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ABSTRACT

In this paper, we focus on solving the decentralized consensus
optimization problem defined over a networked multi-agent system.
All the agents shall cooperatively find a common minimizer of the
overall objective while each agent holds its own local objective and
can only communicate with its neighbors. Motivated by many appli-
cations in which the local objective is the sum of a differentiable part
and a nondifferentiable part, this paper proposes a proximal gradient
exact first-order algorithm (PG-EXTRA) that utilizes the separable
problem structure. Here, “exact” means this decentralized algorithm
yields an exact consensus minimizer using a fixed step size. When
the nondifferentiable part vanishes, PG-EXTRA reduces to EXTRA,
an existing decentralized optimization algorithm. When the differ-
entiable part vanishes, PG-EXTRA finds its special case P-EXTRA,
a proximal algorithm. We prove convergence and rate of conver-
gence for PG-EXTRA. Numerical experiments on a decentralized
compressive sensing problem validates the theoretical results.

Index Terms— Multi-agent network, decentralized optimiza-
tion, proximal gradient method

1. INTRODUCTION

This paper considers a connected network constituted byn agents
that cooperatively solve thedecentralized consensus optimization
problem in the form

minimize
x∈Rp

f̄(x) =
1

n

n∑
i=1

fi(x). (1)

Herex is ap-dimensional optimization variable common to all the
agents, andfi : Rp → R is a convex function privately known by
agenti. In decentralized optimization, each agent uses information
from itself and its neighbors (i.e., those agents with whom it has
one-hop links) to update its local iterate, and hence avoids resource-
demanding multi-hop communication. All the agents are expected
to eventually obtain a consensual solution of (1).

We focus on the case that for each agenti, the local objectivefi

is the sum of a Lipschitz-differentiable functionsi : Rp → R and a
possibly nondifferentiable functionri : Rp → R

fi(x) = si(x) + ri(x). (2)

We are particularly interested inri’s whose proximal point problems
have explicit solutions. To be specific, given a pointy ∈ Rp and a
scalarα > 0, it is assumed easy to solve

minimize
x∈Rp

ri(x) +
1

2α
‖x− y‖22. (3)

Through utilizing the special structures of the objective functions
as described in (2) and (3), this paper aims to develop an efficient
decentralized proximal gradient algorithm for (1), which enjoys the
benefits of fast convergence speed and low computation cost.

1.1. Related Work

Different from centralized processing that requires a fusion center
to collect data and make decisions, decentralized approaches rely
on information exchange between neighbors in the network and au-
tonomous optimization by individual agents, and are hence robust
to failure of critical relaying agents and scalable to large-scale net-
works. These compelling advantages lead to wide applications of de-
centralized optimization in robotic networks [1, 2], wireless sensor
networks [3, 4], smart grids [5, 6], and distributed machine learning
systems [7, 8], to name a few. In these applications, the decentral-
ized consensus optimization problem in the form of (1) arises as a
generic model.

Existing algorithms that solve (1) can be classified into two cat-
egories. The first category includes those algorithms with implicit
updates. At each iteration, each agent solves an optimization sub-
problem whose objective is the local objective function plus some
other term determined by its neighboring iterates; the term is linear
in the dual decomposition method [9] or quadratic in the decentral-
ized alternating direction method of multipliers (ADMM) [3, 10].
These algorithms require agents to have sufficient computing pow-
ers as implicit updates are generally expensive. The second category
includes those algorithms with explicit updates. At each iteration,
each agent combines iterates from itself and its neighbors and runs a
local (sub)gradient step. This can be done by modifying the classi-
cal (sub)gradient or dual averaging algorithms to their decentralized
versions [11, 12], or by solving the subproblems of ADMM in an in-
exact manner [13, 14]. The decentralized gradient method encoun-
ters the dilemma of either using diminishing step size for accurate
but slow convergence [15], or using a constant step size for fast but
inaccurate convergence [16]. To address this issue, [17] proposes
an exact first-order algorithm (EXTRA) that introduces computa-
tionally inexpensive compensations to the gradient descent steps to
cancel network-wide gradient noise, and achieves fast yet exact con-
vergence through using a constant step size, which is independent of
the network size.

