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ABSTRACT

Heterogeneous cellular networks have emerged to be the pri-
mary solution for overwhelming traffic demands. This study ad-
dresses the architecture optimization of multi-tier open access down-
link heterogeneous cellular networks to achieve the maximum net-
work spatial throughput under practical constraints on the network
deployment cost and traffic loads of individual tiers. In particu-
lar, with the use of a stochastic geometry-based network model,
the problem of optimizing the densities of base stations (BSs) in
different tiers is shown to be a linear-fractional programming that
can be further transformed into a linear programming by employing
Charnes–Cooper transformation. Such programming can, in turn,
be solved efficiently. Furthermore, for the special case of a two-tier
network, the optimal BS densities are derived in closed form us-
ing the graphical method. Simulation results demonstrate significant
throughput gain from the optimal deployment of multi-tier heteroge-
neous cellular networks.

Index Terms— Heterogeneous cellular networks, network ar-
chitecture optimization, network economics, stochastic geometry.

1. INTRODUCTION

Heterogeneous cellular networks have been introduced to address
the exponential growth of mobile data traffic [1]. A typical hetero-
geneous cellular network consists of traditional base stations (BSs)
for long-range coverage, operator-managed picocells for blind angle
elimination [2], and femtocells for short-range coverage [3, 4]. De-
ploying dense BSs enhances network throughput and mobile quality-
of-service [5] but increases network deployment-and-operation cost
because of the consumption of BS hardware, backhual cables, and
energy [6]. This study optimizes the BS densities of multi-tier het-
erogeneous cellular networks by balancing extension of throughput
and reduction of expenses.

Stochastic geometry has recently been considered as a tractable
tool for modeling wireless networks [5,7–15]. Stochastic geometry-
based network models have been applied to analyze and design re-
source allocation algorithms for heterogeneous cellular networks. In
particular, joint and disjoint sub-channel allocation schemes have
been studied in [11], whereas partial spectrum reuse factor has been
analyzed in [13]. In this paper, we design BS density for multi-
tier open access downlink heterogeneous cellular networks. The
multi-tier heterogeneous cellular networks are modeled as indepen-
dent Poisson point processes (PPPs), as proposed in [8].

From the perspective of network designers and operators, it is
important to constrain the deployment-and-operation cost in network
designs and analyzing performance to avoid yielding impractical and
misleading insight [16, 17]. For this reason, cost-effective strategies

Fig. 1: Multi-tier heterogeneous cellular networks.

have been studied for single-tier cellular networks in [6,18] and two-
tier heterogeneous cellular networks on the basis of lattice network
models [19, 20]. However, few results are known on the optimiza-
tion of multi-tier heterogenous cellular network architectures under
constraints on the deployment cost. Building on the coverage-and
throughput results from [8], in this paper we study a problem of op-
timizing BS densities of multi-tier heterogeneous cellular networks
for maximizing the network throughput under a set of practical con-
straints on the deployment-and-operation cost, traffic loads for dif-
ferent tiers, and received signal power. The optimization problem
is equivalent to a linear-fractional programming (LFP) and it can be
efficiently solved using a linear programming (LP) by employing
Charnes–Cooper transformation. Furthermore, for a two-tier net-
work, the optimal BS densities are derived in closed form by analyz-
ing the polygon geometry of the feasibility region for the aforemen-
tioned optimization problem. This approach provides useful guide-
lines for the deployment of heterogenous cellular networks.

2. NETWORK MODEL AND METRICS

As illustrated in Fig. 1, a K-tier (K ≥ 2) open access downlink het-
erogeneous cellular network comprises different types of BSs, such
as macrocell, picocell, and femtocell BSs. BSs of the same type are
collectively called a tier and characterized by corresponding trans-
mission power, density, and target data rate, which are denoted for
the k-th tier (k = 1, . . . ,K) as Pk, λk, and log(1+βk), respectively,
with βk > 1 being the target signal-to-interference ratio (SIR). Dif-
ferent tiers are modeled as independent and homogeneous PPPs, de-
noted as {Ψk}Kk=1, in the horizontal plane as in [7, 8]. Mobile users
are modeled by another independent PPP, denoted as Φ, with density
λu. Each BS is assumed to deploy a single antenna. Propagation is
characterized by both path loss and small-scale fading. In particular,
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the received power at a receiver Z ∈ R
2 attributed to transmission

from a BS in the k-th tier at Y ∈ R
2 is given by PkhY Z |Y −Z|−α,

where α > 2 is the path-loss exponent, | · | is the transmission dis-
tance, and hY Z is an exp(1) random variable modeling Rayleigh
fading. All channel coefficients {hY Z} are assumed to be i.i.d.

