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ABSTRACT

An algorithm to learn optimal actions in distributed convex repeated
games is developed. Learning is repeated because cost functions are
revealed sequentially and distributed because they are revealed to agents
of a network that can exchange information with neighboring nodes only.
Learning is measured in terms of the global networked regret, which is
the accumulated loss of causal prediction with respect to a centralized
clairvoyant agent to which the information of all times and agents is re-
vealed at the initial time. We use a variant of the Arrow-Hurwicz saddle
point algorithm which penalizes local agent disagreement via Lagrange
multipliers and leads to a distributed online algorithm. We show that de-
cisions made with this saddle point algorithm lead to regret whose order
is not larger than O(

√
T ), where T is the total number of rounds of the

game. Numerical behavior is illustrated for the particular case of dynamic
sensor network estimation across different network sizes, connectivities,
and topologies.

Index Terms— Distributed Statistical Learning, Online Convex Op-
timization, Sensor Network Estimation

1. INTRODUCTION
We consider learning problems in distributed repeated games. In this
setup, for a given round of the game, each agent in a network makes a
prediction, after which Nature reveals a loss function that measures its pre-
diction quality. Moreover, individuals select actions with only access to
local losses up to the previous time and information exchange with neigh-
bors. The goal is for individuals to learn a strategy as good as one made
by a player with access to complete information in advance at a central
location.

Centralized repeated games may be formulated in the regret mini-
mization framework [1, 2]. Here, a learner makes a sequence of plays
to which Nature provides the answer in the form of a loss function. Regret
is defined as the time accumulation of the loss difference between the on-
line learner and a clairvoyant offline learner to which cost functions have
been revealed beforehand. We interpret regret as a measure of the price for
causal prediction. This paper makes use of online gradient descent whose
regret that grows not faster than O(

√
T ) and O(log T ) for when losses

convex and strongly convex, respectively [3]. Other methods to control
regret growth are proximal maps [4], mirror descent [5, 6], and dual aver-
aging [7], all of which may be understood as a special case of “follow the
regularized leader” [1].

Strategies for solving distributed convex repeated games extend ideas
from distributed optimization, which consider node-separable convex
costs, and may be categorized into primal methods, dual methods, and
primal-dual methods. In primal methods agents descend along their local
gradients and average their signals with neighbors, [6, 8–10]. In dual
methods agents reformulate distributed optimization as an agreement
constrained optimization and use dual ascent, leveraging dual decom-
position [11, 12]. Variations of dual methods include the alternating
direction method of multipliers [13, 14] and newly developed second or-
der methods [15]. Primal-dual methods combine primal descent with dual
ascent [8, 16, 17]. Primal methods have been generalized to distributed
online learning and have proved effective for particular cases where aver-
aging is advantageous [18, 19]. A generalization of a primal dual method
for distributed online learning comes in the form of the distributed saddle
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point algorithm (DSPA) [20, 21]. This paper provides theoretical regret
bounds for DSPA (Section 4) as well as a numerical performance analysis
(Section 5).

2. REGRET IN DISTRIBUTED REPEATED GAMES

We formulate repeated games where at each round t predictions x̃t ∈
X ⊆ Rp are chosen by a player, after which instantaneous functions
ft : Rp → Rq are chosen by Nature that indicate quality of playing
x̃t. In offline learning the functions ft for times t = 1, . . . T are known
beforehand at time t = 0 and used to select a fixed strategy x̃t = x̃ for
all times. The total loss associated with the selection of x̃ is

∑T
t=1 ft(x̃).

In online learning the function ft is revealed at time t and we are required
to choose x̃t without knowing ft but rather the functions fu that Nature
played at earlier times u < t. The total loss associated with the variables
x̃t played for times 1 ≤ t ≤ T is the sum

∑T
t=1 ft(x̃t).

In this paper we are interested in cases in which functions ft are writ-
ten as a sum of components available at different agents in a network.
Consider a symmetric and connected network G = (V, E) with N nodes
forming the vertex set V = {1, . . . , N} and M = |E| directed edges of
the form e = (j, k). Define the neighborhood of j as the set of nodes
nj := {k : (j, k) ∈ E} that share an edge with j. Each node in the net-
work is associated with a sequence of cost functions fi,t : Rp → R for all
times t ≥ 1. If a common variable x̃ is played for all these functions the
global network cost at time t is then given by

ft(x̃) =

N∑
i=1

fi,t(x̃). (1)

and define the optimal offline strategy as x̃∗ = argminx̃

∑T
t=1 ft(x̃).

