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ABSTRACT

Antenna subset modulation (ASM) is a physical layer security tech-
nique that is well suited for millimeter wave communication sys-
tems. The key idea is to vary the radiation pattern at the symbol
rate by selecting one from a subset of patterns with a similar main
lobe and different side lobes. This paper shows that ASM is not ro-
bust to an eavesdropper that makes multiple simultaneous measure-
ments at multiple angles. The measurements are combined and used
to formulate an estimation problem to undo the effects of the side
lobe randomization. Simulations show the performance of the esti-
mation algorithms and how the eavesdropper can effectively recover
the information if the signal-to-noise ratio exceeds a certain thresh-
old. Using fewer active radio frequency chains makes it harder for
the attacker to recover the transmit symbol, at the expense of more
grating lobes.

Index Terms— Antenna subset modulation, millimeter wave
communication, physical layer security, large antenna arrays.

1. INTRODUCTION

Communication at millimeter wave (mmWave) frequencies has ap-
plications in personal area, local area, and cellular networks [1]. A
distinguishing feature of mmWave systems is that they use adaptive
arrays at both the transmitter and receiver. As in lower frequency
systems, security is also important for mmWave systems. One ap-
proach to enhance security is what is widely known as physical layer
security [2, 3, 4, 5, 6]. The large antenna arrays in mmWave systems
can be exploited by physical layer security techniques like antenna
subset modulation (ASM) [7].

ASM combines the benefits of security and directional trans-
mission. It artificially introduces randomness in the received con-
stellation in directions different from the intended transmission an-
gle. It also has the advantage of eliminating the need for conven-
tional baseband circuitry, using only a limited number of radio fre-
quency chains, while at the same time exploiting the large antenna
arrays that will be used in mmWave systems. The original claims
about the security of ASM made in [7] assumed that the eavesdrop-
per made measurements only at a single angle. As we show in this
paper, a smart adversary can attack the ASM system by making mul-
tiple simultaneous measurements at different angles and combining
the results together. There are various techniques related to ASM.
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For example directional modulation (DM) also scramble the symbol
constellation in the undesired directions [8, 9]. Another example is
spatial keying (SK) transmission techniques [10, 11] such as spatial
modulation (SM) and space shift keying (SSK) where the informa-
tion is encoded in the subset selection of the transmit antennas from
the large dimensional antenna arrays. SM and SSK were developed
for lower frequency systems with different channel models. Further,
the security enhancement in DM, SM, and SSK were not quantified.
There are a number of physical layer security methods for multiple
antenna systems [12, 13, 14, 15, 16] but these approaches are gen-
erally analyzed assuming rich scattering channels, which are not a
good assumption for mmWave communication.

In this paper we show how compressive sensing techniques and
standard estimation techniques can be used to formulate an effective
attack on ASM. We design a receiver strategy that lets a sufficiently
sensitive eavesdropper recover the information encoded in the ASM
signal without knowledge of the time varying antenna selection pat-
tern or the angular location of the target receiver. The key idea is to
combine simultaneous measurements made at carefully chosen loca-
tions, so that the measurement matrix is full rank and the resulting
system of equations has a unique solution. We suggest a way to en-
hance ASM by the use of smaller antenna subsets, with an increase
in the sidelobes amplitudes.

2. PROBLEM STATEMENT

Consider the mmWave MISO communication system in Figure 1.
Directional beamforming is used to provide array gain along an az-
imuth angle θT, the angular location of the target receiver. Elevation
angle is not considered, since we assume that the array will be posi-
tioned in the x–y plane. In this paper we will consider an array with
N total antennas. The transmitter uses a subset of only M < N
antennas in the array for the transmission of a given symbol, and this
subset changes from one symbol to the next one, following the prin-
ciples of Antenna Subset Modulation (ASM) described in [7]. This
generates a changing radiation pattern which provides physical layer
security, making more difficult for an eavesdropper to decode trans-
mitted data, as explained in the next paragraphs. We assume a nar-
rowband channel model dominated by the LoS component, perfect
synchronization and symbol-rate sampling. In this case, the channel
vector for a receiver located along the θ direction can be written as

hH(θ) =
[
e−j(

N−1
2 ) 2πd

λ
cos(θ), e−j(

N−1
2
−1) 2πd

λ
cos(θ),

. . . , ej(
N−1

2 ) 2πd
λ

cos(θ)
]

with d ≤ λ/2 and being λ the wavelength. The transmitter uses di-
rectional beamforming to orient its main beam along θT and antenna
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Fig. 1: An example of an ASM transmitter with QPSK modulation.
We show how in the direction of θT the constelation is received un-
altered while in any other direction θ the constelation is rotated and
scaled, in different ways, with every symbol transmitted. The phase
shifts ϕ1, . . . , ϕM are the entries of the beamformerw(k).

