and the re-
ceiver antennas, where ĪL represents the actual interference
sources. Hence, a simple addition of I in (4) will yield
the NBI impaired SC-FDMA received signal. This received
signal is given as

Y =

U−1∑
u=0

ΛuX u + I + Z. (6)

In practice, the NBI sources may have a grid offset with
the SC-FDMA system, causing the energy of the NBI to spill
over all tones. A spreading matrix Hfo = FNΛfoF

H
N is

commonly used to model the grid offset between the NBI sig-
nal and the system under consideration [6, 9]. The diagonal
matrix Λfo is defined as Λfo , diag(1, exp( 2πα(1)N ), · · · ,
exp( 2πα(N−1)N )), where α is a random number uniformly
distributed over the interval [− 1

2 ,
1
2 ]. A fundamental limita-

tion of this model is its inability to assume independent grid
offsets for multiple NBI sources. To overcome this limitation,
we define the spread NBI signal as

I = FN F̄H
conIL, (7)

where F̄con is the L × N continuous DFT matrix, with
(fl, k)th entry

F̄con,(fl,k) =N−1/2exp

(
−2πflk

N

)
,
l ∈0, 1, · · · , L− 1,

k ∈0, 1, · · · , N − 1.
(8)

As the normalized frequencies fl/N ∈ [0, 1) are drawn inde-
pendently, they emulate independent grid offsets for different
NBI sources. Recently, Tang et al. used a similar modelling
approach in an attempt to estimate continuous frequencies and
amplitudes of a mixture of complex sinusoids [12].

The estimate of the transmitted signal xu in NBI free case
(i.e., (4)) is obtained using (5). However, following the same
estimation procedure for NBI impaired system (i.e., (6)) will
yield

x̂u = xu + Eu(I + Z), (9)
which is not a reliable estimate of xu due to the presence of I .
Further, note that I perturbs xu through an IDFT operation
(as evident by giving a closer look to the construction of Eu),
hence, even in the optimistic case (i.e., a single NBI source
with no grid offset) all data points are corrupted by the NBI.
In low SIR scenarios, the interference might be strong enough
to take a majority of data symbols out of their correct decision
regions, resulting in an intolerably high BER. Thus, our task
is the estimation/mitigation of I , which we pursue using a
Bayesian sparse recovery framework.

3. BAYESIAN SPARSE RECOVERY OF THE NBI

To reconstruct the unknown NBI signal, we keep a randomly
chosen subset of the vector xu data free and index this subset
using Tu. To extract the portion of the received signal corre-
sponding to the reserved tones, let us define a |Tu|×P binary
selection matrix STu . The selection matrix STu has one entry
equal to 1 per row, corresponding to the location of a reserved
data point (with all other entries being zero). Now we proceed
by projecting x̂u (defined in (9)) onto the subspace spanned
by the reserved points, i.e.,
STu x̂u︸ ︷︷ ︸
x′
u,T

=STuxu+STuEu︸ ︷︷ ︸
Ψu,T

(I+Z)︸ ︷︷ ︸
I ′

,⇒ x′u,T =Ψu,T I ′, (10)
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where STuxu = 0. At this stage, we drop the subscript u for
notational convenience and simply write x′T = ΨT I ′. To re-
cover I , the above under-determined system of equations can
be solved using any compressed sensing (CS) reconstruction
algorithm (e.g., [13–17]). In this work, we follow a Bayesian
sparse recovery framework for the estimation of the unknown
NBI signal. However, Bayesian sparse NBI recovery poses
a couple of fundamental challenges: i) Common Bayesian
approaches assume a known prior on the active elements of
the unknown signal (see e.g., [14, 18]), whereas, we may not
know the distribution of the NBI and ii) The sparsity of the
NBI signal is destroyed due to the gird offset, These prob-
lems are addressed below.

