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ABSTRACT

We consider the massive MIMO downlink with time-division du-
plex (TDD) operation and conjugate beamforming transmission. To
reliably decode the desired signals, the users need to know the ef-
fective channel gain. In this paper, we propose a blind channel es-
timation method which can be applied at the users and which does
not require any downlink pilots. We show that our proposed scheme
can substantially outperform the case where each user has only sta-
tistical channel knowledge, and that the difference in performance
is particularly large in certain types of channel, most notably key-
hole channels. Compared to schemes that rely on downlink pilots
(e.g., [1]), our proposed scheme yields more accurate channel esti-
mates for a wide range of signal-to-noise ratios and avoid spending
time-frequency resources on pilots.

Index Terms— Blind channel estimation, downlink, massive
MIMO, time-division duplex.

1. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is one of the most
promising technologies to meet the demands for high throughput
and communication reliability of next generation cellular networks
[2–5]. In massive MIMO, time-division duplex (TDD) operation is
preferable since then the pilot overhead does not depend on the num-
ber of base station antennas. With TDD, the channels are estimated
at the base station through the uplink training. For the downlink, un-
der the assumption of channel reciprocity, the channels estimated at
the base station are used to precode the data, and the precoded data
are sent to the users. To coherently decode the transmitted signals,
each user should have channel state information (CSI), that is, know
its effective channel from the base station.

In most previous works, the users are assumed to have statisti-
cal knowledge of the effective downlink channels, that is, they know
the mean of the effective channel gain and use this for the signal
detection [6, 7]. In these papers, Rayleigh fading channels were as-
sumed. Under the Rayleigh fading, the effective channel gains be-
come nearly deterministic (the channel “hardens”) when the number
of base station antennas grows large, and hence, using the mean of
the effective channel gain for signal detection works very well. How-
ever, in practice, propagation scenarios may be encountered where
the channel does not harden. In that case, using the mean effective
channel gain may not be accurate enough, and a better estimate of
the effective channel should be used. In [1], we proposed a scheme
where the base station (in addition to the beamformed data) also
sent a beamformed downlink pilot sequence to the users. With this
scheme, a performance improvement (compared to the case when
the mean of the effective channel gain is used) was obtained. How-
ever, this scheme requires time-frequency resources in order to send
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the downlink pilots. The associated overhead is proportional to the
number of users which can be in the order of several tens, and hence,
in a high-mobility environment (where the channel coherence inter-
val is short) the spectral efficiency is significantly reduced.

Contribution: In this paper, we consider the massive MIMO
downlink with conjugate beamforming.1 We propose a scheme with
which the users blindly estimate the effective channel gain from the
received data. The scheme exploits the asymptotic properties of the
mean of the received signal power when the number of base station
antennas is large. The accuracy of our proposed scheme is investi-
gated for two specific, very different, types of channels: (i) indepen-
dent Rayleigh fading and (ii) keyhole channels. We show that when
the number of base station antennas goes to infinity, the channel es-
timate provided by our scheme becomes exact. Also, numerical re-
sults quantitatively show the benefits of our proposed scheme, espe-
cially in keyhole channels, compared to the case where the mean of
the effective channel gain is used as if it were the true channel gain,
and compared to the case where the beamforming training scheme
of [1] is used.

Notation: We use boldface upper- and lower-case letters to de-
note matrices and column vectors, respectively. The superscripts ()T

and ()H stand for the transpose and conjugate transpose, respec-
tively. The Euclidean norm, the trace, and the expectation opera-
tors are denoted by ‖ · ‖, Tr (·), and E {·}, respectively. The no-

tation
P→ means convergence in probability, and

a.s.→ means almost
sure convergence. Finally, we use z ∼ CN

(

0, σ2
)

to denote a cir-
cularly symmetric complex Gaussian random variable (RV) z with
zero mean and variance σ2.

