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ABSTRACT
The goal of this paper is to propose a network formation game
where strategic agents decide whether to form or sever a link
with other agents depending on the net balance between the
benefit resulting from the additional information coming from
the new link and the cost associated to establish the link. Dif-
ferently from previous works, where the benefits are functions
of the distances among the involved agents, in our work the
benefit is a function of the mutual information that can be
exchanged among the agents, conditioned to the information
already available before setting up the link. An interesting re-
sult of our network formation game is that, under certain con-
ditions, the final network topology tends to match the topol-
ogy of the Markov graph describing the conditional indepen-
dencies among the random variables observed in each node,
at least when the cost of forming a link is small.

Index Terms— Network formation game, Markov graphs

1. INTRODUCTION AND RELATED WORK

The problem addressed in this work is how networks of strate-
gic agents form and how the network formation mechanism
is related to the statistical properties of the observations avail-
able to each agent. The strategic network formation literature
studies how networks form as a result of the strategic choices
of agents deciding whether they should link with other agents
by trading off the benefits associated with connecting to other
agents versus the costs incurred by forming links, i.e., links
are strategic choices made by the agents. Such network for-
mation games have been investigated in the economics liter-
ature since the seminal works of Jackson and Wolinsky [1],
Bala and Goyal [2], Jackson and Watts [3], and Ballester et
al. [4]. All these works assumed complete information avail-
able at all the agents. Only recently, the work of Song and
van der Schaar studied the incomplete information case and
showed the effect of partial information on the final topology
[5]. Moreover, most of these works assumed that agents are
homogeneous, but heterogeneity is clearly an important fact
when the goal of the agents is to produce, disseminate and
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consume (diverse) information. Information networks (i.e.
networks where the goal of the agents is to strategically pro-
duce, disseminate and consume information) have been for-
malized and studied for the first time in Zhang and van der
Schaar [6]-[7]. In these works, agents are considered to be
heterogeneous, i.e. they produce different kinds of informa-
tion (different types of music or news reports) and want to
consume/disseminate diverse information.

Differently from all previous works, where the benefit de-
pends on the distance among the nodes, expressed in number
of hops along the geodesic path connecting them, in this paper
the benefit is a function of the additional information (in the
Shannon sense) that an agent can acquire through new links,
which depends on the statistical relations among the variables
involved. In particular, we will focus on Markov graphs [8],
even if our approach is not restricted to hold only in such a
case. There are then two graphs to keep in mind: the con-
ditional independence graph and the real network composed
of the links formed by the agents. An interesting result is
that, if the cost is sufficiently low, the topology of the net-
work formed by strategic agents tends to coincide with the
topology of the Markov graph. We consider, as examples
of application, the minimization of prediction variance and
the maximization of mutual information. Some numerical re-
sults corroborate our findings, including the case of imperfect
knowledge of the statistical parameters.

2. OBSERVATION MODEL

Given a group of n agents, we denote by Xi the observation
of agent i, with i = 1, . . . , n. We assume that the obser-
vations Xi are instantiations of statistically dependent ran-
dom variables whose statistical dependencies is represented
through the conditional independence graph, defined as fol-
lows [8]: The conditional independence graph associated to
a set of random variables X1, X2, . . . , Xn, is the undirected
graph G = {V , E}, with V and E denoting the sets of n ver-
texes and the set of edges, respectively, with the property that
a link ij is not in the edge set E if and only if Xi is statistically
independent of Xj , conditioned to all other variables. We use
the symbol Xi ⊥⊥ Xj |XA to indicate that Xi is statistically
independent ofXj , conditioned to the variables whose indices
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belong to the set A. We also denote by Ni the boundary of i
(i.e., the set of direct neighbors of i) and by N i the comple-
ment of Ni ∪ i in V . A random vector X := (X1, . . . , Xn)
with graph G satisfies the local Markov property if, for every
vertex i, it holds Xi ⊥⊥ XN i

|XNi . Alternatively, the pair-
wise Markov property states that, for all non-adjacent vertices
i and j, we have Xi ⊥⊥ Xj |XA, where A is the set of all
nodes in V except i and j. Interestingly, these two properties
are equivalent [8]. The Markov graph might be disconnected.
In such a case, the graph will be composed of separated clus-
ters, denoted by Ik, with k = 1, 2, . . . ,K , where K is the
number of clusters, of statistically independent variables. In
the next section, we will show how these properties are going
to affect the final topology of our network formation game.

