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ABSTRACT

We investigate the joint optimization of the group power alloca-
tion and prebeamformer for joint spatial division and multiplexing
(JSDM) in massive MIMO downlink systems. In contrast with the
approximated block diagonalization (ABD) prebeamformer which
is derived by heuristic method in the original JSDM scheme and is
restricted to semi-unitary matrix, general prebeamforming matrix to-
gether with group power is optimized in the framework of per-user
ergodic rate balancing. Thus, both flexibility and optimality are in-
tegrated in our work. To ease the difficulty in optimizing the exact
ergodic rate, the deterministic approximation is employed. Based on
the uplink-downlink duality approach, an iterative algorithm alter-
natively updating group power and prebeamformers is designed. It
is shown that the optimization subproblems of the algorithm can be
solved efficiently. Compared with the classic signal-to-noise-and-
interference ratio (SINR) balancing algorithm for MISO downlink,
the proposed algorithm has similar properties of both convergence
and optimality. Numerical experiments are conducted to validate the
effectiveness of the proposed algorithm.

Index Terms— Ergodic rate balancing, joint spatial division and
multiplexing, power allocation, prebeamforming, massive MIMO

1. INTRODUCTION

Through deploying basestation (BS) with large-scale antenna ar-
ray, massive MIMO [1–5], the newly emerged technique, aims at
boosting the downlink performance such as spectral efficiency, re-
liability, energy efficiency, etc [4] to meet the challenge of the next
generation wireless communications. The frequency-division multi-
plexing (FDD) system is a candidate for massive MIMO implemen-
tation, but downlink beamforming for FDD massive MIMO is gen-
erally thought of as improper since the cost of training and channel
state information (CSI) feedback brought out by large-scale array are
too high to be affordable. To alleviate the problem, many advanced
techniques have been developed [6–10].

The joint spatial division and multiplexing (JSDM) scheme pro-
posed by Nam et al. in [7, 8] is among the recent efforts to make
FDD massive MIMO effective. Especially the per-group process-
ing (PGP) approach for JSDM can greatly reduce the training and
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CSI feedback load. In JSDM based on PGP, users are categorized
into different groups according to the similarity of their channel co-
variance matrices (CCM). Prebeamforming is performed upon the
channel matrix of each group to yield an effective channel matrix of
lower dimension, and the conventional zero-forcing (ZF) or regular-
ized ZF (RZF) beamforming is then applied to user signals within
each group. Because for each group the conventional beamforming
is performed in a low-dimensional space, the amount of training and
CSI feedback can thus be greatly saved.

In [7,8], the approximated block diagonalization (ABD) method
is used to derive the prebeamforming matrices. However, ABD
method is heuristic and imposes semi-unitary constraints upon the
prebeamforming matrices. So it is possible that prebeamforming
based on ABD method is not able to fully cancel the inter-group
interference (IGI). To overcome such shortcomings, we consider the
design of general prebeamforming matrix under the per-user ergodic
rate balancing criterion, which guarantees fair rate allocation when
users are experiencing uneven channel conditions. In addition, we
also introduce the group power allocation into the optimization to
further improve the performance. But for simplicity, ZF beamform-
ing is used within each group. As the exact ergodic rate is difficult to
optimize, deterministic approximation in [11] is used to yield an ap-
proximated rate balancing problem. Based on the uplink-downlink
duality [12], we treat the problem in the dual uplink channel. Sim-
ilar to the signal-to-interference-and-noise ratio (SINR) balancing
algorithm for MISO downlink [12], we propose an iterative algo-
rithm which alternatively updates the uplink group power and the
prebeamformers. In the algorithm, the power allocation is solved
by an eigenvalue problem while the prebeamformer is solved by
a subproblem, the optimal solution of which can be obtained in
semi-closed form in the sense that eigenvalue decomposition is the
only step involving iterative computation. Due to the resemblance
in structures, the results on convergence and global optimality of the
classic SINR balancing algorithm in [12] can be directly applied to
the proposed algorithm.

Notations: IN is the identity matrix of N × N , and RM×N
and CM×N stand for the sets of M × N real and complex ma-
trix, respectively. � are � are the positive definite and semidefi-
nite signs respectively. λi(A) is the ith largest eigenvalue of matrix
A. diag{x1, . . . , xN} is a diagonal matrix with diagonal entries
x1, . . . , xn. 1 = [1, . . . , 1]T . R(A) is the range space and N (A)
is the null space of matrix A. ‖ · ‖ is the spectral norm.

