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ABSTRACT Through utilizing the special structures of the objective functions
. . . as described in (2) and (3), this paper aims to develop an efficient
In this paper, we focus on solving the decentralized consensyg, ;onrajized proximal gradient algorithm for (1), which enjoys the

optimization problem defined over a networked multi-agent systemy, o, «its of fast convergence speed and low computation cost.
All the agents shall cooperatively find a common minimizer of the

overall objective while each agent holds its own local objective and

can only communicate with its neighbors. Motivated by many appli-1.1. Related Work

cations in which the local objective is the sum of a differentiable part . ) ) )

and a nondifferentiable part, this paper proposes a proximal gradieg}lﬁerent from centralized processing that requires a fusion center
exact first-order algorithm (PG-EXTRA) that utilizes the separabld© collect data and make decisions, decentralized approaches rely
problem structure. Here, “exact” means this decentralized algorithrA" information exchange between neighbors in the network and au-
yields an exact consensus minimizer using a fixed step size. Whdfnomous optimization by individual agents, and are hence robust
the nondifferentiable part vanishes, PG-EXTRA reduces to EXTRALO failure of critical relgylng agents and scalab_le to Iar_ge-_scale net-
an existing decentralized optimization algorithm. When the differ-Works. These compelling advantages lead to wide applications of de-
entiable part vanishes, PG-EXTRA finds its special case pP-EXTRACentralized optimization in robotic netwqu_s [1, 2], wwe!ess sensor
a proximal algorithm. We prove convergence and rate of converdetworks [3, 4], smart grids [5, 6], and distributed machine learning
gence for PG-EXTRA. Numerical experiments on a decentralize@ystems [7, 8], to name a few. In these applications, the decentral-

compressive sensing problem validates the theoretical results. ~ 1zed consensus optimization problem in the form of (1) arises as a
) ) o generic model.
_ Index Terms— Multi-agent network, decentralized optimiza- Existing algorithms that solve (1) can be classified into two cat-
tion, proximal gradient method egories. The first category includes those algorithms with implicit
updates. At each iteration, each agent solves an optimization sub-
1. INTRODUCTION problem whose objective is the local objective function plus some

other term determined by its neighboring iterates; the term is linear
This paper considers a connected network constituted bgents  in the dual decomposition method [9] or quadratic in the decentral-
that cooperatively solve thdecentralized consensus optimization ized alternating direction method of multipliers (ADMM) [3, 10].
problem in the form These algorithms require agents to have sufficient computing pow-
ers as implicit updates are generally expensive. The second category
L= 1 — includes those algorithms with explicit updates. At each iteration,
minimize fla) = n Z fi(z). (D) each agent combines iterates from itself and its neighbors and runs a
=1 local (sub)gradient step. This can be done by modifying the classi-
Here is ap-dimensional optimization variable common to all the @l (Sub)gradient or dual averaging algorithms to their decentralized
agents, and; : R” — R is a convex function privately known by Versions[11,12], or by solving the subproblems of ADMM in an in-
agenti. In decentralized optimization, each agent uses informatioffXact manner [13, 14]. The decentralized gradient method encoun-
from itself and its neighbors (i.e., those agents with whom it haders the dilemma of either using diminishing step size for accurate
one-hop links) to update its local iterate, and hence avoids resourcBYt Slow convergence [15], or using a constant step size for fast but

demanding multi-hop communication. All the agents are expecteflaccurate convergence [16]. To address this issue, [17] proposes
to eventually obtain a consensual solution of (1). an exact first-order algorithm (EXTRA) that introduces computa-

We focus on the case that for each agette local objectivef; tionally inexpensiye compensatiqns to the gr.adient descent steps to
is the sum of a Lipschitz-differentiable functien : R? — R and a cancel network-W|de_grad|ent noise, and z_achleve_s fa_st_ yet exact con-
possibly nondifferentiable function : R”? — R vergence through using a constant step size, which is independent of

the network size.
filz) = si(z) + ri(z). 2 When the local objective functions have the composite forms
as (2), the existing decentralized consensus optimization algorithms
We are particularly interested ip's whose proximal point problems are inefficient, with either a high per-iteration cost or a slow con-
have explicit solutions. To be specific, given a pajne R? and a  vergence speed. The algorithms with implicit updates are unable to
scalara > 0, it is assumed easy to solve utilize the special composite structures and thus need to solve diffi-
cult subproblems. While the algorithms with explicit updates have
to use subgradients due to the nondifferentiable functipnahich

