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ABSTRACT

We propose a method for estimation of sparse frequency selective
channels within MIMO-OFDM systems. These channels are inde-
pendently sparse and share a common support. The method esti-
mates the impulse response for each channel observed by the anten-
nas at the receiver. Estimation is performed in a coordinated man-
ner by sharing minimal information among neighboring antennas to
achieve results better than many contemporary methods. Simula-
tions demonstrate the superior performance of the proposed method.

Index Terms— massive MIMO, OFDM, sparse channel

1. INTRODUCTION

Most wireless channels can be modeled as discrete multipath chan-
nels with large delay spread and few significant paths. This implies
sparsity of channel impulse response (CIR) [1–3]. This leads from
the fact that scatterers are sparsely distributed in space. Thus, it
is essentially beneficial to account for such a sparse channel model
when performing channel estimation. We aim to use this property in
the context of MIMO-OFDM systems. The deployment of multiple
antennas, offers key advantages to wireless systems performance in
terms of power gains, channel robustness, diversity etc. [4]. Specifi-
cally, the use of very large antenna arrays has very recently emerged.
Such systems, known as massive MIMO [5],[6], have also the poten-
tial to scale down the transmission power because of the use of small
low-power active antennas. Thus, large antenna arrays can play a key
role in exploiting the true potential of traditional MIMO systems.

In large-scale MIMO the major performance bottleneck is the
availability of CIR. Several algorithms exist that take advantage of
the sparsity and the assumption that channel support does not vary
as we move across the antenna grid, however with some drawbacks.
For example, the algorithms assume common support throughout an-
tenna array which is not true for large arrays. The readers are di-
rected to [7–14] for some work on MIMO and massive MIMO chan-
nel estimation. In this work, we utilize the property of loosely space-
invariant channel support along with the sparsity property to propose
an efficient pilot-aided Bayesian approach to estimate sparse CIR in
the massive-MIMO setup. In this approach each receiving antenna
collaborates with its direct neighbors to estimate its unknown sparse
channel. The neighboring antennas share their knowledge of most
significant taps (MST) to reach a consensus about the CIR support.

This paper is organized as follows. In Section II, we present
the system model and formulate the problem. In Section III we in-
troduce a simple Bayesian approach for channel estimation which
leads us to present the proposed coordinated channel recovery algo-
rithm in Section IV. Simulation results are discussed in Section V
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and Section VI concludes the paper. A detailed version of this paper
is also available [15].

2. SYSTEM MODEL AND PROBLEM FORMULATION

2.1. Preliminaries

We consider a MIMO-OFDM system, in which the base station
(BS) is equipped with a large two-dimensional antenna array con-
sisting of R = M × G antennas distributed across M rows and
G columns.1 OFDM is adopted as the signaling mechanism.
In an OFDM system, serially incoming bits are divided into N
parallel streams and mapped to a Q-ary QAM alphabet {A1,A2,
. . . ,AQ}. This results in an N -dimensional data vector denoted
by X = [X (1),X (2), . . . ,X (N)]T. The equivalent time-domain
signal x = FHX is transmitted. Here F is an N ×N unitary DFT
matrix whose (c, d)th entry is fc,d = 1√

N
exp (−j 2π

N
cd), and N is

the number of subcarriers.

2.2. Channel Model

The channel through which the transmitted signal x is received at
the receive antenna r = (m, g) (where m ∈ {1, 2, . . . ,M} and
g ∈ {1, 2, . . . , G}) as shown in Fig. 1 is denoted by hr ∈ CL.
We shall assume that hr has a sparse structure and is modeled as
hr = hA ◦ hB where ◦ indicates element-by-element multiplica-
tion. The vector hA consists of elements that are drawn from some
unknown distribution and hB is a Bernoulli random vector where its
ith element has an active probability of p(hB(i) = 1) = λi.

Therefore, the entries of hB form a collection of iid Bernoulli
random variables. Thus, hr is an L-tap discrete-time sparse channel
where no assumption whatsoever is made about the distribution of its
non-zero complex-valued coefficients.2 Moreover, depending upon
factors such as antenna separation and transmission bandwidth, the
MST locations of hr’s in the array may or may not vary. The array
for which the hr’s have common support are termed space-invariant
arrays (SIA) while the arrays for which this is not true are called
space-varying arrays (SVA).