2. SYSTEM MODEL

Suppose the BS has M antennas. In JSDM scheme based on
PGP, the total K users are divided into N groups, where group n
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(n = 1, . . . , N ) has Kn users with
∑N
n=1 Kn = K. The prebeam-

former for group n is denoted as Bn ∈ CM×Mn . The maximum
BS transmit power is PT , and the group power vector is p ∈ RN×1

with its nth entry pn ≥ 0 as the power allocated to group n. Then,
p should satisfy the total power constraint 1Tp ≤ PT .

Let Hn = [hk1 , . . . ,hKn ]H ∈ CKn×M be the channel matrix
for group n with hkn ∈ CM×1 as the channel vector for the knth
user (kn = 1, . . . ,Kn). Suppose the channels of users in group
n undergo Rayleigh fading with CCM Rn, then we have hkn ∼
CN (0,Rn). For rank(Rn) = rn, the dimension of R(Bn), Mn

should satisfy Mn ≤ rn. With prebeamforming matrices {Bn},
the effective channel matrix of group n is Ĥn = HnBn whose
CCM is Σn = BH

n RnBn. In this paper, we assume that the BS
has only statistical CSI of Hn (the CCM) but perfect knowledge of
instantaneous Ĥn.

By employing ZF beamforming and allocating equal power to
users within each group, the received signal vector for group n is
given by

yn = HnBnFnsn + Hn

∑
l 6=n

BlFlsl + vn, (1)

where the signal vector of group n is sn, the ZF beamformer Fn =
ξn
Kn

ĤH
n (ĤnĤH

n )−1 with ξn = pn/tr((ĤnĤn)−1), and the noise
vector vn ∼ CN (0, IKn).

With notations above, the achievable ergodic rate of user kn in
group n is Rkn = E[log2(1 + γkn)] where

γkn =
ξn/Kn

hHkn

(∑
l 6=n BlFlFHl BH

l

)
hkn + 1

(2)

is the instantaneous SINR at user kn.

3. JOINT GROUP POWER ALLOCATION AND
PREBEAMFORMER OPTIMIZATION

With group power p and prebeamformers {Bn} as the optimiza-
tion variables, the per-user ergodic rate balancing problem, or the
minimum ergodic user rate maximization problem, can be formu-
lated as

(P1) max
p,{Bn}

min
kn,n

Rkn , s.t. 1Tp ≤ PT . (3)

Unfortunately, the exact expression of the ergodic rate Rkn is diffi-
cult to attain and therefore the problem (P1) is not amenable to opti-
mization. We bypass such difficult by appealing to the deterministic
approximation of the ergodic rate, which was first proposed in [11]
and was later applied to anaylze the performance of JSDM scheme
in [7, 8]. Based on the results in [7, 8], we have the approximated
per-user ergodic rate balancing problem which is equivalent to the
following γ̄DL

n balancing problem.

(P2) max
p,e,{Bn}

min
n
γ̄DL
n , s.t. en =

1

Mn
tr(ΣnTn), ∀n,1Tp ≤ PT ,

(4)
where

γ̄DL
n =

pn/(cnKn)∑N
l=1,l 6=n anlpl/cl + 1

, (5)

is the deterministic counterpart of γkn with

anl =

1
M2
n

tr(ΣnTnΣnlTn)

e2
n − Kn

M2
n

tr((ΣnTn)2)
, cn =

1
M2
n

tr(ΣnTnBH
n BTn)

e2
n − Kn

M2
n

tr((ΣnTn)2)
,

(6)

and Tn = (Kn
Mn

Σn
en

+ IMn)−1, e = [e1, . . . , en]T ..
Notice that for fixed {Bn}, optimization over p is identical to

the power allocation problem for SINR balancing in MISO down-
link [12]. So the result in [12] for popt is immediately applicable,
and we simply state the result. Denote C = diag{c1, . . . , cN} and
K = diag{K1, . . . ,KN}, and nonnegative matrix A ∈ RN×N
whose elements [A]nl = anl for n 6= l and 0 for n = l. The
optimal popt is solved by the eigensystem below.[

