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ABSTRACT

Frequency-shift keying (FSK) is an orthogonal modulation

technique that is primarily used in relatively low-rate com-

munication systems that operate in the power-limited regime.

Optimal noncoherent detection of FSK takes the form of

sequence detection and has exponential complexity in the

sequence length when implemented through an exhaustive

search among all possible sequences. In this work, for the first

time in the literature, we present an algorithm that performs

generalized-likelihood-ratio-test (GLRT) optimal noncoher-

ent sequence detection of orthogonally modulated signals

in flat fading with log-linear complexity in the sequence

length. Moreover, for Rayleigh fading channels, the proposed

algorithm is equivalent to the maximum-likelihood (ML)

noncoherent sequence detector. Finally, we show that our

algorithm also solves efficiently the optimal noncoherent se-

quence detection problem in contemporary radio-frequency-

identification (RFID) systems.

1. INTRODUCTION

FSK is an orthogonal modulation technique that is primarily

used (or considered for future use) in relatively low-rate com-

munication systems that operate in the power-limited regime.

Such systems include underwater communications [1]-[6],

power-line communications [7], RFID [8]-[10], and cooper-

ative communications [11]-[14]. The common characteristic

of the above applications is the low power at which the sys-

tem operates, making channel estimation intractable. Instead,

noncoherent (or blind) detection is usually preferable for such

scenaria [7], [9], [12], [14]. Certainly, due to channel-induced

memory, optimal noncoherent detection of FSK takes the

form of sequence detection [15]-[23] and offers significant

performance gains in comparison with conventional single-

symbol noncoherent detection [24], at the cost of exponential

complexity in the sequence length [14], [18].

In this work, for the first time in the literature, we present

an algorithm that performs optimal noncoherent sequence de-
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tection of orthogonally modulated signals in flat fading with

log-linear complexity in the sequence length. Specifically, the

proposed algorithm performs optimal GLRT sequence detec-

tion. Moreover, for Rayleigh fading channels, it is equivalent

to the ML noncoherent sequence detector. As a final note,

we show that noncoherent sequence detection of FM0 sig-

nals1 is equivalent to noncoherent sequence detection of bi-

nary FSK (BFSK). Hence, our algorithm solves efficiently the

optimal sequence detection problem in contemporary RFID

systems. Our algorithm is based on principles that have been

used for polynomial-complexity optimization in [31]-[33] and

complements efficient noncoherent detection techniques that

have been developed for phase-shift-keying [31] and pulse-

amplitude-modulation [33]-[35] signals.

2. FREQUENCY-SHIFT KEYING

2.1. Signal Model and Optimal Sequence Detection

M -ary FSK (MFSK) utilizes M sub-carrier frequencies to

modulate the information symbol x ∈ M , {1, 2, . . . ,M}.2

Since it is an orthogonal modulation method, the discrete

baseband equivalent received signal for a single symbol du-

ration is written as

r =
√
Phex + n (1)

where P denotes signal power, h is a complex channel co-

efficient,3 n ∼ CN (0M , σ2
wIM ) denotes additive Gaussian

noise, and ex = [0 . . . 0
︸ ︷︷ ︸

x−1

1 0 . . . 0
︸ ︷︷ ︸

M−x

]T is the xth column of

the M × M identity matrix IM . For notation simplicity, we

also define set IM , {e1, . . . , eM}.
In this work, we consider transmission of an N × 1 sym-

bol sequence x = [x1, . . . , xN ]T ∈ MN . If y1, . . . ,yN are

the corresponding received vectors (per information symbol)

given by (1), then we may form the received vector for the

1FM0 is a line coding technique that is utilized by the current RFID stan-

dards [25]-[30].
2We present our developments in the context of FSK signals. However,

we note that they hold for any orthogonally modulated signaling technique.
3We assume that the channel coefficient is the same over each frequency

(flat fading).
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entire sequence x as y ,

[
y1

...
yN

]

=
√
Ph

[ ex1

...
exN

]

︸ ︷︷ ︸
s

+w, where

w ∼ CN (0, σ2
wIMN ).

