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ABSTRACT siderations in terms of protecting critical informatiortsu
We consider the problem of sampling a node-weightedVhen the value of a node indicates whether the node is
graph. The objective is to infer the values of all nodes frominfected, our results also apply to inferring, trackingdan
that of a minimum subset of nodes by exploiting corre-controlling epidemics, worms and virus in communication
lations in node values. We first introduce the concept ohetworks, and cascading failures in infrastructure neitaor
information dominating setiDS). A subset of nodes in a This problem may also be applicable to data compression,
given graph is an IDS if the value of these nodes is suffigiven that the identified subset of nodes completely repre-
cient to infer the information state of the entire graph. Wesents the information of the entire network.
focus on two fundamental algorithmic problems: (i) how . o
to determine whether a given subset of vertices is an IDSL-1  Information Dominating Set

(if) how to construct a minimum IDS. Assuming binary we presents an algorithmic study of critical sampling over
node values and the local majority rule, we show that thgyraphs. We first introduce the concept of information

first problem is co-NP-complete and the second problem igominating set (IDS). A subset of nodes in a given node-
NP-hard in a general network. We then show that in acyC”Q\/eighted graph is an IDS if knowing the values of nodes
graphs, both problems admit linear-complexity solutionsin this subset is sufficient to infer the values of all nodes
by establishing a connection between the IDS problemf, the graph. We focus on two fundamental questions: (i)
and the vertex cover problem. For general graphs, we dgjiven a subset of nodes, how to determine whether it is an
velop algorithms for solving both problems based on thaps; (ii) how to construct an IDS with a minimum number

concept ofessential differential setThese results find ap- of nodes for a given graph_ The former is referred to as the

plications in opinion sampling such as political pollingdan |DS checker (IDSC) problem, and the latter the minimum
market survey in social-economic networks, and inferringps (MIDS) problem.

epidemics and cascading failures in communication an

infrastructure networks. e\lhlle the concept of IDS applies to general information

and information correlation models, in this paper, we focus
Index Terms— sampling; information dominating set; NP- O binary node values and adopt the local majority rule to

complete; opinion polling; social networks. model node correlation. Specifically, each node in the given
graph has a binary value that is consistent with the majority
1 Introduction opinion of its neighbors. Binary node values are sufficient

) ) ~_to model yes/no opinions in social-economic networks and
In this paper, we introduce and study the problem of critig indicate whether a node is infected in the study of epi-
cal sampling in node-weighted graphs. The objective is tQemics and cascading failures. Local majority rule is also

infer the values of all nodes in a given graph from that ofcommonly used in studying opinion dynamics in social net-
a minimum subset of nodes by exploiting correlations inyorks (see, for example, [1, 2]).

node values. . .
For binary node values and under the local majority cor-

This problem is motivated by opinion sampling in social re|ation model, we show that the IDSC problem is co-NP-
or economic networks for applications such as politicalcommete and the MIDS problem is NP-hard in a general
polling and market survey. Specifically, in social and infor graph. We then focus on graphs with special structures, in
mation networks, it is often necessary to gauge the generﬁlarticular, acyclic graphs. We show that in acyclic graphs,
opinion of a large population on a certain issue. Sincoth IDSC and MIDS problems admit linear-complexity
polling often incurs a cost (either monetary or in terms ofsp|utions by establishing a connection between the DS
delay), an important question is how to infer the opinion Ofproblem and the vertex cover problem. Our technique for
the entire network through a strategic sampling of a minestaplishing the hardness of the IDS problems is based
imum subset of nodes by exploiting correlations in nodén a novel graph transformation that transforms the ID-
opinions. S problems in a general graph to that in an odd-degree
Besides the applications in social-economic networks, thgraph. This graph transformation technique not only gives
problem of critical sampling over graphs and the result&n approximation algorithm to the NP-hard problem, but
obtained in this paper also bear significance in identifyingalso provides a useful tool for general studies related to
critical nodes in information networks. Identifying such the local majority rule. For general graphs, we develop an
critical nodes has important applications in learning amd i efficient algorithm based on the concept of essential differ
ference under resource constraints as well as security cogntial set to solve both the IDSC and the MIDS problems.
This approach applies to general node values and general
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1.2 Related Work G is a binary opinion profile such that for each vertex

