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ABSTRACT
This paper addresses the problem of distributed estimation of
a parameter vector in the presence of noisy input and noisy
output data, as well as data faults, performed by a wireless
sensor network in which only local interactions among the
nodes are allowed. In the presence of unreliable observations,
standard estimators become biased and perform poorly in low
signal-to-noise ratios. We propose therefore two different dis-
tributed approaches based on the Expectation-Maximization
algorithm: in the first one the regressors are estimated at each
iteration, whereas the second one does not require explicit re-
gressor estimation. Numerical results show that the proposed
methods approach the performance of a clairvoyant scheme
with knowledge of the random data faults.

Index Terms— Diffusion, distributed estimation, expec-
tation-maximization, sensor networks, total least squares.

1. INTRODUCTION

We study the problem of distributed estimation of an unknown
parameter vector using a wireless sensor network (WSN) when
both the observations (output data) and the regressors (input
data) are assumed noisy. The nodes are allowed to commu-
nicate within a small neighborhood only, and some of them
may be subject to random transducer faults, in which case, the
sensor is assumed to observe only noise [1, 2]. When dealing
with noisy input and output data, a good alternative is the To-
tal Least Squares (TLS) solution [3, 4], for which distributed
implementations have been reported in the literature [5–7].
However, in the presence of data faults in the output data,
the standard TLS estimation becomes biased, with the conse-
quent penalty in the Mean Square Error (MSE). By treating
the random data faults as hidden random variables, we derive
two distributed estimators based on the Expectation-Maxi-
mization (EM) algorithm, a numerical method to compute the
maximum-likelihood (ML) estimator [8, 9]. In our proposed
methods, the information is spread across the WSN by means
of diffusion strategies [10], combining a slower term for in-
formation diffusion with a faster term for information averag-
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ing [11]. The estimation is performed based on a single data
snapshot collected by each node, i.e., there is no new data
streaming in. The novelty of this contribution w.r.t [11] relies
in that we consider a vector of parameters with noisy regres-
sor measurements. The two implementations proposed differ
in that, in the first one, the regressors are estimated at each
iteration of the EM algorithm, whereas in the second one they
are not.

2. PROBLEM STATEMENT

Consider the problem of estimating a parameter vector x P
RL based on a set of noisy observations

yi“aih
T
i x` wi, (1)

zi“hi ` vi (2)

where wi „ N p0, σ2q and vi „ N p0, r2σ2ILq for all i “
1, . . . , N . The random variables taiu are i.i.d. Bernoulli
distributed with Prpai“1q“p, and reflect whether a sensor
has been subjected to a data fault: ai “ 1 shows that the i-
th sensor correctly acquired the corresponding observation,
whereas ai“0 shows that only noise was sensed. We assume
that tai, wj ,vku are statistically independent for all ti, j, ku.
The regressors hi are only observed through the noisy esti-
mates zi, and the ratio r2 of the regressor noise variance to
the output noise variance is assumed known1. Whereas x
is the parameter of interest, p, σ2 and thiu are regarded as
deterministic, unknown nuisance parameters. Let us define
y fi ry1 ¨ ¨ ¨ yN s

T , H fi
“

hT1 ; ¨ ¨ ¨ ;h
T
N

‰

, Z fi
“

zT1 ¨ ¨ ¨ z
T
N

‰

and A fi diagpaq with a fi ra1 ¨ ¨ ¨ aN s
T . When knowledge

of A is available, the clairvoyant Ordinary Least Squares
(CV-OLS) estimator can be computed as

x̂CV-OLS“argmin
x
}y ´AZx}2 “ pZTAZq´1ZTAy. (3)

This is the ML estimator of x when r2“ 0 (noiseless regres-
sors). However, this estimator is biased if the input data is
noisy (r2 ą 0). For known A, the ML estimators of x and
thiu in (1)-(2) are the solutions to

min
x,H

r2}y ´AHx}2 ` }Z ´H}2F (4)