The functions fi,t in (1), and as a consequence the functions ft are as-
sumed convex for all times t but are otherwise arbitrary.

Consider a coordinated game where all agents play a common vari-
able x̃t at time t. The accumulated regret associated with playing the
coordinated sequence {x̃t}Tt=1, as opposed to playing the optimal x̃∗ =

argminx̃

∑T
t=1 ft(x̃) for all times t, can then be expressed as

RegC
T =

T∑
t=1

N∑
i=1

fi,t(x̃t)−
T∑

t=1

N∑
i=1

fi,t(x̃
∗). (2)

In repeated games the goal is to design strategies that observe past func-
tions fu played by Nature at times u < t to select and action x̃t that
makes the regret RegC

T in (2) small, i.e. RegC
T /T vanishes with growing

T . The functions ft are arbitrary and that while the offline strategy has
the advantage of knowing all functions beforehand, online strategies have
the advantage of being allowed to change their plays at each round.

An alternative formulation is to consider that agents play their own
variables xi,t to incur their own local cost fi,t(xi,t). In this case we have
the aggregate cost

∑N
i=1 fi,t(xi,t) which leads to the definition of the

uncoordinated regret by time T as

RegU
T =

T∑
t=1

N∑
i=1

fi,t(xi,t)−
T∑

t=1

N∑
i=1

fi,t(x̃
∗). (3)

This formulation fails to incentivize agent collaboration: agents are ef-
fectively independent, and need only learn strategies that are good with
respect to their local costs

∑T
t=1 fi,t(xi,t)(3). A simple local gradient
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descent policy can achieve small regret with respect to the optimal local
action x∗i = argminxi

∑T
t=1 fi,t(xi) [22].

A more appropriate formulation is to consider games where agents
have an incentive to collaborate. Suppose then that each agent in the net-
work plays his own variables xi,t which may be different from the vari-
ables xj,t played by other agents j 6= i in the same round, yet still aims to
learn a play that is optimal with respect to the global cost in (1). Thus, we
formulate a problem in which the local regret of agent j is defined as

Regj
T =

T∑
t=1

N∑
i=1

fi,t(xj,t)−
T∑

t=1

N∑
i=1

fi,t(x̃
∗). (4)

The regret formulations in (2) and (4) correspond to problems in which
agent j aspires to learn a play that is as good as the play that can be learned
by a centralized agent that has access to the cost functions fi,t of all agents
i. However, in the later the assumption is that only the local functions fj,t
are known to agent j. We obtain a distributed repeated game which agent
j successfully solves if Regj

T /T vanishes with increasing T . Average
local regrets in (4) to define global networked regret

RegT :=
1

N

N∑
j=1

Regj
T =

1

N

T∑
t=1

N∑
i,j=1

fi,t(xj,t)−
T∑

t=1

N∑
i=1

fi,t(x̃
∗), (5)

where we used (4) and simplified terms to write the second equality. In
this paper we develop a variation of the saddle point algorithm of Arrow
and Hurwicz [16] to find a strategy whose local and global network regrets
[cf. (4) and (5)] are of order not larger than O(

√
T ). We also show that

the proposed algorithm can be implemented by agents that have access to
their local cost functions only and perform causal variable exchanges with
neighbors. This saddle point algorithm is presented in Section 3.

3. ARROW-HURWICZ SADDLE POINT ALGORITHM

We turn to developing a saddle point algorithm to control the growth of
the local and global network regrets [cf. (4) and (5)]. Since the regret
functions Regj

T defined in (4) are the same for all agents j, plays xj,t

that are good for one agent are also good for another. Thus, a suitable
strategy is to select actions xj,t which are the same for every agent. Since
the network G is assumed to be connected, this relationship can be attained
by imposing the constraint xj,t = xk,t for all pairs of neighboring nodes
(j, k) ∈ E . To write more compactly define the column vector xt :=
[x1,t; . . . ;xN,t] ∈ RNp and the augmented graph edge incidence matrix
C ∈ RMp×Np. The matrix C is formed by M × N square blocks of
dimension p. If the edge e = (j, k) links node j to node k the block
(e, j) is [C]ej = Ip and the block [C]ek = −Ip, where Ip denotes the
identity matrix of dimension p. All other blocks are identically null, i.e.,
[C]ek = 0p for all edges e 6= (j, k). With this definitions the constraint
xj,t = xk,t for all pairs of neighboring nodes can be written as

Cxt = 0, ∀t = 1, . . . , T. (6)

The edge incidence matrix C has exactly p null singular values. We denote
as 0 < γ the smallest nonzero singular value of C and as Γ the largest
singular value of C, both of which measure network connectedness.