Given the stationarity of the network model, network perfor-
mance can be characterized by considering the throughput of a typi-
cal mobile user located at the origin represented by O. For simplic-
ity, the network is assumed to be interference limited and further-
more enables open access (i.e., a typical mobile user is allowed to
connect to a BS in any tier. In particular, each mobile user is served
by the BS providing the highest received SIR [8].) Given that the
typical mobile user is connected to a BS X in the k-th tier, the re-
ceived SIR can be written as

SIR(X) =
PkhXO|X|−α

K∑
k=1

∑
Y ∈Ψk\{X}

PkhY O|Y |−α

, X ∈ Ψk. (1)

To justify the assumption of dominant interference over noise and
to avoid reaching any misleading conclusion, the received power
should be ensured to be sufficiently large by applying the following
constraint [21]:

Constraint 1 (Signal power). The received signal power at a typical
mobile user, denoted as S0, has to exceed a positive threshold δ,
except for a small constant probability ε; i.e., P[S0 < δ] ≤ ε.

This work builds on several key results from [8]. The data trans-
mitted by a BS in the k-th tier is successfully received at the intended
mobile user if and only if the received SIR is no smaller than the tar-
get value βk. A mobile user is within coverage if at least one BS of
any tier can provide the mobile user with reliable transmission. The
coverage probability of the typical mobile user, denoted as Pcv , is
given as

Pcv = P

⎡
⎣ ⋃

X∈Ψk,k∈{1,2,...,K}
(SIR(X) > βk)

⎤
⎦ . (2)

From [8], we obtain

Pcv =

α sin(2π/α)
K∑

k=1

β
−2/α
k P

2/α
k λk

2π
K∑

k=1

P
2/α
k λk

. (3)

Definition 1. The fractional load of the k-th tier, denoted by ηk, is
defined as the fraction of time during which a typical mobile user is
connected to a BS in the k-th tier:

ηk =

P

[ ⋃
X∈Ψk

(SIR(X) > βk)

]
Pcv

. (4)

From [8], we obtain

ηk =
β
−2/α
k P

2/α
k λk

K∑
k=1

β
−2/α
k P

2/α
k λk

. (5)

With the definition of fractional load, we have the following con-
straint that guarantees a given minimum level of utilization and profit
for each tier.

Constraint 2 (Tier traffic load). The fractional loads of different
tiers are constrained as ηk ≥ θk, k = 1, 2, . . . ,K, where {θk} are
given constants satisfying 0 ≤ θk ≤ 1 and

∑
k

θk ≤ 1.

Furthermore, the average rate R achieved by a randomly located
mobile user when it is within coverage can be expressed as [8]

R =E

[
log

(
1 + max

X∈Ψk,k∈{1,2,...,K}
SIR(X)

) ∣∣∣∣
⋃

X∈Ψk,k∈{1,2,...,K}
(SIR(X) > βk)

]
, (6)

= log(1 + βmin) +

K∑
k=1

∫∞
βmin

max(βk,t)
−2/α

1+t
dtP

2/α
k λk

K∑
k=1

β
−2/α
k P

2/α
k λk

, (7)

where βmin = min
k

{βk}. According to the above definitions, the

performance metric (i.e., spatial throughput) can be readily defined
as follows.

Definition 2. The spatial throughput of the K-tier heterogeneous
cellular network is

T = λuRPcv, (8)

where Pcv and R are defined in (3) and (7), respectively.

Last, in this study we consider the network deployment-and-
operational cost which results from factors including BS hardware,
backhaul cables connecting BSs to switching centers, and power
consumption. From [6], the cost can be expressed as a linear function
of base station density. Specifically, we have the following definition
and constraint.