1This is standard in TLS problems. Introducing different unknown vari-
ances would result in an overparameterized problem, yielding lack of identi-
fiability.
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where }¨}F denotes the Frobenius norm. Problem (4) is a gen-
eralized TLS problem [4], and its solution (clairvoyant TLS)
is given by
„

x̂CV-TLS
´1{r



“ least eigenvector of
„

ZT

ryT



A
“

Z ry
‰

. (5)

If one assumes A“I in (4), the standard TLS solution x̂TLS
is obtained. However, x̂TLS becomes biased when data faults
are present. Therefore, in the sequel we discuss a means to
compute the ML estimator of x in (1)-(2) when the taiu are
unknown. Two solutions based on the EM algorithm are de-
rived, which differ in their treatment of the regressor matrix
H .

3. ML ESTIMATION VIA THE EM ALGORITHM

Let θ “ rxT hT1 ¨ ¨ ¨ h
T
N σ2 psT . Due to the indepen-

dence of the data, the likelihood function of θ is given by

fpy,Z |θq“
N
ź

i“1

fpyi |θq ¨
N
ź

j“1

fpzj |θq (6)

where

fpyi |θq“
1

?
2πσ2

„

p e´
pyi´hTi xq2

2σ2 ` p1´ pqe´
y2i
2σ2



(7a)

fpzj |θq“
1

p2πr2σ2q
L
2

e´
}zj´hj}

2

2r2σ2 . (7b)

Maximizing (6) w.r.t. θ in closed form is not possible, and
one has to resort to numerical methods. The EM algorithm
is particularly well suited to problems like the one at hand
in which hidden random variables (the taiu in this case) are
present. We denote ty,Zu as the incomplete data set and
ty,Z,au as the complete data set. Assume for the moment
a centralized approach in which a single node has access to
the set ty,Zu. Then, at iteration t of the EM algorithm one
performs the following:

1. E-step: given an estimate θ̂t and a trial value θ̃ of θ,
compute the conditional expectation

Qpθ̃ ; θ̂tq “ Ea
!

log fpy,Z,a | θ̃q
ˇ

ˇ

ˇ
θ̂t,y,Z

)

. (8)

2. M-step: obtain the estimate for the next iteration as

θ̂t`1 “ argmax
θ̃

Qpθ̃ ; θ̂tq. (9)

Since Z and a are statistically independent we have

fpy,Z,a | θ̃q“fpy | θ̃,aq ¨ fpZ | θ̃q ¨ fpa | θ̃q. (10)

After some algebra we get

fpy,Z,a | θ̃q“
1

p2πr2σ̃2q
NL
2

¨ e´
1

2r2σ̃2
p}Z´H}2F q

¨
1

p2πσ̃2q
N
2

¨ e´
}y´AH̃x̃}2

2σ̃2 ¨

N
ź

i“1

p̃ ai p1´ p̃q1´ai (11)

and taking the logarithm yields

log fpy,Z,a | θ̃q9 ´
NpL` 1q

2
log σ̃2 ´

1

2r2σ̃2
}Z ´ H̃}2F

´
1

2σ̃2

´

}y ´AH̃x̃}2
¯

`

N
ÿ

i“1

rai log p̃` p1´ aiq logp1´ p̃qs.

Further, let âi,t “ Earai | θ̂t,y,Zs and Ât “ diagpâtq with
ât fi râ1 ¨ ¨ ¨ âN s

T . Then, Qpθ̃ ; θ̂tq can be expressed as

Qpθ̃ ; θ̂tq9 ´
NpL` 1q

2
log σ̃2 ´

1

2r2σ̃2

´

}Z ´ H̃}2F

` r2py ´ H̃x̃qT Âtpy ´ H̃x̃q ` r2yT pI ´ Âtqy
¯

` Ŝt log p̃` pN ´ Ŝtq logp1´ p̃q (12)

where Ŝt “
řN
i“1 âi,t. Note that, since ai is Bernoulli, one

has âi,t “ Prpai “ 1|θ̂t,y,Zq. Making use of Bayes’ theo-
rem, these a posteriori probabilities can be obtained as follows