Imposing the constraint in (6) for all times t requires global coordi-
nation – indeed, the formulation would be equivalent to the centralized
regret problem in (2). Instead, we modify (1) to add a linear penalty term
to incentivize the selection of coordinated actions. Introduce dual vari-
ables λe,t = λjk,t ∈ Rp associated with the constraint xj,t − xk,t = 0
and consider the addition of penalty terms of the form λT

jk,t(xj,t − xk,t).
For an edge that starts at node j, the multiplier λjk,t is assumed to be kept
at node j. Denote the stacked vector λt := [λ1,t; . . . ;λM,t] ∈ RMp and
define the online Lagrangian at time t as

Ot(xt,λt) =

N∑
i=1

fi,t(xi,t) + λT
t Cxt = ft(x) + λT

t Cxt. (7)

The definition in (7) corresponds to the Lagrangian associated with the
minimization of the instantaneous function

∑N
i=1 fi,t(xi,t) subject to the

agreement constraint Cxt = 0. Using this online Lagragian we for-
mulate the Arrow-Hurwicz saddle point method which exploits the fact
that primal-dual optimal pairs are saddle points of the Lagrangian to work
through successive primal/dual gradient descent/ascent steps, respectively.

Definition 1 For the online Lagrangian in (7) the saddle point algorithm
takes the form

xt+1 = PX [xt − ε∇xOt(xt,λt)], (8)
λt+1 = PΛ[λt + ε∇λOt(xt,λt)], (9)

where ε is a given stepsize, PΛ(λ) denotes projection of dual variables
on a given convex compact set Λ. The notation PX(x) denotes projection
onto the set of feasible primal variables so that we have xj ∈ X for all
the N components of the vector xt := [x1; . . . ;xN ].

We assume that the set of multipliers Λ can be written as a Cartesian prod-
uct of sets Λjk so that the projection of λ into Λ is equivalent to the sepa-
rate projection of the components λjk into the sets Λjk.

The pair of iterations in (8)-(9) can be implemented in a distributed
manner such that the variables kept at node j, namely, xj,t and λjk,t, are
updated using the values of other local variables and variables of neigh-
boring nodes, namely, xk,t and λkj,t for k ∈ nj . See [20], Section III.

Proposition 1 The updates in (8)-(9) may be separated along the com-
ponents xj,t associated with node j and Lagrange multiplier λjk,t asso-
ciated with edge (j, k), yielding N and M respective parallel updates of
the form

xj,t+1 = PX

[
xj,t − ε

(
∇xjfj,t(xj,t) +

∑
k∈nj

(λjk,t − λkj,t)
)]
, (10)

λjk,t+1 = PΛjk

[
λjk,t + ε (xj,t − xk,t)

]
, (11)

where PX(xj,t) denotes projection of xj,t into the feasible primal set X ,
and PΛjk denotes projection of λjk into the dual set Λjk.

Node j can implement (10)-(11) by using local variables and receiving
variables λkj,t and xk,t maintained at neighboring nodes k ∈ nj .

4. REGRET BOUNDS

We turn to establishing that the local and global network regrets in (4) and
(5) associated with plays xj,t generated by the saddle point algorithm in
(8)-(9) grow not faster thanO(

√
T ). In order to obtain these results, some

conditions are required of the primal and dual variables, cost functions,
and network. We state these assumptions below.

(A1) The network G is connected. The smallest nonzero singular value
of the incidence matrix C is γ, the largest singular value is Γ, and
the network diameter is D.

(A2) The gradients of the loss functions for any x is bounded by a con-
stant L, i.e.

‖∇ft(x)‖ ≤ L. (12)

(A3) The loss functions fi,t(x) are Lipschitz continuous with modulus
Ki,t ≤ K,

‖fi,t(x)− fi,t(y)‖ ≤ Ki,t‖x− y‖ ≤ K‖x− y‖. (13)

(A4) The set X of feasible plays is included in the 2-norm ball of radius
Cx/N .