2. SYSTEM MODEL

Consider the downlink of a massive MIMO system. An M -antenna
base station serves K single-antenna users, where M � K �
1. The base station uses conjugate beamforming to simultaneously
transmit data to all K users in the same time-frequency resource.
Since we focus on the downlink channel estimation here, we assume
that the base station perfectly estimates the channels in the uplink
training phase. (In future work, this assumption may be relaxed.)
Denote by gk the M × 1 channel vector between the base station
and the kth user. The channel gk results from a combination of
small-scale fading and large-scale fading, and is modeled as:

gk =
√

βkhk, (1)

where βk represents large-scale fading which is constant over many
coherence intervals, and hk is an M × 1 small-scale channel vector.
We assume that the elements of hk are i.i.d. with zero mean and unit
variance.

1We consider conjugate beamforming since it is simple and nearly opti-
mal in many massive MIMO scenarios. More importantly, conjugate beam-
forming can be implemented in a distributed manner.
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Let sk, E
{

|sk|2
}

= 1, k = 1, . . . ,K, be the symbol intended
for the kth user. With conjugate beamforming, the M × 1 precoded
signal vector is given by

x =
√
αGs, (2)

where s , [s1, s2, . . . , sK ]T , G , [g1 . . .gK ] is an M×K channel
matrix between the K users and the base station, and α is a normal-
ization constant chosen to satisfy the average power constraint at the
base station:

E
{

‖x‖2
}

= ρ.

Hence,

α =
ρ

E {Tr (GGH)} . (3)

The signal received at the kth user is

yk = g
H
k x+ nk =

√
αgH

k Gs+ nk

=
√
α‖gk‖2sk +

√
α

K
∑

k′ 6=k

g
H
k gk′sk′ + nk, (4)

where nk ∼ CN (0, 1) is the additive Gaussian noise at the kth user.
Then, the desired signal sk is decoded.

3. PROPOSED DOWNLINK BLIND CHANNEL
ESTIMATION TECHNIQUE

The kth user wants to detect sk from yk in (4). For this purpose, it
needs to know the effective channel gain ‖gk‖2. If the channel is
Rayleigh fading, then by the law of large numbers, we have

1

M
‖gk‖2 P→βk,

as M → ∞. This implies that when M is large, ‖gk‖2 ≈ Mβk (we
say that the channel hardens). So we can use the statistical properties
of the channel, i.e., use E

{

‖gk‖2
}

= Mβk as a good estimate of
‖gk‖2 when detecting sk. This assumption is widely made in the
massive MIMO literature. However, in practice, the channel is not
always Rayleigh fading, and does not always harden when M →
∞. For example, consider a keyhole channel, where the small-scale
fading component hk is modeled as follows [8, 9]:

hk = νkh̄k, (5)

where νk and the M elements of h̄k are i.i.d. CN (0, 1) RVs. For
the keyhole channel (5), by the law of large numbers, we have

1

M
‖gk‖2 − βk|νk|2 P→ 0,

which is not deterministic, and hence the channel does not harden.
In this case, using E

{

‖gk‖2
}

= Mβk as an estimate of the true
effective channel ‖gk‖2 to detect sk may result in poor performance.

For the reasons explained, it is desirable that the users estimate
their effective channels. One way to do this is to have the base sta-
tion transmit beamformed downlink pilots as proposed in [1]. With
this scheme, at least K downlink pilot symbols are required. This
can significantly reduce the spectral efficiency. For example, sup-
pose M = 300 antennas serve K = 50 terminals, in a coherence
interval of length 200 symbols. If half of the coherence interval is
used for the downlink, then with the downlink beamforming training

of [1], we need to spend at least 50 symbols for sending pilots. As
a result, less than 50 of the 100 downlink symbols are used for pay-
load in each coherence interval, and the insertion of the downlink
pilots reduces the overall (uplink+downlink) spectral efficiency by a
factor of 1/4.

In what follows, we propose a blind channel estimation method
which does not require any downlink pilots.