âi,t “
p̂tρ

1
i,t

p1´ p̂tqρ0i,t ` p̂tρ
1
i,t

(13)

with

ρai,t fi exp

˜

´
pyi ´ aĥ

T
i,tx̂tq

2

2σ̂2
t

¸

, a P t0, 1u. (14)

The new set of estimates is found by maximizing (12) w.r.t.
x̃, h̃, σ̃2 and p̃. Maximizing first (12) w.r.t. p̃ yields

p̂t`1 “
1
N Ŝt. (15)

For the remaining parameters, two different ways can be fol-
lowed at this point: either estimating thiu at every itera-
tion, or replacing its expression in the log-likelihood function
(LLF), as shown below.

Cyclic EM – EstimatingH: From (12), the estimates for
x̂t`1 and Ĥt`1 can be found solving

min
x̃,H̃

}Z´H̃}2F`r
2py´H̃x̃qTÂtpy´H̃x̃q. (16)

Although (16) resembles a TLS problem, the presence of the
diagonal weighting matrix Ât precludes a closed-form ex-
pression for the solution. Equating to zero the gradients of
(16) w.r.t. x̃ and H̃ , and evaluating the resulting conditions
at x̃ “ x̂t`1 and H̃ “ Ĥt`1, one respectively obtains

ĤT
t`1ÂtĤt`1x̂t`1“Ĥ

T
t`1Âty, (17)

Ĥt`1 ` r
2ÂtĤt`1x̂t`1x̂

T
t`1“Z ` r

2Âtyx̂
T
t`1. (18)

From (17), if Ĥt`1 was available, then x̂t`1 could be read-
ily obtained by solving an LˆL linear system. Conversely,
if x̂t`1 was available, then Ĥt`1 could also be explicitly ob-
tained, as the following result shows:
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Lemma 1. The solution Ĥt`1 to (18) is a rank-1 perturba-
tion of Z given by Ĥt`1 “ Z ` ut`1x̂

T
t`1, with

ut`1fir2
´

I ` r2}x̂t`1}
2Ât

¯´1

Ât py ´Zx̂t`1q . (19)

The proof follows immediately by substituting Ĥt`1 “

Z ` ut`1x̂
T
t`1 in the left-hand side of (18). Note that I `

r2}x̂t`1}
2Ât is a diagonal matrix, and hence its inversion is

computationally cheap. In order to obtain x̂t`1 and Ĥt`1,
we propose a cyclic-minimization (CM) procedure [12]: the
expression in (16) is minimized w.r.t. one of the variables
assuming that the other is fixed, and the process is repeated
until convergence. Starting with some initial x̂p0q, and for
k “ 1, . . . ,K, compute

Ĥpkq“Z ` r2
ˆ

I ` r2
›

›

›
x̂pk´1q

›

›

›

2

Ât

˙´1

ˆÂt

´

y ´Zx̂pk´1q
¯´

x̂pk´1q
¯T

, (20)

and then solve for x̂pkq in
´

Ĥpkq
¯T

ÂtĤ
pkqx̂pkq “

´

Ĥpkq
¯T

Âty. (21)

We then take x̂t`1“ x̂
pKq and Ĥt`1“ Ĥ

pKq. The estimate
for the variance is found from (12) in terms of those of x and
thiu:

σ̂2
t`1“

r2pyTy ´ ψ̂Tt x̂t`1q ` }Z ´ Ĥt`1}
2
F

r2NpL` 1q
(22)

where ψ̂t “ ĤT
t`1Âty. We propose to embed the CM itera-

tion just described within the EM iterative procedure, yielding
the modification of the centralized EM algorithm (CEM). In
essence, at each outer EM iteration, only one inner CM itera-
tion is performed, i.e., we take x̂p0qt “ x̂t andK“1. Although
the parameter trajectories of this modified version do not nec-
essarily coincide with those of the true EM algorithm, the sets
of fixed points of both schemes are the same.

