
A LOW COMPLEXITY ITERATIVE SOFT-DECISION FEEDBACK MMSE-PIC DETECTION
ALGORITHM FOR MASSIVE MIMO

Licai Fang∗, Lu Xu∗, Qinghua Guo∗†, Defeng (David) Huang∗, Sven Nordholm‡

∗School of EECE, the University of Western Australia, WA 6009, Australia
†School of ECTE, the University of Wollongong, NSW 2522, Australia

‡Department of ECE, Curtin University, WA 6102, Australia
Email:21252521@student.uwa.edu.au, {lu.xu, qinghua.guo, david.huang}@uwa.edu.au

s.nordholm@curtin.edu.au

ABSTRACT

In MIMO applications, the minimum mean square error parallel in-

terference cancellation (MMSE-PIC) based Soft-Input Soft-Output

(SISO) detector has been widely adopted because of its low com-

plexity and good bit error rate (BER) performance. In this paper,

we firstly propose to use a Gaussian model based MMSE detection

algorithm to implement MMSE-PIC with low complexity. This algo-

rithm, which can detect a length-Nr received data block by a single

Hermitian matrix (sized Nt × Nt) inversion, is especially prefer-

able in Massive MIMO up-link applications where the number of

transmit antennas Nt from each end terminal is much less than the

number of receive antennas Nr in the Base Station. Then we derive

a new method to calculate the matrix inversion by a linear combi-

nation of two matrices, which reduces the complexity from O(N3
t )

to O(N2
t ). At last, in order to improve the system performance for

the first pass when there is no a priori information available, a self-

iteration method is proposed and thus a system performance gain of

1dB to 2dB is achieved at the cost of modest complexity increase.

1. INTRODUCTION

Recent years, Massive MIMO (also known as “Large-Scale Antenna

Systems”, “Very Large MIMO”) has attracted great interest from

wireless communication research community [1]. Research shows

that with Massive MIMO, the throughput and spectrum efficiency

of wireless systems can be greatly improved [2]. Together with the

iterative detection and decoding (IDD) technology, linear detection

algorithm like the minimum mean square error parallel interference

cancellation (MMSE-PIC) algorithm [3] [4] is attractive for detec-

tion of Massive MIMO signals because of its low complexity and

good bit error rate (BER) performance.

To reduce the burden of performing matrix inversion for detect-

ing every symbol in MMSE-PIC algorithm, an iterative method to

implement the MMSE filter was proposed in [5]. Then [6] presented

a method which needs pre-computing one matrix inversion only and

then detects every symbol with low complexity incremental calcula-

tions. In 2011, [7] proposed a well optimized version of MMSE-PIC

and implemented it in ASIC which has been widely cited as the state-

of-the-art MIMO detection implementation benchmark. Based on

the result of [7], MMSE-PIC has been employed in Massive MIMO
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detection applications in [8]. Both [7] and [8] selected the non-

Hermitian matrix to perform MMSE filter calculation, as the Her-

mitian matrix inversion had numerical stability issue. Recently, [9]

proposed a more efficient ASIC implementation compared with [7].

The major computing saving comes from the matrix inversion part

where LDL decomposition based matrix inversion algorithm can be

employed because the matrix to be inverted in [9] is Hermitian posi-

tive definite (HPD) [10] [11]. But unfortunately, because the matrix

to be inverted has the size of Nr × Nr where Nr is the number of

receive antennas, that algorithm is not suitable for Massive MIMO

up-link applications, where the number of transmit antennas Nt from

each end terminal is much less than the number of receive antennas

Nr in the Base Station.

In [12], we proposed a generic method to implement a Soft-Input

Soft-Output (SISO) detector, where the a posteriori distribution of

a multivariate Gaussian vector was calculated first, followed by the

calculation of the extrinsic information of each individual variable.