When the local objective functions have the composite forms
as (2), the existing decentralized consensus optimization algorithms
are inefficient, with either a high per-iteration cost or a slow con-
vergence speed. The algorithms with implicit updates are unable to
utilize the special composite structures and thus need to solve diffi-
cult subproblems. While the algorithms with explicit updates have
to use subgradients due to the nondifferentiable functionsri, which
often results in slow convergence. Observe that the composite forms

2964978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



appear in various applications; examples include: 1) in a geometric
median problem,si is null andri is an`2 norm term [18, 19]; 2)
in a compressive sensing problem,si is a data fidelity term such as
squared̀ 2 norm, andri is a sparsity-promoting regularization term
such as̀ 1 norm [4, 20]; 3) in a constrained optimization problem,
si is a certain differentiable objective function andri is an indicator
function whose value is zero when the solution is in the feasible set
and infinite otherwise [21, 22, 23].

1.2. Contributions and Paper Organization

To address the issue that each local objective function is the summa-
tion of a differentiable part and a nondifferentiable part, this paper
develops PG-EXTRA, a proximal gradient version of EXTRA (Sec-
tion 2). Taking advantages of the separable structures of the local
objective function, PG-EXTRA lets each agent combine iterates of
itself and its neighbors, run a gradient descent-ascent step with re-
spect to the differentiable function, and then run a proximal step
with respect to the nondifferentiable function (Section 2.1). When
the nondifferentiable function vanishes, PG-EXTRA reduces to EX-
TRA; when the differentiable function is vanishes, PG-EXTRA be-
comes P-EXTRA, a proximal version of EXTRA without the gradi-
ent steps (Section 2.2).

Section 3 establishes convergence and rate of convergence for
PG-EXTRA and P-EXTRA. When the differentiable partssi have
Lipschitz continuous gradients, PG-EXTRA converges to the solu-
tion set and the rate iso(1/k) wherek is the number of iteration.
Similar results hold for P-EXTRA but its convergence is stronger
than PG-EXTRA in the sense that P-EXTRA allows an arbitrary pos-
itive step size. Performance of PG-EXTRA is demonstrated in Sec-
tion 4. Simulation results on the decentralized compressive sensing
problem confirm theoretical findings and validate the effectiveness
of PG-EXTRA.

1.3. Notation

Throughout the paper, we let agenti hold alocal copyx(i) ∈ Rp of
the global variablex; its value at iterationk is denoted byxk

(i). We
introduce an aggregate objective function of the local variables

f(x) ,
n∑

i=1

fi(x(i)),

wherebx ,
[
xT

(1); · · · ; xT
(n)

] ∈ Rn×p. Each rowi of x corresponds
to agenti. We say thatx is consensualif all of its rows are identical,
i.e.,x(1) = · · · = x(n). Similar to the definition off(x), define the
differentiable and nondifferentiable parts of the aggregate objective
function as

s(x) ,
n∑

i=1

si(x(i)) and r(x) ,
n∑

i=1

ri(x(i)),

respectively. By definitionf(x) = s(x) + r(x).
The gradient of the differentiable functions at x is hence de-

fined by∇s(x) ,
[∇sT

1 (x(1)); · · · ;∇sT
n (x(n))

] ∈ Rn×p where
∇si(x(i)) denotes the gradient ofsi atxi. For the nondifferentiable
functionr, define∇̃r(x) as one of its subgradients atx, ∇̃r(x) ,
[∇̃rT

1 (x(1)); · · · ∇̃rT
n (x(n))] ∈ Rn×p where∇̃ri(x(i)) denotes one

of the subgradients ofri at xi. Observe that the same row ofx,
∇s(x), and∇̃r(x) corresponds to the same agent.

For a matrixA, we write its Frobenius norm as‖A‖F. For a
matrix A and a positive semidefinite matrixG, define theG-matrix

norm ‖A‖G ,
√

trace(ATGA). For a matrixA ∈ Rm×n, let
null{A} , {x ∈ Rn

∣∣Ax = 0} be the null space ofA and let
span{A} , {y ∈ Rm

∣∣y = Ax,∀x ∈ Rn} be the linear span of all
the columns ofA.

2. ALGORITHM DEVELOPMENT

This section first proposes PG-EXTRA to solve (1), then discusses
two special cases of PG-EXTRA. When the local objective functions
are differentiable (i.e.,ri = 0 for all i), PG-EXTRA reduces to
EXTRA, the exact first-order algorithm proposed in [17]. When the
smooth parts of the local cost functions vanish (i.e.,si = 0 for all i),
PG-EXTRA becomes a new decentralized proximal point algorithm,
which we name as P-EXTRA.