1
minimize 7;(z) + —||z — y||3. 3) ° .
z€RP 2a often results in slow convergence. Observe that the composite forms
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appear in various applications; examples include: 1) in a geometricorm || Al|¢ £ +/trace(ATGA). For a matrixA € R™*", let
median problems; is null andr; is an{s norm term [18, 19]; 2) null{ A} 2 {z € R”|Ax = 0} be the null space oft and let
in a compressive sensing probles,is a data fidelity term such as span{A} 2 {y € Rm,|y = Az,Vz € R"} be the linear span of all
squared’z norm, andr; is a sparsity-promoting regularization term o ~ojumns ofd.

such ag/; norm [4, 20]; 3) in a constrained optimization problem,
s; Is a certain differentiable objective function ands an indicator
function whose value is zero when the solution is in the feasible set
and infinite otherwise [21, 22, 23].

2. ALGORITHM DEVELOPMENT

This section first proposes PG-EXTRA to solve (1), then discusses
o o two special cases of PG-EXTRA. When the local objective functions
1.2. Contributions and Paper Organization are differentiable (i.e.;; = 0 for all i), PG-EXTRA reduces to

To address the issue that each local objective function is the summ&XTRA, the exact first-order algorithm proposed in [17]. When the
tion of a differentiable part and a nondifferentiable part, this papefMooth parts of the local cost functions vanish (e 0 for all i),
develops PG-EXTRA, a proximal gradient version of EXTRA (SeC_PG_-EXTRA becomes a new decentralized proximal point algorithm,
tion 2). Taking advantages of the separable structures of the loc¥fhich we name as P-EXTRA.

objective function, PG-EXTRA lets each agent combine iterates of

itself and its neighbors, run a gradient descent-ascent step with r@-1. PG-EXTRA

spect to the differentiable function, and then run a proximal Ste&’G—EXTRA starts from an arbitrary initial solutio® € R™¥

with respect to the nondifferentiable function (Section 2.1). Whe . 1 8 .
the nondifferentiable function vanishes, PG-EXTRA reduces to EXrohe next iteratec is updated through a gradient descent step (with

TRA; when the differentiable function is vanishes, PG-EXTRA be_res_pect to the differential_ale funqti@)ufollow_ed by a proximal step

comes P-EXTRA, a proximal version of EXTRA without the gradi- (with respect to the nondifferentiable functieh

ent steps (Section 2.2). 1 o 0
Section 3 establishes convergence and rate of convergence for x2 =Wx' —aVs(x), “)

PG-EXTRA and P-EXTRA. When the differentiable pastshave x! = argmin r(x) + L”X _ X% ”% (5)

Lipschitz continuous gradients, PG-EXTRA converges to the solu- x 2a

tion set and the rate is(1/k) wherek is the number of iteration. ; - ; o nxn o

Similar results hold for P-EXTRA but its convergence is strongerHerea € Risa positive step size, allf = [w;;] € R 1S 8 mix

ing matrix as we will discuss below. Thett, x>, - - are obtained

than PG-EXTRA in the sense that P-EXTRA allows an arbitrary pos- p -
itive step size. Performance of PG-EXTRA is demonstrated in Sect_hrough gradient steps arnfollowed by proximal steps on

tion 4. Simulation results on the decentralized compressive sensing RS S s S B T ®)
problem confirm theoretical findings and validate the effectiveness
of PG-EXTRA. —o [VS(Xk+1) - VS(x’“)} ,
. 1 1
1.3. Notation 2 = arg min r(x) + o—x - <P @)