Statistical sampling is a classic problem pioneered by Neythe number of its same-minded neighbors is greater than or
man in 1934 [3]. Different from the deterministic model €qual to the number of its opposite-minded neighbors. In
and the algorithmic approach taken in this paper, statistiother words, the opinion of each vertex is consistent with
cal sampling assumes that the value associated with eaé€ majority opinion among its neighbors. If there is no
node is a random variable obeying a known probabilitySUch majority opinion, this vertex may take either opinion.
distribution, and designing the sampling strategy amount§'9 1 demonstrates a valid opinion profile

to choosing the probability with which each node will be
sampled. More recent work on statistical sampling can be
found in [4-7].

Inrecentyears, the concept of uniqueness set in a graph was
proposed and studied in [8, 9] for sampling Paley-Wiener_ ) o )
functions on graphs. However, the uniqueness set is diffelg:g' |1e 1;2: zozﬁ:z:f \:gfritl'g?: (rfplrelsg rg)tsotg;: gr?é"i?'iznas&g.ti:*_s ex
from the information dominating set because the former e, p P P, P
enF . . S . .._lon profile. Though the neighbors of bath andwv; are half black
uniquely determines a band width limited function while white, they are still valid based on the definition.

the information on IDS uniquely determines the informa-

tion in the rest of the graph.

Thevalid opinion profile set/ of a given graplt is the set
of all valid opinion profiles ort.

The minimum vertex cover (MVC) [10, 11] and the mini-
inimum vertex cover ( ) [10,11] n An information dominating sefiDS) in a given graplG

mum dominating set (MDS) [12, 13] are related to the IDS; bset of verticeB C 1V h that und o
problem. The MVC asks for a minimum subset of vertices> & SUPSEL O VErtices & ¥/ such that under any opinion
ofile, the opinions of vertices iP is sufficient to infer the

such that each edge in the original graph is adjacent to &

least one vertex in this subset. And the MDS asks for é)pinions of all the other vertices. Based on the definition,

minimum subset such that each vertex is either in this subl-DS has an important property as follows.

set or adjacent to at least one vertex in this subset. Th_Property 1. Asubset of vertice® of a graphG'is an IDS

minimum IDS problem is inherently more complex than |$f. for any pair of different valid opinion profiles, v, there

MVC and MDS. For instance, as shown in this paper, it isex'StS avertex € D such tha, # vy.

co-NP-complete to verify whether a given subset is an IDSThe significance of Property 1 is that it provides a way to
while MVC and MDS have trivial polynomial time check- determine whether a subset of vertices is an IDS or not
ers simply based on their definitions. without considering any specific inference method. It is

. . . ._used repeatedly in this paper. Fig. 2 demonstrates the valid
The local majority rule has been adopted in studying 0p|nopinion profile set/ and an IDS.

ion dynamics in social networks (see, for example, [1, 2]).
The focus there is on characterizing the evolution of netWe focus on two problems on IDS. The IDS checker (ID-
work opinions when each node dynamically changes itSC) problem, seeks to determine whether a given set is an
opinion by following the majority opinion of its neighbors. IDS. The second problem we consider is the main objective
But absent from that line of work is the inference problem 0f this paper, which is to find the minimum IDS (MIDS).
which is the main objective of this paper: we aim to in- In hardness analysis, the corresponding decision problem
fer the network opinionafter the opinion of each node has is: given a graplt: and a parametdr, does there exists an
reached an equilibrium value. IDS D in G with size at most.