CKAC−1 CK1
1TCKAC−1

PT

1TCK1
PT

] [
popt

1

]
= Υ

[
popt

1

]
= λ1(Υ)

[
popt

1

]
,

(7)
and the optimal balanced γ̄DL

n is γ̄opt = 1/λ1(Υ).
To solve the optimal {Bn} and e, we resort to the uplink-

downlink duality approach in [12] and have the dual uplink power
allocation problem:

max
q

min
l
γ̄UL
l , s.t. 1Tq ≤ PT (8)

where q ∈ RN×1 is the uplink power allocation vector, and

γ̄UL
l =

ql/Kl∑N
n=1,n6=l alnqn + cl

, l = 1, . . . , N, (9)

is the uplink counterpart of γ̄DL
n . Likewise, the optimal uplink power

allocation is solved by the eigensystem:[
KAT CK1

1TKCT 1
PT

1TCK1
PT

][
qopt

1

]
= Λ

[
qopt

1

]
= λ1(Λ)

[
qopt

1

]
, (10)

with λ1(Λ) = λ1(Υ) = 1/γ̄opt.
For fixed q, as in [12], the prebeamformer optimization for

{Bn} and e is treated in the uplink channel and is a γ̄UL
l maximiza-

tion problem which by simple derivation can be cast as

(Q1) min
Bl,el

1
M2
l

tr(ΣlTlΘlTl)

e2
l −

Kl
M2
l

tr(ΣlTlΣlTl)
, s.t. el =

1

Ml
tr(ΣlTl), (11)

where Θl = BH
l SlBl with Sl = IM +

∑
n=1,n6=l qnRn. In such

formulation, the problems of prebeamforming in different groups are
decoupled. But without simple structure to utilize, solving the opti-
mal Bopt

l and eopt
l of (Q1) could be quite involved. Next we give the

key theorem in our work which reveals the structure of the solution
of (Q1) and greatly facilitates the optimization.

Theorem 1. The problem (Q1) is equivalent to

(Q2) min
0≺Xl≺ 1

Kl
IMl

,Wl

tr(XlW
H
l SlWlXl)

1−Kltr(X2
l )

,

s.t. tr(Xl) = 1,WH
l RlWl = IMl ,

(12)

where Xl = diag{x1, . . . , xMl} with x1 ≥ · · · ≥ xMl > 0, and
Wl ∈ CM×Ml . If Xopt

l and Wopt
l solve (Q2), the solution for (Q1)

is Bopt
l = Wopt

l ( 1
Ml

(Xopt
l )−1 − Kl

Ml
IMl)

−1/2 and eopt
l = 1.

Proof. First take variable change Wl = Bl/
√
el to get the problem

min
Wl

1
M2
l

tr
(
Σ̃lT̃lΘ̃lT̃l

)
1− Kl

M2
l

tr
(

(Σ̃lT̃l)2
) , s.t.

1

Ml
tr(Σ̃lT̃l) = 1. (13)
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where Σ̃l = WH
l RlWl = Σl/e

2
l , Θ̃l = Θ/e2

l = WH
l SlWl,

and Tl = (Kl
Ml

Σl + IMl)
−1.

The problem in (13) is equivalent to (Q1) in that for any Wl we
can always let Bl = Wl and el = 1 to get feasible Bl and el pair
for (Q1) which also yields the same objective function value of (Q1)
as that of (13). We further introduce auxiliary variable Y � 0 and
consider the problem below.

min
Wl,Y�0

1
M2
l

tr
(

Σ̃l

(
Kl
Ml

Σ̃l + Y
)−1

Θ̃l

(
Kl
Ml

Σ̃l + Y
)−1

)
1− Kl

M2
l

tr

((
Σ̃l

(
Kl
Ml

Σ̃l + Y
)−1

)2
) ,

s.t.
1

Ml
tr

(
Σ̃l

(
Kl

Ml
Σ̃l + Y

)−1
)

= 1.

(14)
The problem in (14) is also equivalent to (13) and hence to (Q1).
To see this, note that with Cholesky decomposition Y = GHG,
the invertible transform Wl → G−HWlG

−1 will give a feasible
solution to (13) and make the objective function in (14) equal to that
in (13).