Throughout the paper, we let ageritold alocal copyz(;) € R” of | () and (7),c and W are the same as those appearing in (4) and
the global variabler; its value at iteratiork is denoted bwﬁ-). We  (5), whileW = [@;;] € R"*" is a new mixing matrix. Observe that
introduce an aggregate objective function of the local variables (6), we first mix the previous iterates to obtaifx*** LxhtE

n Wx*, then move along the directionVs(x"**), and finally move
f£(x) £ Z filza), along the directiorVs(x").
im1 PG-EXTRA involves mixing neighboring iterates over the con-
nected multi-agent network with twmixing matricesiV and .

wherebz £ [z});- - ;z(,)] € R"*?. Eachrowi of x corresponds ~ We impose the following assumptions & and 1.
to agent. We say thak is consensuaif all of its rows are identical,
i.8., (1) = -+ = T(n). Similar to the definition of (x), define the Assumption 1 (Mixing matrices) Consider aconnected network
differentiable and nondifferentiable parts of the aggregate objectivé = {V,£} consisting of a set of agents = {1,2,--- ,n} and
function as a set of undirected edged An unordered pair(i, j) € € if and

N N only if agentsi and j are directly connected. The mixing matrices

S(X) A Z Si(w(i)) and I'(X) ry Z 7,7:(56(”)7 W = [’w”] (S R™™ ™ andW = ['lf)z]] S Rx"™ satlsfy
i=1 i=1 1. If ¢ 7£ j and(i,j) € S, thenwij = ﬂ}i_,‘ =0.

wW=w"w=w"
. null{W — W} = span{1}; null{ — W} D span{1}.
W= 0and Y = W W

respectively. By definitiof (x) = s(x) + r(x).
The gradient of the differentiable functianat x is hence de-
fined by Vs(x) £ [Vs] (z(1)); -+ ; Vs (xm))] € R™*P where

Vsi(z(;)) denotes the gradient ef atx;. For the nondifferentiable

functionr, defineVr(x) as one of its subgradients &t Vr(x) £ The first condition ensures the decentralized manner on the com-

[?r?(azm); e ?r,f(x(n))] € R™*? whereVr;(z(;) denotes one  puting of PG-EXTRA, while last three conditions guarantee conver-
of the subgradients of; atx;. Observe that the same row =&f gence of the algorithm. The mixing matricés andW diffuse in-
Vs(x), andVr(x) corresponds to the same agent. formation throughout the network and their roles are similar to those
For a matrixA, we write its Frobenius norm ggA|lr. Fora in EXTRA [17]. One can choosB’ as the mixing matrix in the de-
matrix A and a positive semidefinite matriX, define theG-matrix  centralized (sub)gradient method [11], namély,satisfies the first

IR
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two conditions, and has one eigenvalue being 1 while others beintpdeed, the updates (12) and (13) are identical to those in EXTRA,
within (—1,1). After setting such &V, (I + W)/2 is a proper the exact first-order algorithm that solves (1), with the local objec-
choice forl¥’ that satisfies Assumption 1. tive functions being differentiable [17]. In this sense, PG-EXTRA is
To see how the mixing matricdd’” and W satisfying the first ~an extension of EXTRA from decentralized differentiable consensus
condition of Assumption 1 enable decentralized computation, we@ptimization to the nondifferentiable regime.
break down (4)—(7) to the individual agents and consider the opera- If s = 0, we have a new algorithm named as P-EXTRA which
tions of agent. At the first iteration agentruns stands for proximal-EXTRA. To see how the name comes, observe
that to computex! the updates are

1 n
zZ = wizals — aVsi(zly), 8)
ER iR b =W, (14)
. 1 1 . 1 1
#hy = axgmin ri(e) + -l — o B © x! = argmin () + oo e — x|} (15)

. . .. . . n 0

Smce?“”‘ =01f (1,7) ¢ S.andz 77,10 computer:{ w“xﬂj) Here (14) simply mixes® with W to obtainx 2 without the gradient
agenti only needs to have iterate$;, where agentg are its neigh-  gescent operation, whereas (15) is a proximal step. And to compute
bors. The gradient descent terFmVsi(z?i)) and the proximal step  x*+?2 the updates are

(9) are locally computable. At time + 2, k£ > 0, agenti runs

n

k+14+1 kil kel .
Ta = Zwiﬂm trg? - sz‘jxu) (10)
J j=1

—y

xk+1+% =WwxF 4+ xk+% - ka, (16)

xF+? = arg min r(x) + %Hx _ xFHEs [ES (17)

(kTN ow.s
-« {Vsl(z(i) ) Vs’(‘r(”)] ’ Similar to (14) and (15), (16) and (17) are pure mixing and proximal
steps, respectively.

k+2 c+1+3 H2 ! ) ) )
2 P-EXTRA is outlined inAlgorithm 2.