1 h Vs Oh Us U1 U5 i U5
2 Problem Formulation :>F‘<: >—O< >—'<:
m v U2 1o vg U ™ v U 14 U6

In this section, we introduce the concept of IDS and formu- 2
late the IDSC and the MIDS problems. While the conceptF. . . - ) .
. . ) . ig. 2: There are only four valid opinion profiles on this graph.
of IDS applies to critical sampling of graphs with general :
- A By Property 1, subsdws, v4} is an IDS.
node weights and node correlations, we present the basic .
concepts and main results in the context of opinion samé-2 Odd-degree Graph Transformation

pling where nodes are binary valued satisfying the localWe propose a graph transformation that allows us to study

majority rule. both the IDSC and the MIDS problems by considering odd-

. .. degreed graphs only without losing generality of the rasult
2.1 Information Dominating Set This transformation plays an important role in the hardness
Given a graplG = (V, E) with n = |V| vertices, aina-  analysis and algorithm development given in subsequen-
ry opinion profilex on G is a binary vectof,, , ..., ., )  tsections.

indicating whereu,, € {0,1} represents the opinion of &ien an arbitrary grapty

vertexu;. Fora given a binary opinion profileonG, the  yerex and edge t6”. Then, for every even degree vertex
neighbors of a vertex; are partitioned into two groups: , in &', we attach an auxiliary neighbas; (see Fig. 3).

the same-minded and opposite-minded neighbors, depengfze ¢4 theodd-degree transformationf G. Given any
ing on whether they share the same opinion with In

. : " . valid opinion profilex in G, we construct its odd-degree
Flg. 1, th_e same-mlndgd nelghborS1Qf arewvy, vo While transformation opinion profile’ by y/, = p,, andy!, =
its opposite-minded neighboris. 11, . In other words, those vertices derived from the original
A valid opinion profilex under thelocal majority rulein ~ graph take the original opinions, and every auxiliary verte

= (V, E), we first copy every
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take the opinion of the vertex to which it is attached. Fig. 3mum IDS.
demonstrates an example of the odd-degree transformati@fince the non-leaf minimum vertex cover can be solved in

from G to G and a valid opinion profilg: to 1. linear time by a greedy algorithm, we can solve the MIDS
on trees in linear time.

5 IDS in General Graphs

In this section, we develop an efficient algorithm for solv-
ing both the IDSC and the MIDS problems in general
Fig. 3: An example of the odd-degree transformation fréhto ~ graphs. Based on the definition of IDS and Property 1, a
G'. The round vertices i’ are derived fronG and the square brute-force solution to these problems is to consider every
vertices are the auxiliary vertices. It also shows the oeigkee  pair of valid opinion profiles. However, given the expo-
transformation fromu to /', nential order of the number of valid opinion profiles, this
The following theorem establishes a reduction from bo“hpproach require®(22") time complexity. To address this
IDSC and MIDS inG to the corresponding problems@.  jssye, we introduce a concept called dssential differen-

All results in this paper are stated without proof due to th&;a| set(EDS) that is much smaller in number than the valid
space limitation. o _ opinion profile pairs, but still contains all the informatio
Theorem 1. There exists an ID®) in 7 ifand only if there  heeded for solving both the IDSC and the MIDS problems.
exists an IDSD’ in G’ such that for any vertex; € D, anp efficient algorithm, referred to as the wall separation
eitherv; € D’ or its auxiliary vertexu; € D'. algorithm, is then developed to find the EDS.

Based on Theorem 1, for both the IDSC and MIDS prob- . . .
lems, it suffices to consider only odd-degree graphsF.) Un-5':L Essential Differential Set
less otherwise noted, the graphs considered in the remaiM/e define Essential Differential Set (EDS) and establish
ing part of this paper are all odd-degree graphs. the connection between EDS and the IDS problems.