Now let Xl = 1
Ml

(Kl
Ml

Σ̃l + Y)−1 ≺ 1
Kl

Σ̃l. With fixed Wl,
the transform between Xl and Y is always invertible, so the problem
in (14) can be reformulated as an optimization over Xl and Wl:

min
Wl,0≺X≺ 1

Kl
Σ̃l

tr
(
Σ̃lXlΘ̃lXl

)
1−Kltr

((
Σ̃lXl

)2
) , s.t. tr

(
Σ̃lXl

)
= 1. (15)

It can be verified that the objective function and the constraints
in (15) are invariant to transform Wl → WlP with any invertible
matrix P, so we can add an extra constraint Σ̃l = WH

l RlWl =
IMl to the problem in (15). Further notice that as for the prob-
lem in (15), both the objective function and the constraints with
the additional one just mentioned are also invariant to transforms
Xl → QXlQ

H and Wl →WlQ
H with any unitary matrix Q, we

may therefore as well assume that Xl is diagonal and without loss of
generality the diagonal elements of Xl are arranged in descending
order.

In sum, after a series of transforms above, we arrive at the prob-
lem (Q2) which is equivalent to (Q1). Once we solve (Q2), we can
get the optimal solution of (Q1) as is described in the proposition by
performing these transforms backwards.

Theorem 1 reveals that the solution for (Q1) is composed of two
parts: the matrix Wl which reduces the dimension and diagonalizes
Rl, and the diagonal matrix Xl which puts weights along the di-
rections of Wl’s column vectors. Propositions 1 and 3 give a full
characterization of the optimal Wopt

l and Xopt
l . Proposition 1 solves

Wopt
l for fixed Xl, which turns out to be independent from specific

Xl and thus is optimal for (Q2). In Proposition 3, the optimal Xopt
l

is solved with Wopt
l . The computation of Wopt

l and Xopt
l only in-

volves eigenvalue decomposition and therefore can be carried out
efficiently.

Proposition 1. Let Sl = GH
l Gl with invertible upper-triangular

matrix Gl ∈ CM×M , and the eigenvalue decomposition Rl =
UlΛlU

H
l with diagonal matrix Λl ∈ Rrl×rl and semi-unitary ma-

trix Ul ∈ CM×rl . Denote semi-unitary matrix U⊥l ∈ CM×(M−rl)

with U⊥Hl Ul = O, Z1 = GlU
⊥
l , Z2 = GlUlΛ

−1/2
l , Z3 =

ZH2 (IM − Z1Z
+
1 )Z2 � 0 with Z+

1 as the Moore-Penrose inverse

of Z1, and the diagonal matrix D = diag{λ1, . . . , λMl} where
λi = λrl−i+1(Z3) (i = 1, . . . ,Ml). Then, the optimal Wopt

l of
(Q2) is given by

Wopt
l = UlΛ

−1/2
l Qopt + U⊥l Zopt, (16)

where Qopt ∈ Crl×Ml satisfies QoptHQopt = IMl and QoptHZ3Q
opt =

D, and Zopt = −Z+
1 Z2Q

opt.

Proof. Any Wl satisfying WH
l RlWl = IMl can be written as

Wl = UlΛ
−1/2
l Q + U⊥l Z where Q ∈ Crl×Ml with QHQ =

IMl , and Z ∈ C(M−rl)×Ml . So Wopt
l is solved by optimizing Z

and Q. For fixed Q, the optimization over Z can be identified as
an matrix-weighted minimum norm problem, which gives solution
Z′ = −Z+

1 Z2Q. Substituting Z′ back into the objective function of
(Q2) gives the optimization problem for Qopt:

min
QHQ=IMl

tr
(
X2
lQ

HZ3Q
)
. (17)

Qopt is then obtained by the results in [13] and [14].

The property of the diagonal elements of D is presented in the
proposition below.

Proposition 2. Suppose that maxl ‖Rl‖ < C <∞ and λrl(Rl) >
ε > 0 for ∀l. The diagonal elements of D satisfy 1/(C(1 +
PTNC)) < λ1 ≤ · · · ≤ λMl < 1/ε.