Definition 3. The deployment-and-operation cost per unit area for
the k-th tier, denoted as Ck, is defined as Ck = ckλk, where ck is the
total price for laying a cable of unit length, onsite BS hardware, and
power consumption for a k-tier BS.

Constraint 3 (Deployment cost). The deployment-and-operation
cost for the tiers are constrained as Ck ≤ φk, k = 1, 2, . . . ,K,
where {φk} are given positive constraints.

3. NETWORK DENSITY OPTIMIZATION

In this section we design the densities of K-tier heterogenous cellu-
lar networks considering the tradeoff between performance and cost.
The optimization problem is first formulated as a linear-fractional
programming (LFP) and then solved by two methods.

3.1. Problem Formulation

The BS density optimization problem for throughput maximization
under Constraints 1–3 is formulated as follows:

(P0)

max
{λk}

T (λ1, λ2, · · · , λK)

s.t. P[S0 < δ] ≤ ε,

ηk ≥ θk, ∀k,
Ck ≤ φk, ∀k,
λk ≥ 0, ∀k.
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Next, we show that (P0) can be expressed as an LFP. According
to (3), (7), (8), the objective function in (P0) can be rewritten as the
ratio between two linear functions of x = [λ1, λ2, . . . , λK ]T ,

T (x) =
aTx

bTx
, (9)

where a = [a1, a2, . . . , aK ]T , and b = [b1, b2, . . . , bK ]T with

ak =λuα sin(2π/α)

[
log(1 + βmin)β

−2/α
k +∫ ∞

βmin

max(βk, t)
−2/α

1 + t
dt

]
P

2/α
k , (10)

bk =2πP
2/α
k . (11)

for k = 1, 2, · · · ,K. By the application of Marking Theorem [22],
the first constraint in (P0) is transformed into one on the tier densi-
ties as follows:

K∑
k=1

P
2/α
k λk ≥ ζ, (12)

where the constraint ζ is

ζ =
αδ2/α log(1/ε)

2πΓ(2/α)
, (13)

and Γ denotes the Gamma function. Furthermore, all the linear con-
straints on BS densities are combined by introducing the following
(3K + 1)×K matrix:

C =

⎡
⎢⎣
C1

C2

C3

−I

⎤
⎥⎦ , (14)

where C1 is a row vector
[
−P

2
α
1 −P

2
α
2 . . . −P

2
α
K

]
, C2 de-

notes a K×K sub-matrix in which the element of the m-th row and
n-th column is

[C2]m,n =

{
(1− 1/θn) (Pn/βn)

2/α , m = n,

(Pn/βn)
2/α , m �= n,

(15)

I is a K × K identity matrix, and C3 is a K × K diagonal matrix
with the diagonal elements taken from the vector [c1, c2, · · · , cK ].
Moreover, we define the (3K + 1)× 1 vector d as

d = [−ζ, 0 . . . , 0︸ ︷︷ ︸
K

, φ1, φ2, . . . , φK , 0 . . . , 0︸ ︷︷ ︸
K

]T . (16)

With (9), (14) and (16), the density optimization problem can be
rewritten as the following LFP:

(P1)
max

x

aTx

bTx

s.t. Cx ≤ d

The solution is discussed in the remainder of this section.

3.2. Solution

In the following two subsections, we show that the density optimiza-
tion problem can be solved by two methods for a general case and
a special case, respectively. In particular, for networks with many
tiers, the problem can be solved efficiently by linear programming
(LP) transformation; whereas for networks with two tiers, a closed-
form solution can be obtained using the graphical method [23].

3.2.1. Solution by Linear Programming

Under the assumption that the feasible region of (P1) is non-empty
and bounded, (P1) can be converted into an LP using Charnes–
Cooper transformation [23]. We define y = x/(bTx), and z =
1/(bTx), such that (P1) is equivalent to

(P1.1)

max
y,z

aTy

s.t. Cy ≤ dz,

bTy = 1,

z ≥ 0.

The LP can be efficiently solved using standard algorithms, such as
the simplex method [24]. Let y∗ and z∗ denote the resultant solution.
Then, the solution to (P1), x∗, is given as x∗ = y∗/z∗. Hence, the
maximum throughput is given by (9) substituted with x∗.