3.1. Mathematical Preliminaries

Consider the average power of the received signal at the kth user
(averaged over s and nk). From (4), we have

E
{

|yk|2
}

= α‖gk‖4 + α

K
∑

k′ 6=k

∣

∣

∣g
H
k gk′

∣

∣

∣

2

+ 1. (6)

The second term of (6) can be rewritten as

α
K
∑

k′ 6=k

∣

∣

∣g
H
k gk′

∣

∣

∣

2

= α
K
∑

k′ 6=k

g
H
k′gkg

H
k gk′ = αg̃H

k Ag̃k, (7)

where g̃k , [gT
1 . . . gT

k−1 gT
k+1 . . . gT

K ]T , and A is an M(K −
1) × M(K − 1) block-diagonal matrix whose (i, i)-block is the
M ×M matrix gkg

H
k . Since A and g̃k are independent, as M(K−

1) → ∞, the Trace lemma gives [10]

1

M(K − 1)

K
∑

k′ 6=k

∣

∣

∣g
H
k gk′

∣

∣

∣

2

− 1

M(K − 1)

K
∑

k′ 6=k

βk′‖gk‖2 a.s.→ 0.

(8)

Substituting (8) into (6), as M(K − 1) → ∞, we have

E
{

|yk|2
}

M(K − 1)
− 1

M(K − 1)



α‖gk‖4 + α
K
∑

k′ 6=k

βk′‖gk‖2 + 1





a.s.→ 0. (9)

The above result implies that when M and K are large,

E
{

|yk|2
}

≈ α‖gk‖4 + α
K
∑

k′ 6=k

βk′‖gk‖2 + 1. (10)

Therefore, the effective channel gain ‖gk‖2 can be estimated from
E
{

|yk|2
}

by solving the quadratic equation (10).

3.2. Downlink Blind Channel Estimation Algorithm

As discussed in Section 3.1, we can estimate the effective channel
gain ‖gk‖2 by solving the quadratic equation (10). It is then re-
quired that the kth user knows α,

∑K

k′ 6=k
βk′ , and E

{

|yk|2
}

. We
assume that the kth user knows α and

∑K

k′ 6=k
βk′ . This assumption

is reasonable since the terms α and
∑K

k′ 6=k
βk′ depend on the large-

scale fading coefficients, which stay constant over many coherence
intervals. Note that the expectation in (3) is performed over small-
scale fading. The kth user can estimate these terms, or the base
station may inform the kth user about them. Regarding E

{

|yk|2
}

,
in practice, it is unavailable. However, we can use the received sam-
ples during a whole coherence interval to form a sample estimate of
E
{

|yk|2
}

as follows:

E
{

|yk|2
}

≈ ξk ,
|yk(1)|2 + |yk(2)|2 + . . .+ |yk(T )|2

T
, (11)
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Fig. 1. Normalized MSE versus SNR for different channel estima-
tion schemes, for Rayleigh fading channels.

where yk(n) is the nth receive sample, and T is the length (in sym-
bols) of the coherence interval used for the downlink transmission.

The algorithm for estimating ‖gk‖2 is summarized as follows:

Algorithm 1 (Proposed blind downlink channel estimation method)

1. Using a data block of T samples, compute ξk as (11).

2. The channel estimate of ‖gk‖2, denoted by ak, is determined as

ak=
−α

∑K

k′ 6=k
βk′+

√

α2
(

∑K

k′ 6=k
βk′

)2

+4α(ξk−1)

2α
. (12)

Note that ak in (12) is the positive root of the quadratic equation:
ξk = αa2

k + α
∑K

k′ 6=k
βk′ak + 1 which comes from (10) and (11).