We assume that the channel coefficient h is not available.

For Rayleigh fading (i.e., h ∼ CN (0, σ2
h)), the ML nonco-

herent detector (which maximizes the conditional probability

density function of y given s) can be shown to take the form4

ŝML = argmax
s∈IN

M

∣
∣sTy

∣
∣
2

(2)

⇔ x̂ML = argmax
x∈MN

∣
∣y1[x1] + . . .+ yN [xN ]

∣
∣. (3)

For non-Rayleigh or unknown channel distribution, if we con-

sider joint channel estimation and data detection, i.e., GLRT

sequence detection [34], then5

ŝGLRT = argmin
s∈IN

M

{

min
h∈C

∥
∥
∥y −

√
Phs

∥
∥
∥

2
}

= argmax
s∈IN

M

∣
∣sTy

∣
∣ .

(4)

Hence, the ML optimization problem in (2) and the GLRT op-

timization problem in (4) are equivalent. In the following, we

present an algorithm that solves the above problems with log-

linear complexity O(N logN), as opposed to the exponential

complexity O(MN ) of the conventional exhaustive search.

2.2. Log-linear-complexity Optimal Detection

First, we present the proposed algorithm for BFSK (M = 2).
Then, we generalize to any M ≥ 2. In either case, we utilize
the fact that

max
x∈MN

∣

∣y1[x1] + . . .+ yN [xN ]
∣

∣

= max
x∈MN

max
φ∈[0,2π)

ℜ

{

e
−jφ (y1[x1] + . . .+ yN [xN ])

}

= max
φ∈[0,2π)

max
x∈MN

{

ℜ

{

e
−jφ

y1[x1]
}

+ . . .+ ℜ

{

e
−jφ

yN [xN ]
}}

.

(5)

2.2.1. Optimal algorithm for M = 2

For a given point φ ∈ [0, 2π), the innermost maximization in

(5) is separable for each xn and, hence, splits into indepen-

dent maximizations for any n = 1 . . . , N , as

x̂n = argmax
xn∈{1,2}

ℜ
{
e−jφyn[xn]

}

⇔ ℜ
{
e−jφyn[1]

} x̂n=1

≷
x̂n=2

ℜ
{
e−jφyn[2]

}

⇔ cos
(
φ− yn[1]− yn[2]

) x̂n=1

≷
x̂n=2

0 (6)

4We use the notation yn =





yn[1]

.

.

.
yn[M]



 to represent the M×1 vector yn.

5We recall that GLRT detection is independent of channel distribution,

hence h does not have to be complex Gaussian as in the ML detection in (2).

where x̂n is the decision on the information symbol xn at the

nth time slot and z denotes the angle of the complex number

z.

According to (6), as φ scans [0, 2π), the decision x̂n

changes only when φ = ±π

2
+ yn[1]− yn[2] (mod 2π)

︸ ︷︷ ︸

φ
(1)
n ,φ

(2)
n

.

Hence, the sequence decision x̂ = [x̂1, x̂2, . . . , x̂N ] changes

only at φ
(1)
1 , φ

(2)
1 , φ

(1)
2 , φ

(2)
2 , . . . , φ

(1)
N , φ

(2)
N . If we sort the

above phases, i.e., (θ1, θ2, . . . , θ2N ) = sort(φ
(1)
1 , φ

(2)
1 , φ

(1)
2 ,

φ
(2)
2 , . . . , φ

(1)
N , φ

(2)
N ), then the decision x̂ remains constant

in each one of the 2N intervals C0 = (0, θ1) , C1 =
(θ1, θ2) , . . . , C2N−1 = (θ2N−1, θ2N ). Note that we ig-

nore (θ2N , 2π) because it gives the same sequence x̂ with

C0. Our objective is the identification of the 2N sequences

x̂0, x̂1, . . . , x̂2N−1 (that correspond to the 2N intervals

C0, C1, . . . , C2N−1), one of which is x̂ML.