subset selection at symbol k. Symbols are generated by introduc-
ing an additional data dependent phase offset in the active antennas.
Thus, the beamforming vector w(k) represent the effects of com-
plex phase modulation, beamforming and antenna subset selection
at symbol k

w(k) =
1

M
[b(k)� h(θT)] e

jψ(k) (1)

where� is the elementwise multiplication operation and ψ(k) is the
constant data-dependent phase offset introduced in addition to the
progressive inter-antenna phase shifts, b(k) ∈ BN is an N × 1 vec-
tor, where BN denotes the set of all binary vectors of size N , and
1T b(k) = M enforcing the constraint on the total number of active
antennas. The binary vector b(k) thus encodes the M -antenna sub-
set selected for transmitting the kth symbol, i.e., the positions with
ones indicate active antennas while zeros indicate unused antennas.
The transmit signal can be written

x(k) = w(k)x(k) (2)

=

√
Ese

jψ(k)

M
[b(k)� h(θT)]. (3)

It can be shown [7] that the noiseless received symbol is

y(k, θ) = hH(θ)x(k) (4)

=
1

M
hH(θ)[b(k)� h(θT)]︸ ︷︷ ︸

complex scalar
dependent on θ and b(k)

√
Ese

jψ(k)︸ ︷︷ ︸
information symbol

(5)

= ρ(θ, b(k))
√
Ese

jψ(k) (6)

for some b(k). The scaling factor ρ that appears in (6) is in general
complex for every θ 6= θT and changes with the symbol index k,
while ρ(θT, b(k)) = 1, ∀ b(k) ∈ BN . In this paper we assume the
transmission is realized using complex phase modulation schemes
such as QPSK.

Given the signal in (6), our aim is to study under which condi-
tions and available tools an eavesdropper is capable of recovering
the transmitted symbol. In addition, we study different ways of in-
creasing the robustness of the ASM technique to the attack we are
able to design.

3. THE ATTACK

3.1. The setup of the attack

In this section we analyze how an eavesdropper could be able to re-
cover information despite ASM being used by the transmitter. The
undesired receiver will use multiple measurements (along different
directions) and classical or sparse processing to recover the informa-
tion.

Consider an eavesdropper which is capable of receiving the
transmitted signal along several directions θ`, ` = 1, . . . , L, which
do not coincide with the angle of the target receiver θT. The set of
these reception angles is stored in the vector θ of size L × 1. The
noisy symbol received along these different directions at discrete-
time k is

y(k,θ) =H(k,θ)x(k) + v(k) (7)

where v(k) ∼ CN (0, N0/2) and theL×N channel matrixH(k,θ)
is defined as

H(k,θ) =
[
h(θ1) h(θ2) . . . h(θL)

]H
=


ejz1π cos θ1 ejz2π cos θ1 . . . ejzNπ cos θ1

ejz1π cos θ2 ejz2π cos θ2 . . . ejzNπ cos θ2

...
... . . .

...
ejz1π cos θL ejz2π cos θL . . . ejzNπ cos θL

 .
(8)

For simplicity of exposition we denote zi = (N −1)/2− i with i =
0, . . . , N − 1, and we consider d = λ/2. We also assume that L >
N . Our aim is to develop a strategy to undo the effect of randomizing
the constellation along directions which do not correspond to the
target receiver. This means removing the rotation effect over the
received symbols, so that the received constellation is just a scaled
version of the transmitted one.

To make more explicit the different parameters that need to be
estimated in order to recover the transmitted symbol, we write (7) in
the following way

y(k,θ) =
1

M
H(k,θ)B(k)h(θT)

√
Ese

jψ(k)

=
1

M
H(k,θ)B(k)h(θT)x(k)

(9)

where B(k) = diag(b(k)). From this equation it is clear that we
have three unknowns: b(k) which represents the antenna selection
pattern used by the transmitter at time k, θT the angle of the target
receiver and the transmitted symbol x(k). Their effect is combined
in the unknown vector x(k). Thus, the first goal is to recover x(k)
and then to estimate the three unknowns. Given the solution x(k), it
is very easy to estimate the selection pattern b(k) just by checking
the non-zero entries of x(k) while the estimation of the transmitted
symbol x(k) does necessitate knowledge of θT, which in turn needs
to be estimated separately.