. A set representatioiy (1) of a opinion profilen is the set
3 Hardness AnaIyS|S of vertices with opiniorl in g, i.e., the setS(u) = {v €
In this section, we study the computational hardness of IDV |, = 1}. A differential setD(p, v) is the exclusive dis-
SC and MIDS. The following theorem establishes the cojunction of the sets representing two valid opinion profiles
NP-completeness of the IDSC problem. i.e., D(u,v) = S(u) @ S(v). Theessential differential
Theorem 2. Given a graphG and a subset of vertice®,  setis the family of all differential sets such that no other
it is co-NP-complete to determine whetheris an IDS of  differential set is a subset of any set in the EDS. Based on
G. Property 1 a subsé? is an IDS if each differential set con-

Since the checker problem is co-NP-complete, the minitins at least one vertex frof, i.e., subseD is a hitting

mum IDS problem may not belong to NP space. The fo1-Set of the family of differential sets. The following theare

lowing theorem establishes the NP-hardness of the mipdormally establishes the connection between EDS and IDS.
Theorem 5. A subset of vertice® in a graphG is and

problem. X >Ees ve
Theorem 3. Given a graphdG, it is NP-hard to find the IDS if and only ifD is an hitting set of the EDS &.
minimum IDS. Based on Theorem 5, given the EFSof a graphG, we

. . can solve the IDSC problem by checking whether the given
4 IDS in Acyclic Graphs subset is a hitting set ab or not. And furthermore, the

In this section, we consider both IDSC and MIDS problemMIDS problem becomes the minimum hitting set problem.
in acyc”c graphs_ An acyc"c graph is a forest (i.e.’ a C0|_In Sec. 5.3, we demonstrate that the average size of EDS
lection of trees). Since each connected component of thi much smaller than the average number of valid opinion
graph can be considered separate|y When Studying the |[E’Oﬁ|es in a" our Simulation cases. Hence the Concept Of
prob]emS, it suffices to focus on trees. We ShOW, in LemEDS significantly reduces the problem size. What remains
ma 1, that an IDS without any leaf node is a vertex covefs to find the EDS given a gragh. We propose a wall sep-

in an Odd_degree tree. Since both an IDS or a vertex Cove’:}ration algorithm in the next subsection for this problem.
with leaf vertex gan be transformed into a samg size IDS % 5 The Wall Separation Algorithm

a vertex cover without any leaf vertex, respectively, we can ) o )
solve IDSC and MIDS by solving the vertex cover problem.3ased on its definition, the EDE of a given grapttz can

Lemma 1. Given an odd-degree tre@, an IDS that does be found by the following steps: list all the valid opin-
not contain any leaf is also a vertex coverin ion profiles by exhaustive search; list all differentialsset

by considering all pairs of valid opinion profiles; elimieat
those differential sets that are proper super sets of other d
ifferential sets. However, this procedure requires all the
valid opinion profiles. We propose a wall separation al-
With Lemma 2, we can solve the IDSC on a tree by checkgorithm that utilizes a double layered “wall” to partition
ing whether its non-leaf transformation is a vertex coverthis problem to smaller sub-problems and increase the ef-
Furthermore, the following theorem provide us a way toficiency. Before that, let us first define some terminology
find the MIDS. used in the algorithm. Ampinion sub-profileu‘/’ is an
Theorem 4. The non-leaf minimum vertex cover is a mini- opinion profile on a subset of verticgs. The opinions of

The following lemma extends this result to any IDS.
Lemma 2. Given any IDSD, 3 an IDS D’ that contains
no leaf nodes and has a size smaller than or equdbto
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SO

(a) (b)

Fig. 4: The sub-profiles are on the vertices enclosed by the box.

In (a), it is not a VOSP since vertex has opinion0 (denoted
by white) but two of its three neighbors have opinibidenoted
by black). In (b), it is a VOSP even though in a complete valid
opinion profile, all three vertices are either all black divdtite.

the remaining vertices are undeterminedvalid opinion
sub-profile(VOSP) 1V is a opinion sub-profile such that
there is no known violation of the local majority rule for

Exhaustive search vs. WSA
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Fig. 5: The running time of exhaustive search algorithm and the
WSA algorithm. Parameter = 0.2 in the random graph model.
The average is taken over 100 Monte Carlo runs.

any vertex. Fig. 4 demonstrates two examples of opinion

sub-profiles, one of which is valid, the other is not.