We observe that the candidate sequence that we obtain at

any φ ∈ [0, π) is the complement of the candidate sequence

that we obtain at φ + π.6 Hence, it suffices to identify the N

candidate sequences at [0, θN) and, then, consider also their

complements,7 i.e.,

x̂n+N = x̂c
n, n = 0, 1, . . . , N − 1. (7)

We also observe that sequences that correspond to adjacent

intervals differ in exactly one element. For example, x̂0 and

x̂1 differ in the element that produced θ1. Hence, we propose

to (i) identify x̂0 at φ = 0 through (6), (ii) compute x̂c
0, and

(iii) successively visit the angles θ1, . . . , θN−1 to produce the

remaining sequences (and their complements), evaluate their

metric in (3), and track the best sequence and its metric. Note

that, at each point θn, the new sequence x̂n is produced by

changing only one element of the preceding sequence x̂n−1.

The metric of x̂n is obtained by simply updating the metric of

x̂n−1 with respect to the single element that changed at θn.

The pseudo-code of our proposed BFSK noncoherent

ML/GLRT sequence detection algorithm is illustrated in Fig.

1. The overall complexity of the proposed algorithm is dom-

inated by the computational cost of phase sorting at line 4
which is on the order of O(N logN).

2.2.2. Optimal algorithm for M > 2

If we fix φ ∈ [0, 2π), then the innermost maximization in (5)

splits into independent maximizations, ∀ n = 1, . . . , N , as

x̂n = argmax
x∈M

ℜ
{
e−jφyn[x]

}
. (8)

We observe that, for fixed φ, (8) is solved by selecting the

largest value of ℜ{e−jφyn}. As φ scans [0, 2π), the decision

6Since the constellation is binary, we use the term “complementary se-

quences” to indicate sequences x and y that are related by y
c = x (i.e.,

ycn = xn, n = 1, 2, . . . , N ) where 1c = 2 and 2c = 1.
7Note that we ignore [θN , π) because it corresponds to the complemen-

tary sequence x̂
c
0.
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Algorithm 1 Optimal Noncoherent Binary Orthogonal Detection in Time
O(N logN)

Input: y1, y2, . . . ,yN

1: for n = 1 : N do

2: φn := π

2
+ yn[1]− yn[2] (mod π)

3: end for

4: (θ1, θ2, . . . , θN ) := sort (φ1, φ2, . . . , φN )
5: for n = 1 : N do

6: x̂n := argmax(ℜ{yn[1]} ,ℜ{yn[2]})
7: end for

8: value x̂ := y1[x̂1] + y2[x̂2] + . . .+ yN [x̂N ]
9: value x̂c := y1[x̂

c

1
] + y2[x̂

c

2
] + . . .+ yN [x̂c

N
]

10: [ML value, x̂best] := max(|value x̂|, |value x̂c|)
11: x̂ML := x̂best

12: for i = 1 : N − 1 do

13: let yn be the received vector for which θi was obtained
14: value x̂ := value x̂− yn[x̂n] + yn[x̂

c

n
]

15: value x̂c := value x̂c − yn[x̂
c

n
] + yn[x̂n]

16: x̂n = x̂c

n

17: [best value, x̂best] := max(|value x̂|, |value x̂c|)
18: if best value > ML value then

19: ML value := best value

20: x̂ML := x̂best

21: end if

22: end for

Output: x̂ML

Fig. 1. ML/GLRT sequence detection algorithm for BFSK and

FM0.

x̂n may change only when, for some k, l ∈ M with k 6= l,

ℜ{e−jφyn[k]} = ℜ{e−jφyn[l]} ⇔ ℜ{e−jφ(yn[k] − yn[l])}
= 0 ⇔ cos

(
φ− yn[k]− yn[l]

)
= 0, i.e.,

φ = ±π

2
+ yn[k]− yn[l] (mod 2π)

︸ ︷︷ ︸

φ
(1)

n,{k,l}
,φ

(2)

n,{k,l}

. (9)

We note that there exist NM(M − 1) such φ’s. However, it

turns out that the decision x̂ changes at only (at most) 2MN

points. This is stated in the following proposition (the proof

is omitted due to lack of space).