The calculation of multiple variables together naturally enables shar-

ing of computational units, thereby reducing system complexity. So

in this paper, we firstly employ [12] to implement the MMSE-PIC in

MIMO applications, which can reduce system complexity as the ma-

trix to be inverted is a HPD matrix with size Nt×Nt. A HPD matrix

enables us to use the more computational efficient matrix inversion

method.

In order to reduce the complexity of the second and subsequent

passes, we derive a new method to calculate the matrix inversion by

a linear combination of two matrices which have been computed in

the first pass (from detector to decoder). With this method, we can

reduce the complexity of matrix inversion from O(N3
t ) to O(N2

t )
along with small performance penalty. In comparison to other ma-

trix inversion approximation methods, the proposed method does not

rely on any special requirement for the size of the random channel

matrix.

The power of turbo processing comes from the more and more

reliable a priori information from the decoder, but for the first pass,

there is no such information available. At the same time, as the

employed iterations between the decoder and the detector will in-

evitably reduce the throughput and increase the system latency, for

high speed applications it is difficult to perform IDD when they run

at the highest throughput [7] [9]. Considering this, it is desirable to

improve the first pass performance. So, we propose a self-iteration

method, which feeds back the detector’s soft decision output directly

to its a priori input, to improve the performance of the detector. By

employing a low cost approximation of matrix inversion, the method

of self-iteration is attractive due to the fact that with only a slight
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Fig. 1. Iterative Detection and Decoding of a MIMO Communication System

increase of complexity, a performance gain of 1dB to 2dB can be

achieved. It is worth noting that this self-iteration method also ap-

plies to non-turbo systems to improve system performance.

The remainder of this paper is organized as follows. Section II

describes the turbo-MIMO system model. Then the Gaussian model

based MMSE detection algorithm is detailed in Section III. In Sec-

tion IV, we introduce a proposal of how to reduce the complexity

of matrix inversion and the self-iteration method to improve the first

pass BER performance. Simulation results are shown in Section V.

The notations used in this paper are as follows. Lower and upper

case letters denote scalars. Bold lower and upper case letters repre-

sent column vectors and matrices, respectively. We use ∝ to denote

equality of functions up to a scale factor. The superscriptions “T ”
and “H” denote the transpose and conjugate transpose, respectively.

2. SYSTEM MODEL

As shown in Fig. 1, we consider a coded MIMO system with Nr

receive antennas and Nt transmit antennas. The received signal at

the receiver is as follows

y = Hx + w (1)

where y denotes a length-Nr observation vector, H denotes an

Nr × Nt MIMO system transfer matrix, w denotes a length-Nr

circularly symmetric additive white Gaussian noise (AWGN) vec-

tor with PDF CN (w; 0, 2σ2I), and x = [x1, x2, · · · , xNt]
T is

mapped from an interleaved code sequence c, i.e., each xn ∈ A =
{α1, α2, · · · , α2Q}(|A| = 2Q) corresponds to a length-Q subse-

quence of c denoted by cn = [cn,1, cn,2, · · ·, cn,Q]T .

The task of the detector is to compute the log-likelihood ratio

(LLR) for each code bit cn,q , which can be expressed as [13]

L(cn,q) = ln
P (cn,q = 0|y)

P (cn,q = 1|y)
= ln

∑

xn∈A0
q

P (xn|y)

∑

xn∈A1
q

P (xn|y)
(2)

where A0
q (A1

q) denotes the subset of all αi ∈ A corresponding to

a binary subsequence with the qth bit given by 0 (1). The extrinsic

LLR [12]

Le(cn,q) = L(cn,q)− La(cn,q)

= ln

∑

xn∈A0
q

P (y|xn)P (xn)

∑

xn∈A1
q

P (y|xn)P (xn)
− La(cn,q)

(3)

will be the input to the decoder, where La(cn,q) is the output ex-

trinsic LLR of the decoder in the last iteration and P (xn) can be

calculated from La(cn,q).