. 1
T = argmin ri(z) + EHx — Ty (11)
Becausav;; = 0 andw;; = 0if (4,5) ¢ £ andi # j, the mixing
1
Termzyzl wijx@fgl + :L?;z — 30 Wiy can be computed us-
ing local and neighboring iterates. For a neighboring ageagent

i requires its latest iterate’&tl, while the previous iteratefj) has

Algorithm 2: P-EXTRA
Set mixing matrice$V € R"*™ andW € R"*™;
Choose step size > 0;
1. For each agent pick any initial iterater?” € R™ and compute

already been collected at the preceding iteration. Similar to (8) and 1 n o
(9), the gradient descent-ascent tera[Vs; (") — Visi(a(;))] Ty = ; Wi T (5
in (10) and the proximal step (11) are also locally computable. 1 = . 1 19

PG-EXTRA is outlined inAlgorithm 1. () = argmin 7i(2) + o5 |z — ) I3

. 2.for k=0,1,---, for each agent, do
Algorithm 1: PG-EXTRA AT k+1g WLHl "o
Set mixing matrice$V € R**™ andW € R"*"; Ty P E L WiEG) T Tyt = ) Wi,
Choose step size > 0; rio =t ) et )
1. For each agent pick any initial iterate:?,, € R™ and compute ey = argmin () + 5olle — @i * 2.
3 = end for
Tl = J; wigaly — aVsi(z(y),
1
z(y = arg min ri(z) + 5|l — :ré-)II%- 3. CONVERGENCE ANALYSIS
2.for k=0,1,---, for each agent, do .
k14l on Pt 9 r,i; no To establish convergence and rate of convergence for PG-EXTRA
Ty = _Zl Wi T+ 2 7 — Zl WijT () and P-EXTRA, we make two additional assumptions.
Jj= Ji=
k+1 k
- [Vsi(m<;)r )= Vsi(x(i))] ) Assumption 2 (Convexity and Lipschitz differentiability) For
xéw)rz — argmin ry(z) + 5= |@ — x’(fﬁ)r“% I12. anys, functi_onSSi a”_d7_"i are proper closed convex and the differen-
df ‘ z * ‘ tiable functions; satisfies
end for

[Vsi(za) = Vsi(ap)|| < Ls, |z = 23ll2, V70,75 € R,
2.2. Special Cases: EXTRA and P-EXTRA

_— ) ) whereL,, > 0is constant.
When the aggregate objective functifrhas simpler forms, PG-

EXTRA also reduces to simpler ones. . Following Assumption 2, functiofi(x) = s(x)+r(x) is proper
If r = 0, observe that in (4) and (5) we haxé = x2 closed convex, an¥'s is Lipschitz continuous

1 _ 10 0
X' =Wx' —aVs(x). (12) 1 s(xa) = Vs(xo) [l < Lallxa — Xs]lr, Ve, x5 € R*<?,

Similarly, in (6) and (7) we have*2 = x*+1+2 and
Xk+2 _ ka+1 + Xk+l _ ka (13)

_ k41y k Assumption 3 (Solution existence)Problem(1) has a set of opti-
o [VS(X ) = Vs(x )] ’ mal solutionsY™ = () which is a convex set.

with constantLs = max;{Ls, }.
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We first give a lemma that gives the first-order optimality condi-
tions of (1). This and other proofs can be found in [24].