Proposition 1 For M > 2, there exist at most 2MN changes

of the sequence decision x̂ in the interval [0, 2π). �

The above proposition states that, for MFSK, it suffices to

check at most 2MN phases where the sequence decision

changes. When the phases have been determined, the remain-

ing process resembles to the algorithm of case M = 2. The

complete optimal algorithm for MFSK sequence detection is

depicted in Fig. 2. The overall complexity of the algorithm

is dominated by the sorting operation at line 28 and, thus, the

worst-case complexity of the algorithm is O(N logN).

3. FM0 LINE CODING

FM0 is a line-coding technique that is used in the current

RFID communications standard. In FM0, the signal level

takes two possible values; namely, 1 and 0. Specifically, it

changes at the middle of the bit period for bit “∅,” whereas

for bit “1” the level remains constant. Moreover, it always

Algorithm 2 Optimal Noncoherent M -ary Orthogonal Detection in time
O(N logN)

Input: y1, y2, . . . ,yN

1: for n = 1 : N do

2: x̂n := argmax(ℜ{yn[1]} ,ℜ{yn[2]} , . . . ,ℜ{yn[M ]})
3: end for

4: x̂φ ! [x̂φ
1 , x̂

φ
2 , . . . , x̂

φ
N ] := x̂

5: for n = 1 : N do

6: for k, l ∈ M×M such that k $= l do

7: φ
(1)
n,{k,l} := +π

2 + yn[k]− yn[l] (mod 2π)

8: φ
(2)
n,{k,l} := −π

2 + yn[k]− yn[l] (mod 2π)

9: end for

10: end for

11: for n = 1 : N do

12: φn := sort
(

φ
(1)
n,{1,2}, φ

(2)
n,{1,2}, φ

(1)
n,{1,3}, φ

(2)
n,{1,3}, . . . , φ

(1)
n,{M−1,M}, φ

(2)
n,{M−1,M}

)

13: end for

14: φ := []
15: for n = 1 : N do

16: for j = 1 : M(M − 1) do
17: get the pair {k, l} associated with φn[j] from line 12
18: if x̂φ

n ∈ {k, l} then

19: if x̂φ
n = k then

20: x̂φ
n := l

21: else

22: x̂φ
n := k

23: end if

24: φ := [φ, φn[j]]
25: end if

26: end for

27: end for

28: θ := sort (φ)
29: x̂ML := x̂

30: value x̂ := y1[x̂1] + y2[x̂2] + . . .+ yN [x̂N ]
31: ML value := |value x̂|
32: for i = 1 : length(θ) do

33: get the pair {k, l} associated with θi = φ
(1)
n,{k,l} or θi = φ

(2)
n,{k,l}

34: if x̂n = k then

35: value x̂ = value x̂− yn[k] + yn[l]
36: x̂n := l

37: else

38: value x̂ = value x̂− yn[l] + yn[k]
39: x̂n := k

40: end if

41: best value := |value x̂|
42: if best value > ML value then

43: ML value := best value

44: x̂ML := x̂

45: end if

46: end for

Output: x̂ML

Fig. 2. ML/GLRT sequence detection algorithm for MFSK.

changes at the bit boundaries, as can been seen in Fig. 3,

and, thus, the signals from one bit interval to another are not

independent (i.e., FM0 induces memory).