The received signal at the rth antenna is best described in the
frequency domain and is given by

Yr = diag(X )Hr +Wr, (1)

where Yr is the Fourier transform of the received vector, Wr ∼
CN (0, σ2

wI) is the frequency-domain noise vector and diag is an

1Depending on the value of M and G, the antennas could have a linear or
a planar configuration. Further, we would like to stress that we confine our
attention to regular configurations out of convenience as our approach applies
to any two-dimensional or even three-dimensional configuration of antennas.

2The coefficients could be derived iid or non-iid from a Gaussian or non-
Gaussian distribution. The implementation in this paper is agnostic to the
distribution of channel coefficients.
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central node r = (m, g)

North neighbor rN = (m− 1, g)

South neighbor rS = (m+ 1, g)

West neighbor rW = (m, g − 1)

East neighbor rE = (m, g + 1)

1
2

...

M

1 2 · · · G

Fig. 1: Center antenna r and its 4-neighbors in 2-D antenna grid.

operator that produces a diagonal matrix by spreading the elements
of X along the diagonal. Moreover, Hr = F[hT

r 01×N−L]
T =

Fhr is the N × 1 channel frequency response vector where F is the
truncated Fourier matrix of size N × L formed by selecting the first
L columns of F. Finally, we can rewrite (1) as Yr = Ahr +Wr ,
where A , diag(X )F is an N × L matrix.

2.3. Problem Formulation

Let the transmit antenna sends pilots in K subcarriers and the re-
maining N − K subcarriers are used for data transmission. Let P
represents the set of indices of the K subcarriers over which pilots
are transmitted. Thus,

Yr(P) = A(P)hr +Wr(P) (2)

where Yr(P) and Wr(P) are formed, respectively, by selecting
entries of Yr and Wr indexed by P . Similarly, A(P) is a K × L
matrix formed by selecting the rows of A indexed by P . We aim to
solve for hr in equation (2). This obviously requires that K ≥ L.
Since the channel delay spread (equivalently L) is usually large,
this requires a large number of subcarriers to be reserved for pilots,
severely affecting the spectral efficiency of the system. However,
by virtue of channels being sparse with large delay spread, we could
actually solve for hr ifK < L as suggested by the compressed sens-
ing theory [16, 17]. We consider a random placement of pilot tones
P over the OFDM subcarriers as it has been found to be optimal
for sparse channel estimation [18, 19]. The aforementioned system
model will be used in subsequent sections to develop our coordinated
approach for estimation of all R channels hr .

3. SPARSITY-AWARE DISTRIBUTION AGNOSTIC
BAYESIAN CHANNEL ESTIMATION

Consider the model presented in (2). For notational convenience, we
will drop the symbols r and P unless required for clarity. Hence,

Y = Ah+W, (3)

where we are interested in performing Bayesian estimation of the
wireless CIR h. Bayesian approaches assume a prior distribution,
however given the dynamic nature of wireless channels it is usually
impossible to characterize the distribution. Even if the distribution
is known it is very difficult or even impossible to estimate the distri-
bution parameters (e.g., mean and variance for Gaussian) especially
when the channel statistics are not i.i.d. In that respect, the use of dis-
tribution agnostic Bayesian sparse signal recovery method (SABMP)
[20] is quite attractive which provides Bayesian estimates even when
the prior is non-Gaussian or unknown.

A naive way would be to use SABMP to perform sparse channel

recovery at each antenna element in the array. The channels would
be estimated independently and the receivers will not take advantage
of the additional information of common support. Unlike that we
propose a coordinated channel estimation method in Sec. 4 which
utilizes the common support information. However, before doing
so, we introduce in the following some necessary modifications to
the SABMP algorithm presented in [20].

3.1. SABMP for non-iid Bernoulli random vector

The development of the SABMP algorithm assumes that elements of
h are activated with equal probability λ (iid Bernoulli). However, if
some elements are more probable than others, it is desirable to assign
those elements a higher probability. This requires us to assume a
non-iid Bernoulli behavior for h. Thus if S contains the indices of
the active elements of h (i.e., the support of h), the probability of
that support is given by, p(S) =

∏
i∈S λi

∏
j∈{1,...,L}\S(1 − λj)

where λi is the active probability of index i. Using this p(S) results
in a modified version of the dominant support selection metric of
[20] (see eq. (13) therein). The new metric is,

ν(S) , − 1

2σ2
n

∥∥∥P⊥SY∥∥∥2
2
+
∑
i∈S

lnλi +
∑
j 6∈S

ln(1− λj) (4)

For future reference, let us call the algorithm taking advantage of
this new dominant support selection metric RS1.