Lemma 1 (First-order optimality conditions)Given mixing ma-
trices W and W, definelU = (W — W)Y2 by lettingU 2
VSY2yT ¢ R whereVSVT = W — W is the economical-
form singular value decomposition. Then, under Assumptions 1-3,
x" is consensual and(;, = z(,) = -+ = x(, is optimal to
problem(1) if and only if there existg* = Up for somep € R™*P

such that

Uq" +a (vs(x*) n ﬁr(x*)) ~0, (18)
Ux® =0. (19)

Suppose thak™ and q* satisfy the optimality conditions (18)
and (19). Introduce an auxiliary sequenrge2 Zf:o Ux". Inlight
of (18) and (19), defineptimality residualsas|| U q* + a(Vs(x* , _ _ . .
@j(xgﬂ))”(% a)ndHUx’“pH%; theyformer is thl v(iz)I;iorg to (the)fi+rst- Fig. 1. The undel_'lylng graph for numen(_:a_l experiments is a con-
order optimality of (1) while the latter is the violation of consensus.nECted network witix = 10 agents ands bidirectional edges.

For PG-EXTRA, the following theorem shows convergence’bfo
x*, as well as the(1/k) rates of the optimality residuals.

Theorem 1 Under Assumptions 1-3, if the step size satigfies 1
a < 2Amin(W)/Ls), then the iteratex* generated by PG-EXTRA
converges to an optimal® and the running-best optimality residuals
have rates 1072}
= 1
; t t 12 | 1
min {IVa’ +o(Vs6c) 4 T IR =0 (1) @ L
1 =
. 2\ _ 1 z
min (xR} =o(3). @ I
The convergence of P-EXTRA follows from that of PG-EXTRA OISR e T =T
directly. Since P-EXTRA considers a simpler case in which the dif- 10 | - -B{ER 1)@@1110#0\1: T= }Ajm
ferentiable pars(x) = 0, it allows arbitrary positive step size and 2T PGEXTRA, step size o = 090,
haso(1/k) rates in terms of the optimality conditions instead of their o PO EATRA e dlze o = 1.0
running-bests. See the theorem below. 107°

0 500 1000 1500 2000 2500 3000 3500 4000
A/.

Theorem 2 Under Assumptions 1-3 ark{x) = 0, for any step
sizea > 0, the iteratex” generated by P-EXTRA converges to an Fig. 2. The normalized optimal residufik”

* 0 *
. . f . — X X —X .
optimalx™ and the optimality residuals have rates I /1l e

For PG-EXTRA, a0 = 0.82193 is the critical step size given in

. B oo 1 Theorem 179 = 1 is the parameter of DISTA.
JUa" + oS =o ). 22)
1 .
lUx*|E2 =0 <7> . (23)  Wwheres;(z) = 3[[M@z — y I3, ri(z) = Apllzlli, andXg) is
k the regularization parameter on ageéntin the experiments, each

agenti holdsm,; = 3 measurements, its regularization parameter
4. NUMERICAL EXPERIMENTS i = % The sparse signal has dimensiop = 50 and its80%
of elements are zero. The entries of the measurement malicgs
Numerical experiments are conducted over a connected netwodnd the nonzero elements of the sigmadre generated following
consisting ofn. = 10 agents and8 bidirectional edges, as shown i.i.d. Gaussian distribution with meahand standard deviatioh,
in Fig. 1. We simulate a decentralized compressive sensing prokand i.i.d. Laplace distribution with medhand diversityl, respec-

lem [4, 20]. Each agent holds its own measurement equation tively. The elements of the noise vecters, are generated following

Ya = M@r + e, wherey, € R™ is measured data, i.i.d. Gaussian distribution with me@nand standard deviatian1.

M) € R™*P is measurement matrixy € R” is unknown The numerical results are illustrated in Fig. 2. We compare PG-

sparse signal, anel;) € R™¢ is unknown noise. The goal of the EXTRA with DISTA [25], which is a decentralized version of the

agents is to collaboratively estimate the sparse signdio find z, iterative soft thresholding algorithm (ISTA) [26]. We use the nor-

the compressive sensing theory suggests to solvg aegularized  malized optimal residudlx® — x*||r /||x° — x*||r as performance

least squares problem in the form metric. PG-EXTRA demonstrates fast convergence to the optimal

n N solution given proper step size. DISTA converges much slower since
s ) o it is essentially a proximal version of decentralized gradient descent
nze ; si(@) + ; ri(®), [11], which is disadvantageous in convergence speed.
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