3. NETWORK FORMATION GAME

Let N = {1, 2, . . . , n} be the set of agents, with n ≥ 3. Each
agent, let us say agent i, possesses some local information re-
sulting from the observation of a random variable Xi. Its goal
is to establish links with other agents if this can bring addi-
tional information, taking into account the cost associated to
forming a link. The strategy adopted by an agent i is denoted
by a tuple gi = {gij}j∈N/i ∈ {0, 1}n−1, where gij = 1 if
agent i forms a link with agent j and gij = 0, otherwise. The
decision to form a link is the result of a trade-off between the
benefit resulting from forming a link and the cost associated
to establishing a link. The topology of the network is then
represented by an adjacency matrix whose rows are the tu-
ple’s gi, for i = 1, . . . , n. The set of all strategies is denoted
by g := (g1, . . . , gn). We denote with Ni the set of neighbors
of agent i in the adjacency graph and with Ci the connected
component (excluding node i) which node i belongs to. We
use a different symbol here for the neighborhood Ni of agent
i in the network, to distinguish it from the neighborhood N i

of the random variable Xi in the conditional independence
graph. For any player i, we call the nodes in N i the Markov
neighbors of i; conversely, the nodes in Ni are simply the
(network) neighbors of i. The utility of agent i is expressed
as:

ui(g) = bi(Ci)−
∑

k∈Ni

cik, (1)

where bi(Ci) is the benefit for player i to belong to compo-
nentCi, while cik is the cost associated to establishing a direct
(one hop) link between nodes i and k1.

In most of the literature on this subject, the benefits are
typically functions of the distance (expressed in terms of num-
ber of hops) between node i and each other node in the subset
Ci. In this work, we significantly depart from this assump-
tion, as in many real circumstances, what really counts is the
extra information acquired through new links (either direct

1In the rest of the paper, we will assume the same cost for all the links,
for simplicity, but the theory holds also for different costs.

or indirect), irrespective of the number of hops between the
nodes. What we propose instead, is a class of benefit func-
tions that depend on the statistical dependencies among the
random variables associated to each node. More specifically,
the benefit for node i to add a link to node j is an increas-
ing function of the mutual information I(Xi;Xj∪Cj

|Ci) be-
tween Xi and Xj (plus, possibly, XCj

, i.e., all variables con-
nected to Xj), conditioned to the variables XCi

, which i is
already connected with. To capture the “Markov” character
of our proposed game, we assume that the function bi(Ci),
for any j ̸= i and j /∈ Ci, satisfies the following properties:

P.1) if Ci ≡ N i and j /∈ N i, ⇒ bi(Ci ∪ j) = bi(Ci);
P.2) if Ci ̸= N i and j ∈ N i, ⇒ bi(Ci ∪ j) > bi(Ci)
P.3) if i ∈ Iℓ and j ∈ Ik, with Iℓ ∩ Ik = ∅,
⇒ bi(Ci ∪ j) = bi(Ci), ∀Ci.

In words, P.1) states that if node i is already connected with
all its Markov neighbors, then it is not worthy to add any fur-
ther neighbor; P.2) states that, whenever a Markov neighbor
is not part of the connected component which player i be-
longs to, it is always beneficial to add such a node in the
neighborhood of i; finally, P.3) states that there is no bene-
fit in connecting two statistical independent sets of nodes. It
is worth adding that properties P.1 and P.2 do not rule out
the possibility that, whenever Ci does not include all Markov
neighbors of i, it might be be beneficial for player i to in-
clude some non-Markov neighbors. Also, since the decision
depends on the cost/benefit net balance, it might also happen
that a Markov neighbor is not added, because its addition in-
curs a cost greater than the benefit.

We consider pure (not mixed) link formation strategies,
where each agent maximizes its own utility given the strate-
gies of the others. The choice of a strategy gi from player i
has an impact on the benefits of, potentially all, other players,
as the inclusion or elimination of a link may affect the topol-
ogy of the connected components Ck associated to (possibly
all) other players. Given this interplay among the players, it is
then of primary importance to study the conditions ensuring
the existence, and possibly uniqueness, of equilibrium points
and to devise network formation strategies with provable con-
vergence properties. Before doing that, it is worth emphasiz-
ing that, when dealing with network formation games, stan-
dard notions like the Nash Equilibrium are not well suited be-
cause the creation or elimination of a link implicitly involves
some form of mutual consent between the players involved.
A more suitable concept, able to capture the need for coordi-
nation is pairwise stability [1]. A network is pairwise stable
with respect to the allocation rules ui(g) if:

(i)∀ij ∈ g, ui(g) ≥ ui(g − ij) anduj(g) ≥ uj(g − ij);
(ii)∀ij /∈ g, if ui(g + ij) > ui(g) thenuj(g + ij) < uj(g).