Blind EM – Substituting H in the LLF: Next we pro-
pose an alternative approach in which explicit estimation of
hi is not needed. To this end, first we show how to obtain the
scalar products ĥTi,tx̂t featuring in (14). From Lemma 1, it
follows that Ĥt“Z ` utx̂

T
t . Therefore, after some algebra,

one finds

Ĥtx̂t “ y ´ pI ` r
2}x̂t}

2Ât´1q
´1py ´Zx̂tq. (23)

Using (23) in (14), one obtains the local estimate

ρai,t “ exp

¨

˚

˝

´

´

yip1´ aq `
apyi´z

T
i x̂tq

1`r2}x̂t}2âi,t´1

¯2

2σ̂2
t

˛

‹

‚

. (24)

Now note that using again Lemma 1, the cost in (16) can be
minimized w.r.t. H̃ . Substituting the optimum value of H̃

(which depends on x̃) in (16) results in the following problem
after some algebraic manipulations:

x̂t`1“argmin
x̃
py ´Zx̃q

T
D̂tpx̃q py ´Zx̃q (25)

where D̂tpx̃q “ pI ` r
2}x̃}2Âtq

´1Ât. Note that the cost in
(25) is not quadratic due to the fact that the diagonal weight-
ing matrix D̂tpx̃q depends on x̃. We propose to replace D̂tfi

D̂tpx̂tq « D̂tpx̃q in (25) in order to obtain a quadratic prob-
lem (weighted least squares), whose solution is

x̂t`1“pZ
T D̂tZq

´1ZT D̂ty. (26)

The estimate of p is found as before and given by (15), whereas
the new estimate of σ2 is computed as follows

σ̂2
t`1“

py ´Zx̂t`1q
T D̂tpy ´Zx̂t`1q ` y

T pI ´ Âtqy

NpL` 1q
.(27)

We refer to this scheme as the blind EM (BEM) estimator. In-
spired by previous distributed approaches [2, 5–7, 10], we de-
velop distributed implementations of the centralized schemes
presented in this section, which are based on the diffusion
principle of [11]. The key observation is the fact that the
global quantities featuring in the centralized versions can be
written as summations over local quantities.

4. DISTRIBUTED SOLUTIONS

Assume that each node i “ 1, ¨ ¨ ¨ , N only has access to its
own measurements tyi, ziu and can only communicate with
a small subset of neighbors. At each node i and at time k,2

a local copy of the parameters tx̂i,k, σ̂2
i,k, p̂i,ku (and also

of ĥTi,k for the CEM) is updated in terms of the information
gathered from neighboring nodes. Let W P RNˆN denote a
weight matrix with a nonzero tijuth entry Wij only if nodes
i and j can communicate with each other. We assume that the
network is connected, i.e., there is a path between any pair of
nodes ti, ju. W is assumed symmetric and satisfiesW1“1,
ρpW ´ 11T

N q ă 1, where 1 is an all-ones vector and ρp¨q de-
notes spectral radius. The general steps of the distributed EM
estimator are summarized in Table 1, whereas the interme-
diate variables are specified below for each method.

Distributed (D)-CEM: For the D-CEM approach, the a
posteriori probability âi,k at node i and at time k in (28) in
Table 1 is computed using

ρai,k “ exp

˜

´
pyi ´ aĥ

T
i,kx̂i,kq

2

2σ̂2
i,k

¸

, a P t0, 1u (32)

and the intermediate variables are given by

F pj, kq“âj,kĥj,kĥ
T
j,k (33)

fpj, kq“âj,kyjĥj,k (34)

fσpj, kq“r
2py2j ´ yj âj,kĥ

T
j,kx̂j,k`1q ` }zj ´ ĥj,k}

2 (35)

2We denote by k (rather than t) the iteration index for the distributed ap-
proaches, in order to emphasize the difference w.r.t. the centralized schemes.
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For i “ 1, ¨ ¨ ¨ , N

1. Initialize âi,0 and the local estimates θ̂i,1. Initial-
ize the intermediate variables F pj, kq,fpj, kq and
fνpj, kq, @ ν P tσ

2, a, 1u.