X ⊆
{
x̃ ∈ Rp : ‖x̃‖ ≤ Cx/N

}
. (14)

(A5) The convex set Λjk onto which the dual variables λjk,t are pro-
jected is included in a 1-norm ball of radius Cλ,

Λjk ⊆
{
λ ∈ Rp : ‖λ‖1 ≤ Cλ

}
, (15)

for some constant Cλ ≥ DNK + 1.
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Assumption (A1) is standard in distributed algorithms. Assumptions
(A2)-(A3) are typical in the analysis of saddle point algorithms. The
bounds on the sets X and Λjk in assumptions (A4)-(A5) are constructed
so that the iterates xj,t and λjk,t are bounded by the respective constants
in (14) and (15). The constant Cx/N in Assumption 4 is chosen so
that the 2-norm of the stacked primal iterates xt := [x1,t; . . . ;xN,t] are
bounded as ‖xt‖ ≤ Cx.

The various bounds in Assumptions (A1) - (A5) permit bounding the
norm of the gradients of the online Lagrangians in (7). For the gradient
with respect to the primal variable x, use of the triangle and Cauchy-
Schwarz inequalities yields

‖∇xOt(xt,λt)‖=‖∇ft(xt)+C
Tλt‖≤‖∇ft(xt)‖+‖CT ‖‖λt‖. (16)

Use now the bounds in (12) and (15) and the definition of Γ as the largest
singular value of C to simplify (16) to

‖∇xOt(xt,λt)‖ ≤ L+ Γ
√
MCλ := Lx, (17)

where we defined Lx for future reference. For the gradient with respect to
the dual variable λ, we can similarly write

‖∇λOt(xt,λt)‖ = ‖Cxt‖ ≤ ‖C‖‖xt‖ ≤ ΓCx := Lλ. (18)

Our results concerning local and global networked regret are both derived
from the following lemma that simultaneously bounds the uncoordinated
regret in (3) and the weighted penalty disagreement

∑T
t=1 λ

TCxt.

Lemma 1 Consider the sequence xt := [x1,t; . . . ;xN,t] generated by
the saddle point algorithm in (10)-(11). Let x̃∗ be the optimal offline ac-
tion in (4), assume λ1 = 0 and further assume that assumptions 1 - 5
hold. If we select ε = 1/

√
T we have that for all λ ∈ Λ it holds

RegU
T +

T∑
t=1

λTCxt ≤
√
T

2

(
‖x1 − x̃∗‖2 + ‖λ‖2 + L2

x + L2
λ

)
. (19)

From Lemma 1 we obtain a bound for the uncoordinated regret RegU
T

defined in (3). To do so note that λ = 0 ∈ Λ. Setting λ = 0 in (19) yields

RegU
T ≤

√
T

2

(
‖x1 − x‖2 + L2

x + L2
λ

)
. (20)

This bound is of little use because, as we mentioned in Section 2, agents
can reduce uncoordinated regret by just operating independently of each
other. Observe, however, that the relationship in (19) also includes the
weighted penalty disagreement

∑T
t=1 λ

TCxt. The presence of this term
indicates that different users’ actions can’t be too far apart, from which we
obtain a relationship between networked and uncoordinated regrets.

Theorem 1 Let xt := [x1,t; . . . ;xN,t] denote the sequence generated by
the saddle point algorithm in (10)-(11) and let x̃∗ be the optimal offline
action in (4). If Assumptions 1-5 hold, with the initialization λ1 = 0 and
step size ε = 1/

√
T , the global network regret [cf. (5)] is bounded by

RegT ≤
√
T

2

(
‖x1 − x̃∗‖2 +MC2

λ + L2
x + L2

λ

)
= O(

√
T ). (21)

Theorem 1 provides a guarantee that the saddle point iterates achieve
a global networked regret that grows not faster than O(

√
T ), which is the

same as that of centralized problems with convex losses. The learning
rate depends on primal initialization, network size and topology, as well
as smoothness properties of the loss functions. The result established in
Theorem 1 is a bound on the global networked regret which is the average
the local regrets incurred by each agent. By relating the uncoordinated
regret bound in (20) with the local regret defined in (4) we obtain a similar
bound on the regret of each individual agent as we formally state next.