In words, these conditions state that the addition of a new
link requires mutual consent of the players involved. Con-
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versely, every player has the discretion to unilaterally elimi-
nate a link, without asking for the consent of the other player
involved.

The network formation game starts with an empty net-
work and proceeds through the following stages. At each
stage t, a randomly chosen agent i, characterized by a cur-
rent strategy gt

i and connected component Ct
i, performs the

following steps:
S.1 i picks up at random an agent j /∈ Ct

i; i and j add the link
ij if ui(gt + ij)− ui(gt) ≥ 0 and uj(gt + ij)− uj(gt) ≥ 0;
S.2 if link ij is added, agent i checks if it is still conve-
nient to keep its links with its immediate neighbors Nt

i; agent
i is allowed to sever a link ik with an older neighbor k if
ui(g − ik) > ui(g);
S.3 nodes i and j update the list of their subsets:
gt
i → gt+1

i ; gt
j → gt+1

j .
S.4 repeat until no topology changes occur.

To fully specify the game, for each link ij under test, we
need to specify how to compute the marginal benefit
ui(gt + ij)− ui(gt). We consider the two extreme cases:
G.S) ui(gt + ij)− ui(gt) = bi(Ct

i ∪ j)− bi(Ct
i)− c;

G.C) ui(gt + ij)− ui(gt) = bi(Ct
i ∪ Ct

j)− bi(Ct
i)− c.

In the former case, in forming the link ij, agent i gets only
the benefit coming from j; in the latter case, i gets the bene-
fit from the overall connected component Cj , which agent j
belongs to. The latter case is the most complex to implement,
but it typically outperforms the former case.

The game stops when all players do not have any incen-
tive to modify their own neighborhood. If this situation arises,
the network is in a pairwise stable condition. In principle, of
course, there is no guarantee of convergence of this kind of
game. Nevertheless, for the class of functions fulfilling prop-
erties P.1, P.2, and P.3, we can show that the above game con-
verges to a pairwise stable equilibrium. More specifically, we
prove the following

Theorem: Let us assume that the random variablesX1, . . . , Xn

collected by the n agents are described by a Markov condi-
tional independence graph G. We denote by bmin and bmax

the lower and upper bounds on the marginal benefit: bmin :=
mini,j∈N i

[bi(Ci ∪ j)− bi(Ci)];
bmax := maxi,j∈N i

[bi(Ci ∪ j)− bi(Ci)] . Then, if c < bmin,
game G.S converges to a topology coinciding with the Markov
graph whereas G.C converges to a topology composed by
clusters Ik, with k = 1, . . . ,K , where each Ik is a spanning
tree of Ik, with possibly less (and different) edges than Ik;
If c > bmax, the final topology is fully disconnected.
Proof. Let us start with game G.S. At each stage of the game,
agent i is confronted with three possible situations:
i) j ∈ Ni : In this case, because of P.2, if c < bmin, including
ij is beneficial for both i and j, then, link ij is added;
ii) j /∈ Ni, but j, i ∈ Ik : In this case, the link ij could be

added or not, depending on the net benefits;
iii) j ∈ Ik and i ∈ Iℓ, with Iℓ∩Ik = ∅ : In this case, the link
ij is not added, because of P.3).
From the above, it follows that, sooner or later, all Markov
neighbors will be included in each agent’s list (plus, possibly,
some non-Markov neighbor, in case ii)). But, as soon as the
connected component Ci will include all Markov neighbors
of i, agent i will drop, by a unilateral decision, all its non-
Markov neighbors, because of P.1.). The final result is then a
network topology coinciding with the Markov graph.

Let us consider now game G.C. In this case, by construc-
tion, the two sets Ci and Cj are disjoint, i.e., Ci∩Cj ≡ ∅, be-
cause otherwise Ci and Cj will be part of the same connected
component. This is not possible, because, at each stage, agent
i checks only nodes outside its own connected component.
We have now two possibilities:
i) i ∈ Ii and Cj ∩ Ii ≡ ∅: In this case, link ij is not going to
be added, because of P.3;
i) i ∈ Ii and Cj ∩ Ii ̸= ∅: In this case, link ij can be added,
depending on the cost/benefit balance.
The game stops as soon as Ci contains all Markov neighbors
of node i. Differently from game G.S, Ci might include links
between non-Markov neighbors and might exclude some di-
rect links between Markov neighbors, but the game will end
up with the same clusters as the Markov graph, with possi-
bly different edges within each cluster. No loops will appear,
because of step S.2. Conversely, if c > cmax, the cost for
establishing a link is so high that there is never an advantage
in adding a link. Hence, the final topology is the fully discon-
nected one.