Prior on I ′: Common Bayesian schemes assume a
known prior on the unknown signal, e.g., [18] assumes a
Laplacian prior. However, in practice i) we may not know
the distribution of I and ii) even if we did know the distri-
bution, it might be difficult to estimate its parameters (i.e.,
moments). Towards this end, let us recall that IL represents
the joint channel-NBI source i.e., IL = ΛIL

ĪL. Hence,
if we assume circularly symmetric complex Gaussian prior
for both ĪL and ΛNBI , then the entries of IL are formed
by the product of two independent complex normal random
variables i.e., complex Double Gaussian [19]. Hence, in this
case, though the distribution is known, its parameter esti-
mation is relatively difficult. Further, if non-Gaussianity is
assumed on the NBI-BS channel model, it may yield more
complex statistical behaviour for IL. As we are interested
in recovering I , we note that for no grid offset, the active
elements of I will assume the distribution of IL. However,
grid offset will make the statistical characterization of I even
more challenging. For these reasons, a suitable reconstruction
scheme would be able to work regardless of the distribution
of unknown signal and whether this distribution is known or
not. To this end, note that SABMP algorithm [2] is agnostic
to the distribution of active taps - but acknowledges the spar-
sity of the unknown vector and Gaussianity of the additive
noise. Further, SABMP has been shown to outperform many
algorithms [2], and is successfully applied in several applica-
tions (e.g., [20,21]). Hence, in this work we employ SABMP
as a sparse NBI recovery scheme.

Sparsifying I ′: A fundamental requirement of sub-
Nyquist sampling based reconstruction (as pursued in this
work) is the sparsity of the unknown signal. Though there
are only a few active NBI sources, in practice, the non-
orthogonality of these sources to the SC-FDMA grid de-
stroys the frequency domain sparsity of the unknown signal.
Two strategies are followed in literature to tackle the grid
offset problem. One possibility is to estimate the gird off-
set (see e.g., [22, 23]), however, estimation is complicated
as offset is a highly nonlinear function of the observations
Y and different NBI sources assume independent grid off-
sets. The second approach is more mainstream and directly
deals with an NBI signal experiencing energy spill-over
(due to the grid mismatch) by windowing [9]. A window-
ing matrix function Hwin = FNΛwFH

N applied to the
received signal sparsifies the unknown vector I ′. Here,
Λw, diag(w(0), w(1), · · · , w(N − 1)) and w(n) is the nth
sample of the window function. It is a common practice to
window the received time domain signal before taking the
DFT. However, since the sole purpose of introducing win-
dowing is enhancing the sparsity of I ′, we can postpone its
inclusion till NBI reconstruction. To incorporate the window-

ing matrix function at NBI recovery stage we can re-write
(10) as

x′T = ΨTH−1winHwinI ′, (11)
where we assume the non-singularity of Hwin. Now, if
we sense via ΨTH−1win, we will be reconstructing HwinI ′,
which is more sparse compared to I ′. As the formulation
(11) requires only the non-singularity of Hwin, we are mo-
tivated to look for other possibilities towards sparsifying
I ′. Our drive to seek a better replacement for Hwin also
stems from the fact that Hwin is not a unitary matrix and
hence lacks a very desirable property pertaining to dictionary
design in standard CS [24]. In this relation, any transfor-
mation matrix that is; i) linear, ii) non-singular, iii) unitary
and iv) a good choice for sparsifying NBI, will serve the
purpose. While choosing a sparsifying transform for NBI re-
construction, though properties i), ii) and iii) will be promptly
evident, property iv) needs some consideration. To this end,
note that unlike sparse signals, compressible signals (such
as the NBI under grid offset) cannot be compared using
`0 norm. As ‖I ′‖`0 = ‖HwinI ′‖`0 = N , counting the
number of active elements will yield a false conclusion that
windowing did not enhance the sparsity of the unknown.
As practical signals are seldom sparse, sparsity measures
other than ‖ · ‖`0 e.g., Gini index (GI) [25] and numerical
sparsity [26] have been put forth to compare compressible
signals. In this work, we use GI (a normalized measure
of sparsity) to compare sparsifying transforms. Consider a
vector I ′ = [I ′(0), I ′(1), · · · , I ′(N − 1)], with its elements
re-ordered, such that |I ′(0)| < |I ′(1)| <, · · · , < |I ′(N−1)|.
The GI is then defined as

GI(I ′) = 1− 2

N−1∑
k=0

|I ′(k)|
‖I ′‖`1

(
N − k − 1

2

N

)
, (12)

where ‖·‖`1 represents the `1 norm. One advantage of GI over
the conventional norm measures is that it is normalized, and
assumes values between 0 and 1 for any vector. Further, it is 0
for the least sparse signal (all coefficients have equal energy)
and 1 for the most sparse signal (i.e., all energy concentrated
in one coefficient) (see [25] for details). Our numerical find-
ings based on GI suggest that (among the tested transforms)
Haar wavelet transform [27] maximizes the GI and also satis-
fies properties i)-iii). As the discussion on all the tested trans-
forms will take us too far afield, we will confine our attention
to the sparsifying ability of the Haar transform in comparison
with windowing. The unitary Haar transform Hhaar can be
applied to I ′ in a manner identical to (11), i.e.,

x′T = ΨTHH
haarHhaarI ′, (13)

where HH
haar = H−1haar.