3. GAUSSIAN MODEL BASED MMSE DETECTION

ALGORITHM

Let G = HHH and ŷ = HHy, the linear MMSE detection algorithm

in [12] is shown in Algorithm 1. Due to the use of the interleaver,

different bits of a symbol can be assumed to be independent, and

thus P (xn = αi) =
∏Q

j=1 p(cn,j = si,j) where p(cn,j = si,j) is

calculated from the a priori LLR of La
j with the LLR definition of

La
j = ln

p(cn,j=0)

p(cn,j=1)
.

Algorithm 1 Gaussian model based MMSE detection

Input: ŷ,G, La

Output: Le ⊲ extrinsic LLR value for every bit
1: Calculate a priori mean m and variance V
2: mn =

∑

αi∈A

αiP (xn = αi) ⊲ m = [m1,m2, · · · , mNt
]T

3: vn =
∑

αi∈A

|αi −mn|
2 P (xn = αi) ⊲ V = diag[v1, v2, · · · , vNt

]

4: Calculate a posteriori mean mp and variance Vp

5: m̂ = Gm

6: Vp = (V−1 + 1
2σ2 G)−1

7: mp = m + 1
2σ2 Vp(ŷ − m̂)

8: Calculate extrinsic mean me
n and variance ven

9: ven = ( 1
v
p
n

− 1
vn

)−1 ⊲ v
p
n is the nth diagonal element of Vp

10: me
n = ven(

mp
n

v
p
n

− mn

vn
) ⊲ m

p
n is the nth element of mp

11: Calculate extrinsic LLR Le

12: Le(cn,q) = ln

∑

αi∈A0
q

exp
(

−
|αi−me

n|2

ven

) ∏

q
′
6=q

P (c
n,q

′ =s
i,q

′ )

∑

αi∈A1
q

exp
(

−
|αi−me

n|2

ven

) ∏

q
′
6=q

P (c
n,q

′ =s
i,q

′ )

It is worth noting that the LLR calculation in Line 12 can be

further simplified by employing the constellation regularity after ap-

plying the log max approximation and ignoring the a priori terms

like [14].

4. COMPLEXITY REDUCTION

4.1. Low Complexity Matrix Inversion

It can be seen that the matrix inversion in Line 6 of Algorithm 1

contributes the major complexity of N3
t /2. If Nr and Nt are large

enough (e.g. greater than 200 [15]), matrix G tends to be an identity

matrix from random matrix theory, which makes the computational

complexity of this matrix inversion trivial. On the other hand, if

Nr is much bigger than Nt (like Nr/Nt > 8 [16]), matrix G be-

comes diagonal dominant, then the 2-term Neumann series can be

employed to approximate this matrix inversion with complexity of

O(N2
t ). We aim to find a more generic method which does not de-

pend on any special requirement for the size of random matrix H.

As [17], by averaging the diagonal elements of V, we have V = kI
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where k =
∑

n vn

Nt
. So, Line 6 of Algorithm 1 can be rewritten as

V
p = (k̄I +

1

2σ2
G)−1 (4)

where k̄ = 1/k = 1/(
∑

n
vn/Nt). For the first pass, there is no a

priori information available, thus we assume m to be a zero vector

and V to be the identity matrix I. So, we change (4) to

V
p =

(

(I +
1

2σ2
G) + (k̄ − 1)I

)−1

= (A + (k̄ − 1)I)−1
(5)

where A = I + 1
2σ2 G. Thus, we can represent (5) as a func-

tion of k̄ as Vp = f(k̄). By using the approximation of f(k̄) =

f(1) + f
′

(1)(k̄− 1) and the derivative of a matrix inverse dM−1

dk
′ =

−M−1 dM

dk
′ M−1, we have a direct formula to compute this matrix

inversion as

V
p = A

−1 − (k̄ − 1)A−1
A

−1. (6)

We can pre-compute E1 = A−1 and E2 = A−1A−1 and save them

in memory. Then the matrix inversion can be calculated by linear

combination of these two fixed matrices as

V
p = E1 − (k̄ − 1)E2. (7)

Using this method, we reduce the complexity of matrix inversion

from O(N3
t ) to O(N2

t ). It is worth noting that [6] also proposed

an approximation method which incrementally calculates the second

and subsequent pass matrix inversion based on a pre-computed exact

matrix inversion result, but the method is only applicable to constant

envelope constellations. And in [18], a singular value decomposition

(SVD) based matrix inversion method was proposed, but this method

needs linear combination of Nt pre-computed matrices and thus has

higher computational complexity than the proposed method.