For k ě 1,

2. E-Step: given θ̂i,k compute

âi,k “
ρ1i,kp̂i,k

ρ1i,kp̂i,k`ρ
0
i,kp1´p̂i,kq

(28)

3. M-Step: for every ν P tσ2, a, 1u, compute the in-
termediate variables

φνpi, kq“
řN
j“1Wij pp1´βkqφνpj, k´1q`αkfνpj, kqq (29)

Φpi, kq“
řN
j“1Wij pp1´βkqΦpj, k´1q`αkF pj, kqq (29a)

ϕpi, kq“
řN
j“1Wij pp1´βkqϕpj, k´1q`αkfpj, kqq (29b)

where f1pj, kq “ 1, fapj, kq “ âj,k, @j, k and

αk “
1
k , βk “

1
kδ
, 0 ă δ ă 1, k “ 1, 2, ¨ ¨ ¨ (30)

Solve for x̂i,k`1 in the LˆL linear system

Φpi, kqx̂i,k`1 “ ϕpi, kq (31)
and update

σ̂2
i,k`1 “

1
r2pL`1q

φσpi,kq
φ1pi,kq

, p̂i,k`1 “
φapi,kq
φ1pi,kq

.

4. Repeat steps 2 and 3 until convergence.

Table 1. Diffusion-Based Distributed EM Algorithm

Distributed (D)-BEM: For the D-BEM approach, the a
posteriori probabilities in (28) in Table 1 are computed as

ρai,k “ exp

˜

´
1

2σ̂2
i,k

ˆ

yi ´ az
T
i x̂i,k

1` ar2}x̂i,k}2âi,k

˙2
¸

, a P t0, 1u (36)

whereas the intermediate variables are given by

F pj, kq“d̂j,kzjz
T
j (37)

fpj, kq“d̂j,kyjzj (38)

fσpj, kq“r
2pd̂j,kpyj ´ z

T
j x̂j,k`1q

2 ` p1´ âj,kqy
2
j q, (39)

with d̂j,k “ âj,k{p1` r
2}x̂j,k}

2âj,kq.

5. NUMERICAL RESULTS

Computer simulations of the proposed EM-based estimators
have been performed in a network composed of N “ 100
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Fig. 1. Normalized MSE vs. SNR in dB for the proposed
EM-based estimators, the TLS, the OLS, and their respective
clairvoyant versions CV-TLS and CV-OLS.

nodes randomly deployed on a unit square with an average
connectivity radius rc“0.25. We set L“5, p“0.8 and r“1,
and generate the entries of H as zero-mean i.i.d. Gaussian
random variables of unit variance. The distributed schemes
are run with a Metropolis weight matrix W [13] and δ“0.8.
The local estimates are initialized as follows: âi,0 “ p̂i,1 “
1{2, x̂i,1 “ yizi{zTi zi and σ̂2

i,1 “ y
2
i p1 ´ âi,0q. Conditioned

onH , the signal-to-noise (SNR) is given by

SNR “
xTHTHx`trpHTHq

NpL` 1qσ2
ď
p1`}x}2q}H}2F
NpL` 1qσ2

. (40)

For the simulations, we take the upper bound in (40) as the
SNR, as it only depends on }x}2 and }H}2F . The perfor-
mance metric considered is the normalized MSE, defined as

NMSEtx̂pkqu“
1

N}x}2
řN
i“1 E

“

}x̂ipkq´x}
2
2

‰

. (41)

Fig. 1 depicts the NMSE vs. SNR for all methods, for SNR
values in the range r0, 24s dB. Note that both CV-TLS and
TLS exhibit a worse performance in the low SNR regime,
caused by numerical problems with the eigenvalue decompo-
sition, while all EM-based methods approach the curve for the
CV-TLS as the SNR increases. As expected, TLS and OLS
exhibit a flooring effect caused by the random data faults,
while CEM and BEM approach the clairvoyant solutions. Of
the two methods proposed, BEM seems to degrade more grace-
fully as the SNR is decreased. Therefore, if estimation of the
regressors is not needed, the D-BEM estimator offers a good
alternative at low complexity. Summing up, the EM-based
proposed methods constitute a better alternative than the TLS
or the OLS when knowledge of the data faults is not available.
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