Proof. By using the bounds on {Rl} and the expression of Sl, we
have IM ≺ Sl � (1 + PTN maxl ‖Rl‖)IM ≺ (1 + PTNC)IM .
Define Z⊥1 = G−Hl Ul which satisfies rank(Z⊥1 ) + rank(Z1) = M

and (Z⊥1 )HZ1 = O. Therefore, R(Z⊥1 ) = N (Z1) and IM −
Z1Z

+
1 = Z⊥1 (Z⊥1 )+ = G−H1 Ul(U

H
l SlUl)

−1UH
l G−1

l , which
gives Z3 = Λ

−1/2
l (UH

l SlUl)
−1Λ

−1/2
l . Consequently, with the

bounds on Sl and {Rl}, we get 1
C(1+PTNC)

Irl ≺ Z3 ≺ 1
ε
Irl by

which the proposition is proved.

Proposition 3. Denote the largest generalized eigenvalue of matrix
pencil {11T −KlIMl ,D} as σ and the corresponding generalized
eigenvector as xext. Then σ > 0 and if the assumptions on {Rl}
in Proposition 2 hold, the optimization problem for Xl = diag{xl}
with Wopt

l

min
xl

xTl Dxl
1−Kl‖xl‖2

, s.t. 1Txl = 1,K−1
l > x1 ≥ · · · ≥ xMl > 0

(18)
has optimal solution xopt

l = xext/1
Txext. Further, the entries of xopt

l

satisfy 1/Kl > 1/(Kl + δ(Ml − Kl)) > xopt
1 ≥ · · · ≥ xopt

Ml
>

1/(Kl + δ−1(Ml −Kl)) > 0 where δ = ε/(C(1 + PTNC)) > 0.

Proof. 1/σ is in fact a lower bound of the optimal objective function
value of (18), which is from

σ = max
x

xT
(
11T −KlIMl

)
x

xTDx
≥ max

1T x=1

1−Klx
Tx

xTDx
. (19)

In addition, λ1(11T −KlIMl) = Ml−Kl and 1
C(1+PTNC)

IMl ≺
D ≺ 1

ε
IMl , which is from Proposition 2. So ε(Ml − Kl) < σ <

(Ml−Kl)(C(1+PTNC)). The rest is to prove xopt = xext/1
Txext

is feasible for (18) and satisfies the inequality in the proposition.
As (11T − KlIMl)xext = σDxext ⇒ xopt

l = xext/1
Txext =

(KlIMl + σD)−11, we get xopt
i = 1/(Kl + σλi) where xopt

i is the
ith entry of xopt

l . Proposition 3 is then readily proved through the
bounds on σ above and the inequalities of λi in Proposition 2.
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1 initialization: m = 0, q(0) =
PT
N 1,R(0) = 0, tol = 10−3;

2 repeat
3 Solve B

(m+1)
l and e(m+1)

l through Theorem 1, and Propositions 1
and 3, l = 1, . . . , N ;

4 Solve (8) for q(m+1) and γ̄opt(m+1);
5 R(m+1) = log2(1 + γ̄opt(m+1));
6 m = m+ 1;
7 untilR(m) − R(m−1) < tol;
8 Solve (7) for popt];

Table 1: Joint group power allocation and prebeamforming (JG-
PAPBF) algorithm.

Now we have finished the derivation for Wopt
l and Xopt

l which
can give Bopt

l and eopt
l for (Q1). Combining the result of qopt, we can

design an iterative JGPAPBF algorithm alternatively updating q and
{Bl, e} which is listed in Table 1.

The convergence of the JGPAPBF algorithm and its optimality
for (P2) are guaranteed by Theorem 2 below. But the optimality of
the JGPAPBF algorithm for the exact ergodic rate balancing prob-
lem (P1) is still unresolved. Note that we can expect asymptotic
optimaltiy for large M which could be proved following the proof
of Proposition 3 in [15]. As more technical details are required, we
settle with Theorem 2 for now and leave the proof for future work.

Theorem 2. JGPAPBF algorithm in Table 1 improves R(m) mono-
tonically and the limit value of sequenceR(m) is the global optimum
of (P2).

Proof. The proof mimics that for Theorem 3 in [12] and is omitted
due to space limitation.

To get accurate deterministic approximation of the ergodic rate
for ZF beamforming as M → ∞, the solution given by JGPAPBF
algorithm need to fulfill Assumptions 1-4 in [11]. This is guaranteed
in the following proposition.