We assume a sequence of N information bits which,

for convenience, are represented in the “logical form,” i.e.,

b1, b2, . . . , bN ∈ {∅, 1}, where ∅c = 1 and 1c = ∅. If we

denote by dn ∈ {∅, 1} the signal level at the end of the nth

bit period, then dn = dn−1 ⊕ bn, n = 1, 2, . . . , N . Hence,

during the nth bit period, the signal level takes the values

(dcn−1, dn−1 ⊕ bn
︸ ︷︷ ︸

dn

). As a result, the transmitted sequence that

corresponds to the information sequence b1, b2, . . . , bN is

d0

∣
∣
∣
∣
∣
dc0, d0 ⊕ b1

︸ ︷︷ ︸

d1

∣
∣
∣
∣
∣
dc1, d1 ⊕ b2

︸ ︷︷ ︸

d2

∣
∣
∣
∣
∣
. . .

∣
∣
∣
∣
∣
dcN−1, dN−1 ⊕ bN

︸ ︷︷ ︸

dN

∣
∣
∣
∣
∣
dcN

(10)
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b1 = ∅ b2 = ∅ b3 = 1 b4 = ∅ b5 = 1

d1 = ∅ d2 = ∅

d3 = 1 d4 = 1

d5 = ∅d0 = ∅

0

+1

Fig. 3. FM0 transmit waveform.

or, in vector form,
[
d0, d

c
0, d1, d

c
1, . . . , dN , dcN

]T
=

[ ed0

...
edN

]

︸ ︷︷ ︸

d

,

where d0 ∈ {∅, 1}, dn = dn−1 ⊕ bn = d0 ⊕ b1 ⊕ b2 ⊕ . . .⊕
bn, n = 1, 2, . . . , N, e∅ = [ 01 ], e1 = [ 10 ], and ⊕ denotes

exclusive-OR operation. Upon transmission over a flat-fading

channel, the received vector is y =

[
y0

...
yN

]

=
√
Phd + w

where P is the signal power, h is a complex channel coeffi-

cient, and w ∼ CN (0, σ2
wI2(N+1)).

The optimal noncoherent FM0 sequence detector be-

comes d̂ML = argmax
d∈IN+1

2
|dTy|. The GLRT detector

can be shown to admit the same decision rule. Hence, the

algorithm of Fig. 1 for BFSK can be directly employed to the

received vector y to obtain the sequence d̂ML with complexity

O (N logN). Then, the optimal information sequence b̂ML is

obtained by b̂ML
n = d̂ML

n ⊕ d̂ML
n−1, n = 1, 2, . . . , N .

4. SIMULATION RESULTS

We consider BFSK transmissions through a Rayleigh flat fad-

ing channel with σ2
h = 1. In Fig. 4, we plot the bit error

rate (BER) of the optimal noncoherent sequence detector as

a function of the transmitted signal-to-noise ratio (SNR), for

sequence length N = 1, 2, 10, 100. We include the BER of

the conventional ML coherent detector, as a reference. We ob-

serve that, as the sequence length increases, the noncoherent

detector approaches the coherent one in terms of BER. More-

over, the BER of the conventional noncoherent detector (i.e.,

N = 1) is 3dB far from the coherent one; as the sequence

length N increases, the BER gap decreases to zero.

To demonstrate the rate of convergence to coherent de-

tection performance, in Fig. 5, we set the SNR to 10dB and

plot the BER of the optimal noncoherent detector and the

computational cost of the proposed algorithm and the con-

ventional exhaustive-search approach as a function of the se-

quence length N . Finally, in Fig. 6, we repeat the above study

for 4FSK modulation and make similar observations for its

symbol error rate (SER).

We note that the BER/SER of the noncoherent scheme

with N = 100 is nearly equal to the BER/SER of the coher-

ent one with perfect channel knowledge. Interestingly, this

is achieved with complexity on the order of 100log2100 ≃
700 computations (while the conventional exhaustive search

would require 2100 or 4100 computations for BFSK or 4FSK,

respectively), opening avenues for practical deployments.
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