4.2. A Heuristic Approach to Solve the Stability Problem

As the approximation of f(x) = f(1) + f
′

(1)(k̄ − 1) has an error

term of O((k̄ − 1)2), to achieve a high accuracy (k̄ − 1) must be

small enough (|k̄−1| < 1). But unfortunately this constraint cannot

always be met because when the a priori information becomes more

and more reliable, vn will be less than 0.5, leading to a unstable

BER performance. Heuristically, we propose to revise k̄ as k̄ =
1/(

∑

n
vn/Nt + 0.5), thus Line 6 of Algorithm 1 is replaced with

the following:

1: k̄ = 1/(
∑

n
vn/Nt + 0.5)

2: Vp = E1 − (k̄ − 1)E2

Hereafter, we refer this updated algorithm as Algorithm 1̂.

4.3. Computational Complexity Comparison

In [7], a well optimized MMSE-PIC algorithm, which employs only

one matrix inversion to detect a length-Nr received data block for

every iteration, has been proposed and implemented in ASIC and

now it has been widely cited as a MMSE-PIC implementation bench-

mark. The core part of this algorithm is listed in Algorithm 2 which

is equivalent to Line 4 to Line 10 of Algorithm 11. From Algo-

rithm 2, it is easy to see that the computational complexity of Line

1 is N2
t + N3

t as the matrix to be inverted is not Hermitian. By

contrast, the complexity of the matrix inversion in Algorithm 1 is
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Fig. 2. Iterative Soft-in Soft-Out MMSE Detector

N3
t /2 by using LDL decomposition and modified backwards sub-

stitution [11]. As HHH is a Hermitian matrix, we assume that this

matrix multiplication has a complexity of NrN
2
t /2.

Algorithm 2 Core Part of MMSE-PIC Algorithm in [7]

1: A−1 = (GV + 2σ2I)−1 ⊲ One matrix inversion per iteration

2: for n = 1 to Nt do

3: ȳn = ŷ −
∑

j,j 6=n

gjmj ⊲ gj is jth column of G

4: µn = aH
n gn ⊲ an is the nth row of A−1

5: x̂n = aH
n ȳn

6: me
n = x̂n/µn ⊲ extrinsic mean

7: ven = 1/µn − vn ⊲ extrinsic variance

8: end for

We summarize the complexity of above mentioned algorithms in Ta-

ble 1. From this table, Algorithm 1 and Algorithm 2 have the same

pre-computing complexity. But for every pass Algorithm 1 has only

half of the complexity of Algorithm 2. At the same time, compared

to Algorithm 2, the proposed Algorithm 1̂ has great computation

saving for the second and subsequent pass processing while main-

taining the same level of pre-computing complexity.

Table 1. Computational Complexity Comparison

Pre-computing Every Pass

Algorithm 2 1
2
NrN

2
t +NrNt 4N2

t +N3
t

Algorithm 1 1
2
NrN

2
t +NrNt 2N2

t + 1
2
N3

t

Algorithm 1̂
1
2
NrN

2
t +NrNt +N3

t 4N2
t

4.4. Iterative Method to Improve First-pass Performance

By employing SISO MMSE’s soft decision output as its a priori

input (see Fig. 2), the SISO MIMO detector itself can run in an it-

erative manner and we call it iterative MMSE detection algorithm

(I-MMSE). Compared to conventional MMSE turbo receiver, a 1dB

to 2dB performance gain can be obtained. Actually, the fact that

self-iteration can improve system performance had been observed in

other literatures [8] [19] where only one self-iteration has been re-

ported. By contrast, the simulations show that there is performance

gain up to four iterations. More importantly, after employing the

proposed low complexity matrix inversion, I-MMSE seems more at-

tractive because of its much lower complexity cost of 4N2
t for the

second and subsequent pass calculation.