2.1. PG-EXTRA

PG-EXTRA starts from an arbitrary initial solutionx0 ∈ Rn×p.
The next iteratex1 is updated through a gradient descent step (with
respect to the differentiable functions) followed by a proximal step
(with respect to the nondifferentiable functionr)

x
1
2 = Wx0 − α∇s(x0), (4)

x1 = arg min
x

r(x) +
1

2α
‖x− x

1
2 ‖2F. (5)

Hereα ∈ R is a positive step size, andW = [wij ] ∈ Rn×n is a mix-
ing matrix as we will discuss below. Thenx2,x3, · · · are obtained
through gradient steps ons followed by proximal steps onr

xk+1+ 1
2 = Wxk+1 + xk+ 1

2 − W̃xk (6)

− α
[
∇s(xk+1)−∇s(xk)

]
,

xk+2 = arg min
x

r(x) +
1

2α
‖x− xk+1+ 1

2 ‖2F. (7)

In (6) and (7),α andW are the same as those appearing in (4) and
(5), whileW̃ = [w̃ij ] ∈ Rn×n is a new mixing matrix. Observe that

in (6), we first mix the previous iterates to obtainWxk+1 +xk+ 1
2 −

W̃xk, then move along the direction−∇s(xk+1), and finally move
along the direction∇s(xk).

PG-EXTRA involves mixing neighboring iterates over the con-
nected multi-agent network with twomixing matricesW and W̃ .
We impose the following assumptions onW andW̃ .

Assumption 1 (Mixing matrices) Consider aconnected network
G = {V, E} consisting of a set of agentsV = {1, 2, · · · , n} and
a set of undirected edgesE . An unordered pair(i, j) ∈ E if and
only if agentsi and j are directly connected. The mixing matrices
W = [wij ] ∈ Rn×n andW̃ = [w̃ij ] ∈ Rn×n satisfy

1. If i 6= j and(i, j) 6∈ E , thenwij = w̃ij = 0.

2. W = WT, W̃ = W̃T.

3. null{W − W̃} = span{1}; null{I − W̃} ⊇ span{1}.
4. W̃ Â 0 and I+W

2
< W̃ < W .

The first condition ensures the decentralized manner on the com-
puting of PG-EXTRA, while last three conditions guarantee conver-
gence of the algorithm. The mixing matricesW andW̃ diffuse in-
formation throughout the network and their roles are similar to those
in EXTRA [17]. One can chooseW as the mixing matrix in the de-
centralized (sub)gradient method [11], namely,W satisfies the first
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two conditions, and has one eigenvalue being 1 while others being
within (−1, 1). After setting such aW , (I + W )/2 is a proper
choice forW̃ that satisfies Assumption 1.

To see how the mixing matricesW andW̃ satisfying the first
condition of Assumption 1 enable decentralized computation, we
break down (4)–(7) to the individual agents and consider the opera-
tions of agenti. At the first iteration agenti runs

x
1
2
(i) =

n∑
j=1

wijx
0
(j) − α∇si(x

0
(i)), (8)

x1
(i) = arg min

x
ri(x) +

1

2α
‖x− x

1
2
(i)‖22. (9)

Sincewij = 0 if (i, j) /∈ E andi 6= j, to compute
∑n

j=1 wijx
0
(j)

agenti only needs to have iteratesx0
(j) where agentsj are its neigh-

bors. The gradient descent term−α∇si(x
0
(i)) and the proximal step

(9) are locally computable. At timek + 2, k ≥ 0, agenti runs

x
k+1+ 1

2
(i) =

n∑
j=1

wijx
k+1
(j) + x

k+ 1
2

(i) −
n∑

j=1

w̃ijx
k
(j) (10)

− α
[
∇si(x

k+1
(i) )−∇si(x

k
(i))

]
,

xk+2
(i) = arg min

x
ri(x) +

1

2α
‖x− x

x+1+ 1
2

(i) ‖22. (11)

Becausewij = 0 andw̃ij = 0 if (i, j) /∈ E andi 6= j, the mixing

term
∑n

j=1 wijx
k+1
(j) +x

k+ 1
2

(i) −∑n
j=1 w̃ijx

k
(j) can be computed us-

ing local and neighboring iterates. For a neighboring agentj, agent
i requires its latest iteratexk+1

(j) , while the previous iteratexk
(j) has

already been collected at the preceding iteration. Similar to (8) and
(9), the gradient descent-ascent term−α[∇si(x

k+1
(i) ) − ∇si(x

k
(i))]

in (10) and the proximal step (11) are also locally computable.
PG-EXTRA is outlined inAlgorithm 1 .

Algorithm 1: PG-EXTRA
Set mixing matricesW ∈ Rn×n andW̃ ∈ Rn×n;
Choose step sizeα > 0;

1. For each agenti, pick any initial iteratex0
(i) ∈ Rn and compute

x
1
2
(i) =

n∑
j=1

wijx
0
(j) − α∇si(x

0
(i)),

x1
(i) = arg min

x
ri(x) + 1

2α
‖x− x

1
2
(i)‖22.