4. SIMULATION RESULTS

A 512 sub-carrier SC-FDMA system is simulated, with 2 ac-
tive users. The channel delay spread is quarter the symbol
duration i.e., Nc = N/4 and 16-QAM modulation is used.
The NBI vector IL is obtained from complex normal dis-
tribution with SIR=−10dB. Two experiments are conducted
that demonstrate the ability of the proposed scheme to suc-
cessfully recover the NBI in comparison with `1-optimization
based NBI recovery [9]. In the first experiment no grid off-
set is assumed, whereas, the second experiment assumes the
realistic grid mismatch case.
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Reconstruction with No Grid Offset: In this experi-
ment, the number of active NBI sources vary in each sym-
bol with a maximum of four active NBI sources per sym-
bol. The locations of the active NBI sources also vary, how-
ever, all NBI sources are restricted to fall on the grid. Fig. 1
presents the BER results vs energy per bit (Eb/N0) with 64
reserved tones per user (this corresponds to a sub-sampling
rate |T |N = 64

256 = 1
4 ). The results depict the ability of the

proposed scheme to effectively recover the NBI. Note that
there is no visual difference between the reconstruction accu-
racy of the (proposed) scheme and (`1-optimization). How-
ever, the subgraph depicting the average run-time of the (pro-
posed) scheme shows that (`1-optimization) incurs high com-
putational complexity as compared to (proposed) by almost
two orders of magnitude.

Reconstruction under Grid Offset: In this experiment,
first we compare the Haar transform and windowing (Ham-
ming [9]) for their sparsifying ability. The NBI sources are
generated with independent grid offset according to (7). The
GI is calculated (as a function of active NBI sources) and
averaged over 1000 independent runs for I ′ and its two
transformed counterparts (HwinI ′ and HhaarI ′). From the
results (in Fig. 2), we observe that for a small number of
active NBI sources (i.e., ≤ 4) the Haar transform has better
sparsifying ability than windowing. Further, the BER per-
formance of proposed SABMP reconstruction scheme for
the cases of spread signal (spread), windowing (window)
and Haar transform (Haar) is shown in Fig. 3 and is com-
pared with (`1-optimization) (as a function of Eb/N0). The
`1-optimization based NBI recovery is performed using win-
dowing sparsity restoration [9]. A maximum number of four
active NBI sources with varying locations and independent
frequency offsets per symbol are assumed with sub-sampling
rate 1/4. The lower BER for (Haar) transform (in Fig. 3)
supports the conclusion that Haar transform possesses better
sparsifying characteristics. The low BER is expected as in
sparse reconstruction, a scheme better able to sparsify I ′
will yield better reconstruction accuracy and hence a lower
BER. Further, it is noticed that with grid offset, windowed
(`1-optimization) has an inferior performance to the proposed
NBI reconstruction scheme. This behavior is expected, as the
performance of `1-optimization deteriorates with an increase
in the sparsity rate.

5. CONCLUSION
In this paper, we have developed a framework for NBI miti-
gation in SC-FDMA systems. The proposed approach utilizes
the sparsity (or compressibility) of the NBI signal and makes
use of a Bayesian algorithm (i.e., SABMP) for the estimation
and cancellation of NBI. The SABMP algorithm has several
advantages over other sparse reconstruction algorithms, in-
cluding i) low estimation error, ii) low complexity, and iii)
ambivalence to the distribution of the sparse vector. Further,
to address the practical issue of grid offset (that destroys the
sparsity of the unknown NBI signal), unitary Haar wavelet
transform is utilized. Numerical results verify improved per-
formance of Haar transform based sparse NBI recovery using
SABMP.
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