3.2. All possible combinations of support

Let the set of dominant taps of h as detected by SABMP be T =
{α1, α2, · · · , αTmax}. The SABMP algorithm computes the ap-
proximate MMSE estimate of h for all support sets S in the set of
dominant supports sets Sd. According to the definition provided in
SABMP [20], Sd = {{α1}, {α1, α2}, · · · , {α1, α2, · · · , αTmax}}
which is a set of cardinality Tmax. However, due to the reasons that
will be mentioned in Section 3.3, we modified the SABMP algo-
rithm to generate all possible 2Tmax − 1 combinations of dominant
locations in the set T to form as many support sets Sv . Therefore,
the new set Sd to compute p(Sv|Y) and E[h|Y,Sv] is,

Sd = {{Sv} , v = 1, 2, · · · , V } , V = 2Tmax − 1. (5)

3.3. Marginalization

The above-mentioned modified algorithm provides all different com-
binations of the elements obtained in the set of dominant taps to-
gether with their marginalized posterior probabilities. In this section,
we aim to use this information to marginalize out each dominant tap
and compute p (αt) , ∀t ∈ {1, 2, · · · , Tmax}. This could be done by
considering the posterior probabilities of only those combinations of
support which involve purely the detected dominant taps. This is
because only these supports will have significant posteriors and the
remaining cases could be safely ignored (see Fig. 7 in [20]). Set Sd
described in the last section corresponds to this set of supports. Thus
the marginal probability of tap αt is computed as follows,

p(αt) =
∑

S∈Sd, αt∩S6=∅

p(S|Y). (6)

Note that the marginal probabilities of only the MSTs are computed
in this way. The other elements that are found to be inactive could be
forced to have either very low or even zero probability. The resulting
new SABMP algorithm which incorporates the modifications pre-
sented in Sections 3.1 - 3.3 is capable of handling non-iid Bernoulli

2925



Algorithm 1 Channel Estimation using Pilots - Posterior-based

1. Run RS2 at each antenna
2. Each antenna, receives marginals from its neighbors
3. Each antenna computes average marginal probabilities
4. Repeat steps 2-3 above, D times
5. Use RS1 to re-estimate all channels using new probabilities

distributed random vectors and also returns the marginal probabili-
ties of detected MSTs. Let us call this algorithm RS2 for reference.

4. ITERATIVE COORDINATED CHANNEL RECOVERY

We will now describe the proposed channel estimation method. In
this method the receiver antennas coordinate with each other to de-
termine the MSTs and consequently estimate the channels. A naive
approach would be to formulate the problem either in the form of an
MMV or a block-sparse recovery problem and utilize available algo-
rithms such as [21,22]. However, in the proposed approach, in order
to reduce the communication overhead, the antennas collaborate in
a stagewise manner. Basically, each receiver element r and only its
immediate 4-neighbors N = {rN , rS , rE , rW } as shown in Fig. 1
communicate with each other.3 This process is repeated which ef-
fectively diffuses the information present at each antenna to distant
antennas. In this manner the collaboration is performed to estimate
channels accurately. In the discussion that follows, we present three
algorithms for CIR estimation that take advantage of collaboration.

4.1. Algorithm 1: Channel Estimation using Pilots

We seek to solve the problem mentioned in (2) by using the pilot ob-
servations. This algorithm starts by estimating the sparse channels
hr at each antenna element r using the RS2 algorithm. We initialize
the algorithm by assuming that all taps of hr have equal active prob-
ability λinit throughout the array. Therefore, p (hB(l) = 1) = λl =
λinit, ∀l ∈ {1, 2, · · · , L}.