2. for k = 0, 1, · · · , for each agenti, do

x
k+1+ 1

2
(i) =

n∑
j=1

wijx
k+1
(j) + x

k+ 1
2

(i) −
n∑

j=1

w̃ijx
k
(j)

−α
[
∇si(x

k+1
(i) )−∇si(x

k
(i))

]
,

xk+2
(i) = arg min

x
ri(x) + 1

2α
‖x− x

x+1+ 1
2

(i) ‖22.

end for

2.2. Special Cases: EXTRA and P-EXTRA

When the aggregate objective functionf has simpler forms, PG-
EXTRA also reduces to simpler ones.

If r = 0, observe that in (4) and (5) we havex1 = x
1
2

x1 = Wx0 − α∇s(x0). (12)

Similarly, in (6) and (7) we havexk+2 = xk+1+ 1
2 and

xk+2 = Wxk+1 + xk+1 − W̃xk (13)

− α
[
∇s(xk+1)−∇s(xk)

]
.

Indeed, the updates (12) and (13) are identical to those in EXTRA,
the exact first-order algorithm that solves (1), with the local objec-
tive functions being differentiable [17]. In this sense, PG-EXTRA is
an extension of EXTRA from decentralized differentiable consensus
optimization to the nondifferentiable regime.

If s = 0, we have a new algorithm named as P-EXTRA which
stands for proximal-EXTRA. To see how the name comes, observe
that to computex1 the updates are

x
1
2 = Wx0, (14)

x1 = arg min
x

r(x) +
1

2α
‖x− x

1
2 ‖2F. (15)

Here (14) simply mixesx0 with W to obtainx
1
2 without the gradient

descent operation, whereas (15) is a proximal step. And to compute
xk+2 the updates are

xk+1+ 1
2 = Wxk+1 + xk+ 1

2 − W̃xk, (16)

xk+2 = arg min
x

r(x) +
1

2α
‖x− xk+1+ 1

2 ‖2F. (17)

Similar to (14) and (15), (16) and (17) are pure mixing and proximal
steps, respectively.

P-EXTRA is outlined inAlgorithm 2 .

Algorithm 2: P-EXTRA
Set mixing matricesW ∈ Rn×n andW̃ ∈ Rn×n;
Choose step sizeα > 0;

1. For each agenti, pick any initial iteratex0
(i) ∈ Rn and compute

x
1
2
(i) =

n∑
j=1

wijx
0
(j),

x1
(i) = arg min

x
ri(x) + 1

2α
‖x− x

1
2
(i)‖22.

2. for k = 0, 1, · · · , for each agenti, do

x
k+1+ 1

2
(i) =

n∑
j=1

wijx
k+1
(j) + x

k+ 1
2

(i) −
n∑

j=1

w̃ijx
k
(j),

xk+2
(i) = arg min

x
ri(x) + 1

2α
‖x− x

x+1+ 1
2

(i) ‖22.

end for

3. CONVERGENCE ANALYSIS

To establish convergence and rate of convergence for PG-EXTRA
and P-EXTRA, we make two additional assumptions.

Assumption 2 (Convexity and Lipschitz differentiability) For
anyi, functionssi andri are proper closed convex and the differen-
tiable functionsi satisfies

‖∇si(xa)−∇si(xb)‖ ≤ Lsi‖xa − xb‖2, ∀xa, xb ∈ Rp,

whereLsi > 0 is constant.

Following Assumption 2, functionf(x) = s(x)+r(x) is proper
closed convex, and∇s is Lipschitz continuous

‖∇s(xa)−∇s(xb)‖F ≤ Ls‖xa − xb‖F, ∀xa,xb ∈ Rn×p,

with constantLs = maxi{Lsi}.

Assumption 3 (Solution existence)Problem(1) has a set of opti-
mal solutionsX ∗ 6= ∅ which is a convex set.
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We first give a lemma that gives the first-order optimality condi-
tions of (1). This and other proofs can be found in [24].