Theorem 2 Let xt := [x1,t; . . . ;xN,t] be the sequence generated by the
saddle point algorithm in (10)-(11) and let x̃∗ be the global batch learner
in (4). If Assumptions 1-5 hold, with the initialization λ1 = 0 and step
size ε = 1/

√
T , the local regret of node j [cf. (4)] is bounded by

Regj
T ≤

√
T

2

(
‖x1 − x̃∗‖2 +MC2

λ + L2
x + L2

λ

)
= O(

√
T ). (22)

Theorem 2 establishes that the local regret of each individual agent in
the network grows at a rate not larger thanO(

√
T ), or that its time average

vanishes asO(1/
√
T ). It follows that individuals learn global information

while only having access to local observations and the strategies of neigh-
boring agents. The constants that bound the regret growth depend on the
initial condition, network connectivity, and properties of the losses.

5. SIMULATION RESULTS

We formulate a dynamic estimation problem in a sensor network as a dis-
tributed repeated game using (5). Suppose each sensor in a network wants
to estimate a signal x̃ ∈ Rp based upon observations yi,t ∈ Rq . The sig-
nal x̃ is related to the observations by yi,t = Hi,tx̃+wi,t, where the noise
wi,t is i.i.d. across sensor and time and follows a Gaussian distribution.
The optimal estimator x̃∗ given the observations yi,t for all i and t is the
least mean squared error estimator x̃∗ = argminx

∑T
t=1

∑N
i=1 ‖Hi,tx̃−

yi,t‖2. If the signals yi,t are known for all sensors i and times t the opti-
mal estimator x̃∗ can be easily computed. In this paper we are interested
in cases where the signal yj,t−1 is revealed at time t−1 to sensor j which
then proceeds to causally estimate the signal xj,t ∈ Rp based upon past
observations {yj,u}t−1

u=1 and information received from neighboring nodes
in previous time slots. Since signals are revealed sequentially to agents of
a distributed network, this may be formulated as a distributed recursive
least squares problem.

DSPA guarantees that the regret penalty Regj
T in (4) grows at a

rate of O(
√
T ) – see Sections 3 and 4. In (4), the local functions are

fi,t(xi,t) = ‖Hi,txi,t − yi,t‖2 and the primal update at agent j in (10)
takes the form

xj,t+1 =PXj

[
xj,t −ε

(
2HT

j,t

(
Hj,txj,t−yj,t

)
+
∑
k∈nj

(λjk,t−λkj,t)
)]
. (23)

We consider the networked regrets in (4) and (5) as well as the relative
error of the estimates xj,t with respect to the optimal batch estimator x̃∗

and the relative agreement between estimates xj,t and xk,t of different
agents. Specifically, the relative error associated with the estimate xj,t of
agent j at time t is defined as

RE(xj,t) := ‖xj,t − x̃∗‖/‖x̃∗‖. (24)

The agreement between predictions of different agents is defined in terms
of the variable time averages x̄j,t := (1/t)

∑t
u=1 xj,u. For the average

estimate x̄j,t of agent j at time t we define the average relative variation
as

RV(x̄j,t) := (1/N)

N∑
k=1

‖x̄j,t − x̄k,t‖/‖x̃∗‖. (25)

The average relative variation RV(x̄j,t) denotes the average Euclidean er-
ror between x̄j,t and all others, relative to the magnitude of the offline
strategy x̃∗. The reason to focus on time averages x̄j,t instead of the es-
timates xj,t is that the latter oscillate around the batch estimate x̃∗ and
agreement between estimates of different agents is difficult to visualize.

We study the effect of network size, connectivity, and topology on
the learning rates established in Section 4. Consider the scalar obser-
vation case yit = Hi,tx̃ + wi,t (q = 1) with signal x̃ dimension
p = 10. The matrices Hi,t = Hi ∈ R1×p are constant across time
but vary across agents, whose components are chosen equiprobably from
{1/p, 2/p, . . . , 1}. Noise terms are sampled as wi,t ∼ N (0, 0.1) with
true signal x̃ = 1. We run (23) - (11) for T = 103 total iterations with
step size ε = 1/

√
T = 0.03 with initializations xj,1 = 0 for all j and
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(c) Relative variation RV(x̄j,t) versus iteration t