Proposition 4. Suppose that the group number N is fixed, and Mn,
Kn, and rn grow linearly withM . Under the assumptions on {Rn}
in Proposition 2, we haveRkn → log2(1+ γ̄DL

n ) asM →∞ for the
optimal solutions {Bopt

n } and popt produced by JGPAPBF algorithm.

Proof. From Theorem 1, Σopt
n = (Bopt

n )HRnBopt
n = ( 1

Mn
X−1
n −

Kn
Mn

IMn)−1 which according to Proposition 3 yields 0 < δ <
Mnδ

Mn−Kn < ‖Σopt
n ‖ < Mnδ

−1

Mn−Kn < δ−1

1−βn <∞ with βn = Kn/Mn.
Base on the bounds, it is easy to verify that {Bopt

n } fulfills Assump-
tions 1-4 in [11] and the proposition is proved.

4. SIMULATIONS

The system configuration is as follow. Uniform circular array
with M = 64 elements is used. Mn = 6 and Kn = 3 for ∀n,
and two cases of N = 3 and 9 are considered. CCMs are given by
{wnRn} where the weight wn is taken from [0.1, 0.5, 1] for N = 3
and [0.1, 0.1, 0.1, 0.5, 0.5, 0.5, 1, 1, 1] for N = 9 to emulate the
uneven channel qualities of different groups, and the entries of Rn

are defined by [8, 16]

[Rn]mp =
1

2∆

∫ ∆+θn

−∆+θn

e
−2πjD(cos(α− 2π

m
)−cos(α− 2π

p
))
dα (20)
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Fig. 1: Minimum per-user ergodic rate versus PT .

with the angular spread ∆ = 15◦, the angle of arrival (AoA) θn =
−π + ∆ + 2π(n− 1)/N , and D = 1/(4 sinπ/M).

In the experiment, JGPAFBF algorithm is compared with ABD
prebeamforming with uniform group power allocation (“ABD-
UGPA”), ABD prebeamforming with optimal group power allo-
cation calculated by (7) (“ABD-OGPA”), and the optimal SINR
balancing algorithm in [12] (“OPT”). The ergodic rates from 1000
Monte Carlo simulations (Sim.) and the deterministic approxima-
tion (Deter.) are both presented. For ABD-based algorithms, the
effective rank r∗n, which is the number of dominant eigenvalues of
CCM, should be selected [8]. We set r∗n = 7 which through our
experiments gives the best performance for ABD method. To make
fair comparison, we adopt the same r∗n for JGPAPBF instead of the
true matrix rank which is required in Theorem 1.

Figs. 1a and 1b show the curves of minimum ergodic rate ver-
sus PT . As seen from the figures, the rates of all algorithms grow
with PT . For N = 3, the advantage of JGPAPBF algorithm over
ABD-OGPA algorithm is not evident and both algorithms have small
degradation compared with the optimal one as the AoA spacing be-
tween groups is larger and IGI can be fully canceled by both JG-
PAPBF and ABD-OGPA algorithms. But for N = 9, JGPAPBF
algorithm is more superior to ABD-OPGA algorithm, which indi-
cates that JGPAPBF is more capable in IGI cancellation in the case
of dense group AoAs. Nevertheless, the gap between the optimal
rate and that of JGPAPBF algorithm is also very obvious and widens
as PT increases. Such performance loss is the result of the use of ZF
beamformer and the much reduced CSI requirement (6×3×9 = 162
channel coefficients for JGPAPBF compared with 64 × (3 × 9) =
1728 for the optimal method). Unsurprisingly, in both cases of
N = 3 and 9, ABD-UGPA is the worst. Furthermore, as shown
by the figures, the approximated ergodic rate of JGPAPBF algorithm
fits very well to the simulated one, which verifies Proposition 4.

5. CONCLUSION

We have investigated the design of joint group power allocation
and prebeamforming problem for JSDM. The general prebeamform-
ing matrices and group power allocation were optimized under the
criterion of approximated ergodic rate balancing. Based on uplink-
downlink duality, iterative JGPAPBF algorithm was proposed. It
was shown that the subproblems in each step of the proposed al-
gorithm could be solved efficiently. Simulations have shown that the
proposed algorithm can offer a performance gain over the heuristic
ABD method especially in the case of dense groups.
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