3.3. Asymptotic Performance Analysis

In this section, we analyze the accuracy of our proposed scheme for
two specific propagation environments: Rayleigh fading and keyhole
channels. For keyhole channels, we use the model (5). We assume
that the kth user perfectly estimates E

{

|yk|2
}

. This is true when
the number of symbols of the coherence interval allocated to the
downlink, T , is large. In the numerical results, we shall show that
the estimate of E

{

|yk|2
}

in (11) is very close to E
{

|yk|2
}

even for
modest values of T (e.g. T ≈ 100 symbols). With the assumption
ξk = E

{

|yk|2
}

, from (6) and (12), the estimate of ‖gk‖2 can be
written as:

ak = −
∑K

k′ 6=k
βk′

2
+

√

√

√

√

(
∑K

k′ 6=k
βk′

2
+ ‖gk‖2

)2

+ εk, (13)

where

εk ,

K
∑

k′ 6=k

∣

∣

∣g
H
k gk′

∣

∣

∣

2

−





K
∑

k′ 6=k

βk′



 ‖gk‖2. (14)
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Fig. 2. Normalized MSE versus SNR for different channel estima-
tion schemes, for keyhole channels.

We can see from (13) that if |εk| �
(

∑

K

k′ 6=k
β
k′

2
+ ‖gk‖2

)2

,

then ak ≈ ‖gk‖2. In order to see under what conditions |εk| �
(

∑

K

k′ 6=k
β
k′

2
+ ‖gk‖2

)2

, we consider %k which is defined as:

%k , E











∣

∣

∣

∣

∣

∣

εk/E











1

2

K
∑

k′ 6=k

βk′ + ‖gk‖2




2





∣

∣

∣

∣

∣

∣

2










. (15)

Hence,

%k=







































M(M+1)β2

k

K
∑

k′ 6=k

β2

k′

(

1

4
β̄2

k
+Mβk

K
∑

k′=1

β
k′+β2

k
M2

)

2 , for Rayleigh fading channels,

6M(M+1)β2

k

K
∑

k′ 6=k

β2

k′

(

1

4
β̄2

k
+Mβk

K
∑

k′=1

β
k′+β2

k
M(2M+1)

)

2 , for keyhole channels,

(16)

where β̄k ,
∑K

k′ 6=k
βk′ . The detailed derivations of (16) are pre-

sented in the Appendix. We can see that %k = O(1/M2). Thus,

when M � 1, |εk| is much smaller than
(

∑

K

k′ 6=k
β
k′

2
+ ‖gk‖2

)2

.

As a result, our proposed channel estimation scheme is expected to
work well.

4. NUMERICAL RESULTS

In this section, we provide numerical results to evaluate our proposed
channel estimation scheme for finite M . As performance metric we
consider the normalized mean-square error (MSE) at the kth user:

MSEk , E

{

∣

∣

∣

∣

ak − ‖gk‖2
E {‖gk‖2}

∣

∣

∣

∣

2
}

. (17)
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For the simulation, we choose M = 100, K = 20, and βk =
1, ∀k = 1, . . . ,K. We define SNR , ρ. Figures 1 and 2 show
the normalized MSE versus SNR for Rayleigh fading and keyhole
channels, respectively. The curves labeled “without channel esti-
mation, use E

{

‖gk‖2
}

” represent the case when the kth user uses
the statistical properties of the channels, i.e., it uses E

{

‖gk‖2
}

as
estimate of ‖gk‖2. The curves “DL pilots [1]” represent the case
when the beamforming training scheme of [1] with MMSE channel
estimation is applied. The curves “proposed scheme (Algorithm 1)”
represent our proposed scheme for different T (T = ∞ implies that
the kth user perfectly knows E

{

|yk|2
}

). For the beamforming train-
ing scheme, the duration of the downlink training is K. For our
proposed blind channel estimation scheme, sk, k = 1, . . . ,K, are
random 4-QAM symbols.

We can see that in Rayleigh fading channels, the MSEs of the
three schemes are comparable. Using E

{

‖gk‖2
}

in lieu of the true
‖gk‖2 for signal detection works rather well. However, in keyhole
channels, since the channels do not harden, the MSE when using
E
{

‖gk‖2
}

as estimate of ‖gk‖2 is very large. In both propagation
environments, our proposed scheme works very well. For a wide
range of SNRs, our scheme outperforms the beamforming training
scheme, even for short coherence intervals (e.g., T = 100 symbols).
Note again that, with the beamforming training scheme of [1], we ad-
ditionally have to spend at least K symbols on training pilots (this is
not accounted for here, since we only evaluated MSE). By contrast,
our proposed scheme does not requires any resources for downlink
training.