Fig. 1: Learning achieved by an arbitrary agent in networks of size N = 5, N = 50, and N = 200 with nodes randomly connected with prob. ρ = 0.2.
1a-1b show Regj

t/t and RE(xj,t) versus iteration t, both of which decline and are less stable in smaller networks. Figure 1c shows that network
disagreement in terms of RV (x̄j,t) becomes more stable and declines faster with increasing N , as information contained per individual declines.
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(c) Relative variation RV(xj,t) versus iteration t

Fig. 2: Algorithm performance on a randomN = 50 node network with connection probability ρ ∈ {0.01, 0.2, 0.5, 0.75}. Figure 2a-2b show Regj
T /T

and RE(xj,t) as compared with iteration t for an arbitrary agent j. Both Regj
T /T and RE(xj,t) are more oscillatory in less connected networks. Figure

2c shows RV (x̄j,t) versus iteration t. Primal variable consensus is more difficult to achieve in networks with fewer communication links.
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(b) Relative error RE(xj,t) versus iteration t
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Fig. 3: Algorithm performance inN = 50 node cycle, grid, random and small world networks, where edges are generated randomly between agents with
probability ρ = 0.2 in the later two. Figure 3a-3b show Regj

T /T and RE(xj,t), respectively, over iteration t and demonstrate that learning slows and
oscillations increase with increasing network diameter. Figure 3c shows that in terms of RV(x̄j,t), agents reach consensus slower with larger diameter.

λjk,1 = 0 for all j and k. The subsequent analysis uses an arbitrarily
chosen agent in the network.

To investigate the role of the network size N on the learning rate we
run (23) - (11) for problems with N = 5, N = 50, and N = 200 agents,
where nodes are connected with probability with ρ = 0.2. The results
of this experiment are given in Figure 1. Figure 1a shows Regj

t/t over
iteration t, which declines at comparable rates across varying N . This
rate similarity is also reflected in the trajectory of RE(xj,t) over time t,
as shown in Figure 1b. In Figure 1b, we see that learning is comparable
across different networks sizes but less stable with smaller N . This stabil-
ity difference reflects the fact that as N increases, the relative information
per agent decreases. Figure 1c shows that the network reaches consensus
faster with larger N , as measured with RV(x̄j,t), i.e. RV(x̄j,t) ≤ 10−2,
the algorithm requires t = 719, t = 317, and t = 179 iterations for
N = 5, N = 50, and N = 200 node networks, respectively, suggesting
the agreement constraint plays a larger role in larger networks.

To study the impact of network connectivity on learning, we fix the
network size toN = 50 and run (23) - (11) on random networks with node
connection probability ρ ∈ {0.01, 0.2, 0.5, 0.75}, the results of which are
given in Figure 2. Figure 2a shows Regj

t/t versus iteration t. Here con-
nectivity differences leads to comparable learning rates yet the numerical

stability varies substantially. The sparsely connected networks oscillate
more, as may be observed in the relative error plot in Figure 2b, which
follows from the slower diffusion of information. Figure 2c shows the
evolution of RV(x̄j,t) over time, which demonstrates that trimal variable
consensus is challenging to achieve in less connected networks.

To study the role of network topology in learning, we fix the network
size toN = 50 and run (23) - (11) on random graphs, small world graphs,
cycles, and grids, the results of which are shown in Figure 3. In the first
two, the probability that node pairs are connected is fixed at ρ = 0.2. The
latter two are deterministically generated; see [23, 24]. In Figure 3a, we
plot Regj

t/t compared with iteration t. To surpass Regj
t/t ≤ 10−2, we

require t = 293, t = 221 iterations for random and small world networks,
respectively, whereas for grids and cycles it requires t = 483, t = 865
iterations. As seen in the plot of RE(xj,t) over round t in Fig 3b, to attain
RE(xj,t) ≤ 0.2 we require t = 81, t = 176, t = 556, and t = 578
iterations for random, small world, grid, and cycle networks, respectively.
Fig. 3c plots RV(x̄j,t) over time t. To obtain RV(x̄j,t) ≤ 5 × 10−2,
t = 49, t = 301, t = 809, and t = 525 iterations are required for
random, small world, grid, and cycle networks, respectively. Structured
deterministic networks are a more difficult setting, and the randomness in
random and small world networks allows more effective information flow.
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