Let T r = {αr1, αr2, · · · , αrTmax
} be the set of active taps of

channel hr as detected by RS2. Note that since λinit is same
throughout the array, the number of detected active taps Tmax

will also be equal for all the receivers i.e., the cardinality |T r| =
Tmax, ∀r. The RS2 algorithm also returns the marginal probabilities
p(αrt ), t ∈ {1, 2, · · · , Tmax}. Each antenna r, acting as central an-
tenna, collects these probabilities from its 4-neighbors and computes
the average for each tap αi, i ∈ {1, 2, · · · , L} as follows

p(αi) =


∑

j∈N+

p(αji )
/
|N+|, if αi ∈

⋃
j∈N+

T j

psmall, otherwise
, (7)

whereN+ = N ∪r and psmall is an arbitrarily small value assigned
to the taps which have not been detected by any of the neighbors
and the central antenna. This averaging step is repeated D times
by each antenna where the value of D depends on whether the ar-
ray under consideration is SIA or SVA. In the SIA case, since the
MST locations do not vary across the array, contribution from as
many antennas as possible will strengthen our belief in these loca-
tions. Therefore, we may select D = max(M,G) which equals to
the largest dimension of the antenna array which ensures that each

3For the elements lying at the edges of the array the number of neighbors
are different. We use N to denote the set of neighbors irrespective of the
position of r and therefore 2 ≤ |N| ≤ 4.

antenna receives information from every other antenna in the array.
On the other hand, for SVA, the array configuration and other param-
eters should be taken into consideration to decide a proper value of
D. Specifically, according to lemma 1 in [23] if observations from q
antennas are used to recover n-sparse channel vectors usingK pilots
then for a unique solution n ≤ d(K + q)/2e − 1 holds which sim-

plifies to the condition on D as D >
√
n− K

2
− 1

4
− 1

2
. Here d·e

denotes the ceiling operation. Finally, each antenna uses the newly
computed probabilities as new initial probabilities with the RS1 al-
gorithm to get refined sparse channel estimates. The algorithm is
summarized in Algorithm 1.

We would like to point out that sharing posteriors puts a high
communication load on the massive-MIMO system because it needs
floating point numbers to be communicated. The communication
cost could be reduced significantly by sharing just the integers. We
therefore, propose a variant which uses integers for communication
among receiver antennas. As explained next, this algorithm has an
additional advantage of low computational complexity.

4.2. Algorithm 2: Low Communication/Computational Cost

In this algorithm we do not calculate marginal probabilities. The
algorithm starts by estimating channel at each receiver using the
original SABMP algorithm. At each receiver, the algorithm assigns
scores to the channel tap locations based on the detected amplitudes.
Since there are Tmax possible channel taps detected by SABMP,
the algorithm starts by assigning a maximum score of Tmax to the
tap location with highest absolute amplitude, moves downward un-
til a score of 1 is assigned to the tap location with the least am-
plitude among the top Tmax taps. All other tap locations are as-
signed a score of zero. Each antenna, acting like a central antenna,
collects the Tmax scores from each neighbor and finds an average
score ψ(αi) for each tap αi in a fashion similar to that in (7). Fi-
nally, after repeating the process D times, a belief measure b(αi) =
ψ(αi)/Tmax is computed to be used by the RS1 algorithm. b(αi)
is the estimated belief that the ith tap is active. The beliefs b(α) are
used in place of the marginal probabilities to re-estimate the chan-
nels following a strategy similar to that explained in Algorithm 1.
This belief-based algorithm reduces the communication cost signif-
icantly because we totally avoid communicating floating point num-
bers. Moreover, since the algorithm does not compute marginal
probabilities it has lower computational complexity. We now move
on to suggest another level of refinement for the posteriors/scores by
selecting reliable data carriers to perform channel estimation.

4.3. Algorithm 3: Using Reliable Carriers

The estimated channels from previous sections could be used to per-
form equalization and recover the transmitted data. A significant im-
provement in channel estimation could be achieved by incorporating
this available information of user data. However, it is a challeng-
ing task to determine which data carriers are reliable enough to be
considered. In this respect, we seek to assign a reliability measure
R(i), i ∈ {1, · · · , N}\P to each of the N − |P| data carriers.
For this purpose, we use the reliability measure suggested in [24] to
compute carrier reliabilities. The reliability values are then sorted
and the carriers corresponding to the top U values of R are consid-
ered in calculations. LetRr contains the indices of the topU reliable
carriers for receiver r. Collaboration among receiver antennas could
be performed to further strengthen the belief in the reliable carriers.
In order to do so, each antenna rC , acting as central antenna, col-
lects the indices of the reliable carriers from its 4-neighbors N and
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Algorithm 2 Channel Estimation usingR? ∪ P