5. CONCLUDING REMARKS

Massive MIMO systems may encounter propagation conditions
when the channels do not harden. Then, to facilitate detection of the
data in the downlink, the users need to estimate their effective chan-
nel gain rather than relying on knowledge of the average effective
channel gain. We proposed a channel estimation approach by which
the users can blindly estimate the effective channel gain from the
data received during a coherence interval. The approach is compu-
tationally easy, it does not requires any resource for downlink pilots,
it can be applied regardless of the type of propagation channel, and
it performs very well.

Future work may include studying rate expressions rather than
channel estimation MSE, and taking into account the channel esti-
mation errors in the uplink. (We hypothesize, that the latter will not
qualitatively affect our results or conclusions.) Blind estimation of
βk by the users may also be addressed.

6. APPENDIX

Here, we provide the proof of (16). From (15), we have

%k = E
{

|εk|2
}

/E











1

2

K
∑

k′ 6=k

βk′ + ‖gk‖2




2





2

. (18)

• Rayleigh Fading Channels:

For Rayleigh fading channels, we have

E











1

2

K
∑

k′ 6=k

βk′ + ‖gk‖2




2





=
1

4





K
∑

k′ 6=k

βk′





2

+





K
∑

k′ 6=k

βk′



E
{

‖gk‖2
}

+ E
{

‖gk‖4
}

=
1

4





K
∑

k′ 6=k

βk′





2

+Mβk

K
∑

k′=1

βk′ + β2
kM

2, (19)

where the last equality follows [11, Lemma 2.9]. We next compute
E
{

|εk|2
}

. From (14), we have

E
{

|εk|2
}

= E











K
∑

k′ 6=k

∣

∣

∣g
H
k gk′

∣

∣

∣

2





2





+





K
∑

k′ 6=k

βk′





2

E
{

‖gk‖4
}

− 2





K
∑

k′ 6=k

βk′



E







K
∑

k′ 6=k

∣

∣

∣g
H
k gk′

∣

∣

∣

2

‖gk‖2






. (20)

We have,

E











K
∑

k′ 6=k

∣

∣

∣g
H
k gk′

∣

∣

∣

2





2





=E







‖gk‖4




K
∑

k′ 6=k

|zk′ |2




2





, (21)

where zk′ ,
g
H

k
g
k′

‖gk‖
. Conditioned on gk, zk′ is complex Gaussian

distributed with zero mean and variance βk′ which is independent of
gk. Thus, zk′ ∼ CN (0, βk′) and is independent of gk. This yields

E











K
∑

k′ 6=k

∣

∣

∣g
H
k gk′

∣

∣

∣

2





2





= E
{

‖gk‖4
}

E











K
∑

k′ 6=k

|zk′ |2




2





= β2
kM (M + 1)





K
∑

i6=k

β2
i +

K
∑

i 6=k

K
∑

j 6=k

βiβj



 . (22)

Similarly,

E







K
∑

k′ 6=k

∣

∣

∣g
H
k gk′

∣

∣

∣

2

‖gk‖2






= E
{

‖gk‖4
}

E







K
∑

k′ 6=k

|zk′ |2






= β2
kM (M + 1)

K
∑

k′ 6=k

β2
k′ . (23)

Substituting (22), (23), and E
{

‖gk‖4
}

= β2
kM(M + 1) into (20),

we obtain

E
{

|εk|2
}

= M(M + 1)β2
k

K
∑

k′ 6=k

β2
k′ . (24)

Inserting (19) and (24) into (18), we obtain (16) for the Rayleigh
fading case.

• Keyhole Channels:
By using the fact that

zk′ =
gH
k gk′

‖gk‖
=
√

βk′νk′
gH
k h̄k′

‖gk‖
, (25)

is the product of two independent Gaussian RVs, and following a
similar methodology used in the Rayleigh fading case, we obtain
(16) for keyhole channels.
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