Lemma 1 (First-order optimality conditions)Given mixing ma-
trices W and W̃ , defineU = (W̃ − W )1/2 by letting U ,
V S1/2V T ∈ Rn×n whereV SV T = W̃ − W is the economical-
form singular value decomposition. Then, under Assumptions 1–3,
x∗ is consensual andx∗(1) ≡ x∗(2) ≡ · · · ≡ x∗(n) is optimal to
problem(1) if and only if there existsq∗ = Up for somep ∈ Rn×p

such that

Uq∗ + α
(
∇s(x∗) + ∇̃r(x∗)

)
= 0, (18)

Ux∗ = 0. (19)

Suppose thatx∗ andq∗ satisfy the optimality conditions (18)
and (19). Introduce an auxiliary sequenceqk ,

∑k
t=0 Uxt. In light

of (18) and (19), defineoptimality residualsas‖Uqk +α(∇s(xk)+

∇̃r(xk+1))‖2F and‖Uxk‖2F; the former is the violation to the first-
order optimality of (1) while the latter is the violation of consensus.
For PG-EXTRA, the following theorem shows convergence ofxk to
x∗, as well as theo(1/k) rates of the optimality residuals.

Theorem 1 Under Assumptions 1–3, if the step size satisfies0 <
α < 2λmin(W̃ )/Ls), then the iteratexk generated by PG-EXTRA
converges to an optimalx∗ and the running-best optimality residuals
have rates

min
t≤k

{
‖Uqt + α(∇s(xt) + ∇̃r(xt+1))‖2F

}
= o

(
1

k

)
, (20)

min
t≤k

{‖Uxt‖2F
}

= o

(
1

k

)
. (21)

The convergence of P-EXTRA follows from that of PG-EXTRA
directly. Since P-EXTRA considers a simpler case in which the dif-
ferentiable parts(x) = 0, it allows arbitrary positive step size and
haso(1/k) rates in terms of the optimality conditions instead of their
running-bests. See the theorem below.

Theorem 2 Under Assumptions 1–3 ands(x) = 0, for any step
sizeα > 0, the iteratexk generated by P-EXTRA converges to an
optimalx∗ and the optimality residuals have rates

‖Uqk + α∇̃r(xk)‖2F = o

(
1

k

)
, (22)

‖Uxk‖2F = o

(
1

k

)
. (23)

4. NUMERICAL EXPERIMENTS

Numerical experiments are conducted over a connected network
consisting ofn = 10 agents and18 bidirectional edges, as shown
in Fig. 1. We simulate a decentralized compressive sensing prob-
lem [4, 20]. Each agenti holds its own measurement equation
y(i) = M(i)x + e(i), where y(i) ∈ Rmi is measured data,
M(i) ∈ Rmi×p is measurement matrix,x ∈ Rp is unknown
sparse signal, ande(i) ∈ Rmi is unknown noise. The goal of the
agents is to collaboratively estimate the sparse signalx. To find x,
the compressive sensing theory suggests to solve an`1 regularized
least squares problem in the form

minimize
x

n∑
i=1

si(x) +

n∑
i=1

ri(x),

1

10

2

3

4

5 6

7

89

Fig. 1. The underlying graph for numerical experiments is a con-
nected network withn = 10 agents and18 bidirectional edges.
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DISTA, parameter τ = 1.0τ0
DISTA, parameter τ = 1.3τ0
DISTA, parameter τ = 1.5τ0
PG-EXTRA, step size α = 0.9α0
PG-EXTRA, step size α = 1.0α0
PG-EXTRA, step size α = 1.2α0

Fig. 2. The normalized optimal residual‖xk − x∗‖F/‖x0 − x∗‖F.
For PG-EXTRA,α0 = 0.82193 is the critical step size given in
Theorem 1;τ0 = 1 is the parameter of DISTA.

wheresi(x) = 1
2
‖M(i)x − y(i)‖22, ri(x) = λ(i)‖x‖1, andλ(i) is

the regularization parameter on agenti. In the experiments, each
agenti holdsmi = 3 measurements, its regularization parameter
λi = 1

n
. The sparse signalx has dimensionp = 50 and its80%

of elements are zero. The entries of the measurement matricesM(i)

and the nonzero elements of the signalx are generated following
i.i.d. Gaussian distribution with mean0 and standard deviation1,
and i.i.d. Laplace distribution with mean0 and diversity1, respec-
tively. The elements of the noise vectorse(i) are generated following
i.i.d. Gaussian distribution with mean0 and standard deviation0.1.

The numerical results are illustrated in Fig. 2. We compare PG-
EXTRA with DISTA [25], which is a decentralized version of the
iterative soft thresholding algorithm (ISTA) [26]. We use the nor-
malized optimal residual‖xk − x∗‖F/‖x0 − x∗‖F as performance
metric. PG-EXTRA demonstrates fast convergence to the optimal
solution given proper step size. DISTA converges much slower since
it is essentially a proximal version of decentralized gradient descent
[11], which is disadvantageous in convergence speed.
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