Note that given the structure of b(k), ifM � N , the transmitted
vector is sparse, since only some of its entries are nonzero. There-
fore, recovering the transmitted symbol from y(k,θ) in (7) without
knowledge of the selected subset of antennas or θT can be seen as a
compressed sensing (CS) problem. The channel matrix acts as the
sensing matrix, while the received signal along multiple angles con-
stitutes the available measurement. In addition to the full column
rank condition, the coherence of the channel matrix has to be low
enough if we want to solve the problem from a CS perspective, mak-
ing use of `1 minimization techniques. If the condition M � N is
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not verified, we cannot leverage sparsity, and have to use standard
estimation algorithms as Least Squares (LS) to solve the problem.

It is well known [17] that x(k) is the unique solution to (7) ifH
has Kruskal-rank equal to M (or equivalently, is full column rank).
Also when considering sparse reconstruction algorithms we know
that the mutual coherence of H plays an important role. In the next
sections we develop conditions on the set of reception angles to be
used by the eavesdropper receiver which guarantee that the channel
matrix is full column rank, and also present the different approaches
we use to solve the problem depending on the condition M � N is
verified.

3.2. Design of the set of reception angles

In the next paragpahs we study the properties of H(k,θ) with a
particular attention on full column rank conditions and the levels of
the mutual coherence.

Withω` = ejπ cos(θ`) the channel matrix entries are (H(k,θ))`n =
ωzn` . First, notice that the channel matrix has a row Vandermonde
structure which guarantees full rank N as long as cos(θ`1) 6=
cos(θ`2) for any `1 6= `2 [18].

The mutual coherence is the maximum absolute value correla-
tion between any two distinct columns ofH(k,θ) is µ(H(k,θ)) =
1
L

max
i 6=p
|hHi hp|. Expanding and simplifying the dot product

hHi hp =

L∑
`=1

ejπ(zp−zi) cos(θ`) =

L−1∑
`=0

ej
π(zp−zi)`

L−1 =

L−1∑
`=0

ω`,

(10)

with ω = ej
π(zp−zi)
L−1 and assuming that the angles θ` are selected

such that φ` = cos(θ`) are uniformly distributed in [0, 1]. Thus
φ` = `/(L − 1) with ` = 0, . . . , L − 1. The maximum is attained
when zp − zi = 1 leading to the final simplification

µ(H(k,θ)) =
1

L

∣∣∣∣ sin(π/2)

sin(π/(2L− 2))

∣∣∣∣ . (11)

With this choice for the angles θ the value of the mutual coherence
depends exclusively on the number of measurementsL and generally
does not take values approaching the upper bound of 1.

3.3. Estimation of the transmitted symbol

As previously explained, the eavesdropper needs to estimate three
different parameters contained in the received vector to be able to
obtain the transmitted symbol. Therefore, we can split the estimation
process in three different steps.

1. Estimation of the support of x(k). The first goal is to re-
cover the support of the solution. Equipped with this estimation we
can then proceed with the estimation of θT and ultimately of the sym-
bol x(k). We propose two ways to accomplish this:
• The least squares method. The direct obvious approach would

be to solve
minimize

x(k)
‖y(k,θ)−H(k,θ)x(k)‖2. (12)

Since we do not assume a sparsity constraint, i.e. we do not
have that M � N , this is a sensible approach.

• The `1 optimization method. To explicitly impose the binary
structure to the selection pattern in b(k) we propose to solve
the regularized problem

minimize
x(k)

‖x(k)‖1 + λ‖y(k,θ)−H(k,θ)x(k)‖2.

(13)
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Fig. 2: The radiation patterns for a random sparse antenna subset
withM = 3 (left) and for a random dense antenna subset withM =
20 (right). We set N = 35 and θT = 36◦.

Because of the sparsity constraint we expect this approach to
work better if M � N .

We denote the solutions to the previous problem by x̃(k). We
will denote the estimated antenna selection patterns b̃(k) = 1x̃(k),
where the right hand side is the indicator function that takes values
of 1 for a non-zero entry and 0 otherwise.

The way problems (12) and (13) are formulated there is no need
for prior knowledge of the number of selected antennasM . If this in-
formation is available, the two problems need to be slightly modified
as to accommodate for the explicit linear constraint 1T b(k) =M .

2. Given the angular direction θT of the target receiver, esti-
mate the symbol x(k).

With the antenna selection patterns estimated from the previous
step and assuming we have access to the correct value of θT we have
z = x̃(k)�h(θT), where � denotes the elementwise division. The
vector z contains copies of the symbol x(k), with different ampli-
tudes, in all positions where it is not null. Thus a normalized vector
would result in zn = z � |z|. Assuming we are dealing with a
QPSK constellation, a good way to estimate the symbol x(k) from
zn is be to inspect the signs of the real and imaginary parts of zn,
i.e., <(zn) and =(zn).