1. Run Algorithm 1 or Algorithm 2
2. Each antenna r uses its estimated channel to find top U reliable car-

riersRr and sendsRr to its central antenna
3. Each antenna finds the intersection of received reliable carriersR =⋂

r∈{rC ,rN ,rS ,rE ,rW }R
r and sends it back to its neighbors

4. Each antenna sends data onR back to its central antenna
5. Each antenna further refines the reliable carriers by selecting only

those with same data. Call this listR?.
6. Each antenna usesR? ∪ P to perform SABMP recovery

selects only those which are common to all antennas under consid-
eration R =

⋂
r∈{rC∪N}

Rr , where Rr are the indices of reliable
carriers of antenna r. R is then transmitted to the neighbors which
then send back the corresponding data. Further refinement is done
by retaining only those carriers which carry same data. Let us repre-
sent these carriers by R?. The central antenna uses this final list of
reliable carriers plus the pilots i.e.,R? ∪ P to solve,

Yr(R? ∪ P) = A(R? ∪ P)hr +Wr(R? ∪ P) (8)

and estimate channel hr . Thus the pilots and reliable carriers are
used together to reach at better estimates of channels which is evi-
dent from the simulation results presented in Section 5. The result-
ing algorithm is presented in Algorithm 2. Note that the proposed
algorithms are independent of the antenna grid topology as the only
information required by an antenna is that of its neighbors.

5. SIMULATION RESULTS

We simulated a MIMO-OFDM system with a 10 × 10 receive an-
tenna grid. Moreover, the number of sub-carriers used is N = 256
and the pilot carriersP are chosen randomly. We use 4-QAM modu-
lation and the Gaussian noise statistics are adjusted according to the
desired SNR. Channels of sparsity 3 and varying length L are gener-
ated using IlmProp channel modeling tool [25, 26]. All results were
averaged over 100 trials. We conducted three different experiments.

5.1. Methods for Performance Comparisons

The channel vectors hr are estimated using the a) LS with known
true MST locations (oracle-LS), b) block-sparse recovery method
(BR), c) proposed Posterior-based channel estimation using pilots
(PB-P), d) proposed Integer-based channel estimation using pilots
(IB-P), and e) proposed Posterior- or Integer-based channel estima-
tion using pilots and reliable carriers (PB-R / IB-R),
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Fig. 2: How many pilots are needed to successfully recover the CIR?

Oracle-LS and BR are used for benchmark purpose. Oracle-
LS knows the channel support at each antenna and hence the only
burden is tap estimation using the available pilots. The block sparse
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Fig. 3: Performance comparison of algorithms.

recovery method (BR) works in the space-invariant case and uses the
fact that the channel support is the same across the array. It casts the
problem as several block sparse problems and use the block sparse
Bayesian learning algorithm (BSBL) [21] to solve them.

5.2. Experiment 1 - How many pilots?

In this experiment, we are interested in finding the required number
of pilots for successful recovery of channels of length L = 64. The
graph in Fig. 2 shows the channel recovery success rate vs varying
number of pilots. Note that both pilot-based and data-aided versions
of PB and IB algorithms were simulated. Here, success rate is de-
fined as the ratio of the number of successful trials to the number
of total trials, where a trial was considered successful when NMSE
< −10 dB. SNR was fixed at 10 dB and the number of pilots varied
from 2 to 42. It is evident from the figure that just 6 pilots are needed
by both PB-R and IB-R to achieve a success rate > 50% and only
12 pilots to achieve a 100% success rate. This is a small fraction of
the channel length L = 64 (i.e., 9.37% and 18.75% respectively).

5.3. Experiment 2 - Comparison between PB and IB

In this experiment, we compare the performance of the proposed PB
and IB channel estimation algorithms. Channels of length L = 64
were estimated using 16 pilots. Fig. 3a shows the BER of the recov-
ered data using the estimated CIRs. The figure shows that incorpo-
rating reliable carriers results in significant performance gains.

5.4. Experiment 3 - Comparison with BR and oracle-LS

In this experiment, we benchmark the performance of the proposed
algorithms against BR and oracle-LS. Here the signal is passed
through a channel of length L = 32. Moreover, we use K = 8
pilots. Fig. 3b shows that the proposed PB-R algorithm has the best
performance among all algorithms.

6. CONCLUSION

A channel estimation procedure in the massive-MIMO setup which
is agnostic to the distribution of channel taps was proposed. It uses
a modified version of SABMP to exploit the sparse common support
property and share information in a stagewise manner to perform
channel recovery. The approach results in lower communication and
computational complexity. Simulation results show the superiority
over other methods.
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