AVOSP "' underanother VOSR'"2 such that, N1, =

(), denoted by |2, is an opinion sub-profile such that
the combination of both sub-profiles (an opinion profile
such that the opinions o, follows ;"*, the opinions of
V5 follows »¥2 and the opinions of the remaining vertices

EDS vs. VOP vs. DS
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are unknown) is still valid.

Now consider that grapti is partitioned intok 4+ 1 non-  Fig. 6: The average size of EDS compared with the average num-
overlapping parts: a “double-layered walW” andk other  per of valid opinion profiles and the number of differentiatss
subgraph#i, ..., V, such that the distance betweérand  Parametep = 0.2 in the random graph model. The average is
V; is at least3 hops. The following theorem states that taken over 100 Monte Carlo runs.

under such a partition, given a particular sub-profile on the

wall I, the sets of VOSPs ow, . . ., V. are independent.
Theorem 6. Given a graphG, consider an arbitrary par-
tition of its vertices{W, V1, ..., V};} such that the distance
betweenV; andV; for arbitrary i # j is at least3. There
exists a valid opinion profilg in G if and only if there ex-
ists a VOSP/W and VOSPs/V1|p"W ... vV [uW under
v such that all the VOSPs are consistent with

does not have identical VOSPs unggl and u}’. We
insertD(uf", uf!) U (UKL Dy [fY oy [l? ) into B
for everyj,, j;. The following theorem establishes the cor-
rectness of the algorithm.

Theorem 7. The family of setsly, generate by WSA, is the
EDS of the given grap& is the EDS of the given grapH.

Based on Theorem 6, we proposed the wall separation algQynat remains is to find a partitiof¥V, V4, ..., Vi }. Note
rithm (WSA) that contains two main steps. At the first step that only the efficiency but not the correctness of the al-
WSA lists all the VOSPs on the wall and all the VOSPs ONgorithm depends on the partition. Since the algorithm is
eachV; under every VOSP on the wall. At the second stepgominated by the first step, a good partition would ensure
it builds the EDS based on the results in the first step. Adghat all parts have the same size. In our simulation, we use
ditionally, there is a pre-processing algorithm that @&l 5 greedy algorithm to find the partition as follows. First,
the partition of the graph. Based on Theorem 6, the pafye calculate the shortest distances between all pairs of ver
tition of the graph does not affect the correctness of thgices. Then we start from a random vertex and sequentially
algorithm. It only affect the time complexity of the twWo gglect: — 1 other vertices that on average are farthest away

steps. We first describe the algorithm. And we then givegrom all previous vertices. We use theseertices as seed

one realization of the pre-processing.

Given the graph and a partition{W, V1, ..., V,}, the
step 1 of WSA first list all VOSPuY",... u)% } on

W by searching. Then for eaqh%, we list all VOSPs
(Y 1V ..t | pl ) for everyV; unders)Y .

In the second step, we construct the EDS by consecutive
inserting candidate subsets to a fanfilyf sets in a special
way: if the candidaté is not a super set of any element in
E,we addD in E and remove any elementiithatis a su-
per setofD. First, for any VOSR.}" on the wallW, we in-
sertD(u} |}, )i 11" into E for everyi and everyj, j'.
Then, for every pair of VOSPg}" andy}’, we compare
the sets of VOSPs of each partitibi under these two sub-
profiles to check whether there exigt |} andy.); |}
that are identical. Let’™, ..., Vi~ be those partitions that

to growtoV, ..., Vi by sequentially adding new adjacent
vertices toV; if the distance between any two sets is at least
3. The procedure stops either if there is no vertex to add in
or the number of remaining vertices are smaller than that of
largest among;.

§.3 Simulations

We compare the size of EDS to the size of all VOSPs and
the size of all the differential sets under a random graph
model where an edge occurs with probabilityndepen-
dently. As demonstrated in Fig. 6, the size of the EDS is
significantly smaller than the number of valid opinion pro-
files and the number of all the differential sets. Fig. 6 shows
the running time of WSA and exhaustive search algorithm
to generate EDS under the same random graph model. The
improvement in efficiency is clear.
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