4. APPLICATIONS

Prediction: Let us suppose that the agents are sensors; bi(Xi|Ni)
could measure the precision with which Xi can be predicted
by using the observations collected by the nodes linked to
agent i. We denote by σ2

i.Ci
the estimation variance of Xi,

based on the observations collected by the agents belonging
to Ci. Let us consider game G.S first. In such a case, we
define the function bi(Xi|Ci) as:

bi(Xi|Ci) = log

(
1

σ2
i.Ci

)
. (2)

In such a case, step S.1 of the game forms a link if the follow-
ing inequality is satisfied: σ2

i.Ci
/σ2

i.Ci∪j
> ec. Introducing

the partial correlation coefficient [8], [9] ρij.Ci
between the

variables i and j, conditioned to the set of variables XCi
, the

test in step S.1 can be rewritten as:

ρ2
ij.Ci

> 1− e−c. (3)

The meaning of the test is clear: The link ij is formed if the
partial correlation between Xi and Xj , conditioned to the cur-
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rent neighbors of i, is sufficiently large. The higher is the cost,
the larger the partial correlation must be. It is also straightfor-
ward to check that this test satisfies all properties P.1 ÷ P.3. In
fact, ρij.Ci

= 0 if Ci ≡ N i (P.1) or if i and j belong to sepa-
rated components (P.3); conversely, ρij.Ci

̸= 0 if j ∈ N i.

Mutual information: Let us consider now the case where the
goal of each agent is to maximize the additional information
received when forming a new link, conditioned to the infor-
mation that is already available. In this case, we can define
the function bi(Xi|Ni) as the entropy of Xi, conditioned to
its neighbors. In the case of jointly Gaussian random vari-
ables, the inequality to be checked to decide whether to form
a new link with agent j is

−1

2
log
(
1− ρ2

ij.Ci

)
> c (4)

or, equivalently ρ2
ij.Ci

> 1 − e−2c. Interestingly, at least in
the Gaussian case, this game has exactly the same form as the
previous game and then it fulfills the same properties.

Numerical results: As a numerical test, we considered a sen-
sor network composed of 6 agents observing a Gauss-Markov
Random Field (GMRF). The covariance matrix is generated
as a random definite positive symmetric matrix, having a sparse
inverse. Fig. 1 shows the sum of prediction error variances,
over all the network nodes, obtained by running games G.S
and G.C, vs. the cost per link. The benchmark is given by
the sum of the minimum variances obtained by a centralized
system making predictions over all data (grey curve in the
bottom). The blue line and the red stars represent the case of
perfect knowledge of the covariance matrix. We can check a
number of interesting results. First of all, the overall variance
coincides with the social optimum when the cost is zero and
increases as the cost increases, because some useful links are
dropped. The value reaches an upper bound coinciding with
the case in which the network becomes fully disconnected and
each agent cannot benefit of any exogenous information, be-
cause of the high costs. Secondly, the performance of G.S and
G.C are quite close to each other. However, it is worth clarify-
ing that, for intermediate costs, the results in the two cases do
not necessarily coincide. The more or less similarity is dic-
tated by the structure of the covariance matrix. What really
distinguishes games G.S and G.C is the overall cost paid to
form the network, as reported in Fig. 2 showing the total cost
vs. the cost per link. We can see in fact from Fig. 2 that, at low
costs, game G.C pays a lower cost because it makes possible
for every node to reach every other useful node through less
direct links than game G.S. Finally, in Figs. 1 and 2 we report
also what happens when the covariance matrix is unknown,
but it is estimated from a finite set of Ns data. The pres-
ence of errors induces two kinds of error: an error in the final
topology and an error in the value of the variance. To distin-
guish between these two errors, we report here only the effect
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Fig. 1: Total estimation variance vs. cost.
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of errors in the network topology on the achievable variance.
Interestingly, the results show that the presence of errors can
even make the prediction variance lower, for intermediate cost
values. This happens because, at low costs, in the presence of
errors, agents tend to form more links than necessary, as the
precision matrix will tend to be full. The price paid for such
a behavior is a higher cost, as shown in Fig. 2.

5. CONCLUSION

In this paper we have proposed a network formation game
where the link formation mechanism is based on the statisti-
cal properties of the observations available to each agent. The
network formation game leads to a final topology that tends
to match the independence graph, when the cost associated
to each link is negligible, and to prune such a graph when
the cost increases. Interestingly enough, in the presence of
errors in the knowledge of the statistical parameters, the play-
ers inherently tend to form more links than necessary. This is
indeed a robust behavior, paid by a higher cost.
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