3. Estimation of the angular location of target receiver θT.
If θT is known, finding the transmitted symbol is easy due to the

previous observations. But generally the attacker does not know this
preferred angle. To estimate it we will use x̃(k) and the fact that
in the direction of θT the symbol constellation is not rotated, only
scaled, irrespective of the antenna subset picked. To estimate θT we
employ the following 1D search procedure:

• Compute all zi = x̃(k) � h(θi) where the angles θi belong
to a fine grid of Q points equally spaced in the interval [0, π].

• Solve by checking

θ̃T = arg max
θi

∣∣∣∑ sgn(<(zi))
∣∣∣+ ∣∣∣∑ sgn(=(zi))

∣∣∣ , (14)

where sgn is the signum function.

Following this searching procedure we notice that the maximum
value (2M) is attained for several angles near the true preferred an-
gle θT. This is because when using ASM the constellation is unal-
tered inside a narrow solid cone centered on the target radial to θT. In
such a situation we choose the center of the interval. Since the ASM
technique allows for one direction where the constellations does not
suffer rotational transformations we can be sure that if the estimation
of the support b̃(k) was exact then θT belongs to this interval.
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Fig. 3: Phase transitions for the least squares (top) and `1 (bottom)
approaches for the recovery of the antenna subset (left) and for the
recovery error of the preferred angle θT (right). In the case of the an-
tenna subset recovery lighter is better (higher perfect recovery rate)
while for the angle recovery darker is better (lower estimation error).

We treat the computation of θ̃T separately because this angle
does not change with the transmission of every symbol, it remains
the same during a transmission session. Still, its computation can be
done at each time k in order to improve the quality of the estimate.

In the following sections we move to show how the proposed
attack works various simulated scenarios and we discuss variations
of ASM that are potentially robust to the proposed attack.

4. AN ASM TECHNIQUE ROBUST TO THE ATTACK

In Figure 2 we show the difficulty of estimating the preferred angle
θT in an ASM architecture with N = 35 and M ∈ {3, 20}. The
estimation of θT presented in the previous section is based on the
fact that the constellation does not suffer rotational transformations
in this direction and that there is only one such direction. When
M � N there are several angles at which the radiation pattern
achieves the maximum value thus making impossible the distinction
and identification of the correct transmitted symbol in these cases
without knowing of the true angle of transmission θT.

A clear disadvantage in the case M = 3 is the high level of the
side lobes. A future goal is to design radiation patterns that allow
multiple peaks but also minimize the side lobe levels using a small
number of antennas M . This involves searching for an antenna sub-
set between the total

(
N
M

)
possible subsets that obeys some design

requierements. As applied in [7], a heuristic search procedure can
be used to find near-optimal solutions.

5. SIMULATION RESULTS

We now move to show experimentally the efficacy of the proposed
attack against the ASM. We show how each estimation step de-
scribed in Section 3.3 can be realized.
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Fig. 4: Symbol Error Rate for different SNR and attacker angles L
for an ASM architecture with N = 35,M = 20. Recovery is done
using the `1 approach.

In this section we assume an ASM architecture with N = 35
and the transmit, preferred, angle of θT = 36◦. The first goal is to
recover the binary vector b(k) that encodes the M–antenna subset
selected when transmitting the kth symbol. For various values of
M and number of attacker angles L which are chosen uniformly at
random in [0, π] we show in Figure 3 phase transitions for the perfect
recovery of b(k) and the phase transitions for the transmission angle
estimation |θT− θ̃T|. Results are averaged over 1000 runs, each time
the L attacker angles θ are chosen uniformly at random from [0, π].
The noiseless case is assumed. As expected, more measurements
leads to better estimation of the support and transmission angle and,
in the noiseless case, least squares provides better estimation.

Finally we want to show the proposed attack as it unfolds during
a transmission session of various symbols in the presence of noise.
Figure 4 shows the average Symbol Error Rates (SER) achieved
when sending Ns = 106 symbols assuming various values for the
number of available measurements to the attacker. The recovery of
the estimate x̃(k) is done using the `1 minimization approach (13)
since this is robust to the addition of noise. In low, or even moder-
ate, SNR levels the least squares approach performs poorly. Thus,
for brevity, we do not show the results of the least squares method.

6. CONCLUSION

In this paper we proposed an attack on antenna subset modulation for
millimeter wave communication. The attack is based on the key idea
of using multiple simultaneous measurements at multiple reception
angles. We derived conditions on the reception angles that guarantee
that the problem of estimating the transmitted symbol from multiple
measurements has a unique solution. We also analyzed the relation-
ships between the different parameters in ASM and the number of
measurements to be used by an eavesdropper to decode transmitted
data. Simulation examples demonstrate how the proposed attack can
decode information at moderately low SNR levels. An open problem
is to analyze the secrecy capacity of ASM when the received signal
consists of multiple measurements along different directions.
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