1Algorithm in [17] and Algorithm 2 in [7] are both equivalent or closely
approximate to the famous Wang-Poor algorithm [3], and in [12] we have
proved that Algorithm 1 is equivalent to [17]. Thus, Algorithm 1 and Algo-
rithm 2 are approximately equivalent.
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5. SIMULATION RESULTS

5.1. Simulation Setup

We consider a Rayleigh slow fading random channel so H does not

change over a codeword. The elements of H is independent and iden-

tically Gaussian distributed with zero mean and variance 1. During

simulation, we assume perfect channel information is available in

the detection module. A rate-1/2, regular (3,6) low-density parity-

check (LDPC) code with codeword length of 2000 bits is employed

as the channel code and the maximum number of iterations of the

decoder is 25. The square quadrature amplitude modulations (2Q-

QAM) with Gray mapping are used. For each signal-to-noise (SNR)

value, we run at least 100000 codewords in the Monte Carlo simu-

lations. We set the scaling factor of output LLR to 0.7 [20]. In the

simulations, there are clipping both in soft-output part and soft-input

part of the detector. The soft-in clipping threshold2 for the a priori

LLR is ±2, and soft-output module constrains the output LLR range

to [−50, 50].

5.2. BER Performance

Fig. 3 shows the performance comparison between exact implemen-

tation (Algorithm 1) and the proposed approximation (Algorithm

1̂) of a 16×16 MIMO system with 4-QAM, 16-QAM and 64-QAM

signaling. The legend of Iter=0 stands for the the first pass without

the a priori information. The legend of Iter=2 stands for perfor-

mance after running two outer loops (between decoder to detector).

It is clear that this proximation has nearly no performance loss for

4-QAM signaling, but has small performance loss for 16-QAM and

64-QAM compared to the exact one. For IDD systems employing I-

MMSE algorithm, there exist two iterative loops. The self-iteration

of detector is the inner loop. The outer loop from the decoder to the

2This clipping threshold can also help resolve the numerical stability issue
of Line 10 of Algorithm 1 when the a priori variance vn is close to zero.
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Fig. 4. BER Performance Comparison Between Different Number

of Self-iterations for 32× 32 MIMO.

detector is the same as that in a typical turbo system. Through ex-

tensive simulation we have found that the self-iteration method has

only marginal performance gain beyond the first outer pass, thus we

only perform the inner loop for the first outer pass. Then we compare

performances between I-MMSE (using Algorithm 1̂ together with

low complexity inner loop) and the conventional MMSE-PIC (using

Algorithm 1) for MIMO systems with different sizes and various

modulation signaling. In Fig. 4, the number in the bracket denotes

the number of self-iterations and IterX denotes X outer iterations. It

is clear that the proposed method can significantly improve the first

pass system performance (1dB to 2dB at BER of 10−4). It can also

be seen that with more than two self-iterations there is still perfor-

mance gain although after four self-iterations the performance gain

is marginal. The simulations show that similar performance gain can

also be obtained in other sized MIMO systems like 4×4 and 16×16
(not shown due to the page limitation).

6. CONCLUSION

In this paper, we firstly employed a low complexity Gaussian model

based MMSE algorithm to perform the MMSE-PIC detection. This

algorithm can detect a length-Nr received data block with only one

Hermitian matrix inversion, and the matrix to be inverted has the size

of Nt × Nt which is especially preferable for Massive MIMO up-

link applications where Nt << Nr . Then we proposed a generic

method to reduce the computational complexity of the matrix inver-

sion from O(N3
t /2) to O(2N2

t ) without the dependance on the size

of the random channel matrix. At last, a self-iteration method was

proposed to improve a turbo receiver’s first pass performance by 1dB

to 2dB with only a small complexity increase.
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