Remark 1. The maximum throughput T ∗ is unique, but infi-
nite combinations of tier densities {λ∗

k} may exist to achieve this
throughput. In particular, the domain for the optimal tier densities of
two-tier networks can be a line segment, as elaborated in the follow-
ing subsection.

3.2.2. Solution by the Graphical Method

For the simple case of two-tier networks, (P1) reduces to

(P1.2)
max
λ1,λ2

a1λ1 + a2λ2

b1λ1 + b2λ2

s.t. (λ1, λ2) ∈ F .

where F denotes the feasibility region of (P1.2)

F = {(λ1, λ2) ∈ R
2
+ | P 2/α

1 λ1 + P
2/α
2 λ2 ≥ ζ,

λ2/λ1 ≤ (P1β2/P2/β1)
2/α (1− θ1)/θ1,

λ2/λ1 ≥ (P1β2/P2/β1)
2/α θ2/(1− θ2),

λ1 ≤ φ1/c1, λ2 ≤ φ2/c2}. (17)

From (17), the feasibility region is a polygon that is character-
ized as follows: First, it is obtained from the two constraints on
the ratio λ2/λ1 that the feasibility region for (P1.2) is nonempty
only if (1− θ1)/θ1 ≥ θ2/(1− θ2). This equivalent condition
θ1 + θ2 ≤ 1 is satisfied from the definition. Next, the edges of
F correspond to the lines defined by setting equalities in the first
five constraints of (P1.2) and denoted in order as �1, �2, . . . , �5. In

particular, these edges are given as �1 : λ2 = −(P1/P2)
2/αλ1 +

ζ/P
2/α
2 , �2 : λ2 = (P1β2/P2/β1)

2/α (1− θ1)/θ1λ1, �3 : λ2 =

(P1β2/P2/β1)
2/α θ2/(1− θ2)λ1, �4 : λ1 = φ1/c1 and �5 : λ2 =

φ2/c2. Given that F is nonempty, the optimal tier densities are char-
acterized as follows:

Proposition 1. Assuming that F is nonempty, the solution for
(P1.2), denoted as (λ∗

1, λ
∗
2), has the following properties:

1. If a1/b1 < a2/b2, (λ∗
1, λ

∗
2) = arg min

(λ1,λ2)∈F
λ1/λ2.

2. If a1/b1 > a2/b2, (λ∗
1, λ

∗
2) = arg max

(λ1,λ2)∈F
λ1/λ2.

3. If a1/b1 = a2/b2, every feasible point (λ1, λ2) yields the
same maximal throughput T ∗ = a1/b1 = a2/b2.
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Table 1: Optimal BS density for throughput maximization subject to
cost constraint in two-tier heterogeneous cellular networks (ε = 0.1)

Maximum
deploy-
ment
cost con-
straints
(φ1, φ2)

Optimal
densities
(λ∗

1, λ
∗
2)

by LP
method

Optimal
densities
(λ∗

1, λ
∗
2)

by the
graphical
method

Maximum
network
through-
put
T ∗

Deployment-
and-
operation
costs
(C1, C2)

(1.0, 0.6) (0.38, 0.6) (0.38, 0.6) 0.50 (0.76, 0.6)
(1.0, 0.8) (0.34, 0.8) (0.34, 0.8) 0.54 (0.68, 0.8)
(1.0, 1.0) (0.30, 1.0) (0.30, 1.0) 0.58 (0.59, 1.0)
(1.0, 1.2) (0.25, 1.2) (0.25, 1.2) 0.63 (0.51, 1.2)

Sketch of proof: Essentially, the simple proof is based on rewrit-

ing the objective function of (P1.2) as
a1λ1/λ2+a2
b1λ1/λ2+b2

and observing

the function to grow with the decreasing ratio λ1/λ2 if a1/b1 <
a2/b2; otherwise, the function grows with the increasing ratio.

We consider the case of a1/b1 < a2/b2 and obtain the so-
lution for (P1.2) in closed form. The analysis for the case of
a1/b1 > a2/b2 is similar and is thus omitted for brevity. For ease of
notation, let the intersection points between a pair of lines (�m, �n)
be specified by (λ1, λ2) = (λ1(�m, �n), λ2(�m, �n)).

Corollary 1. Assuming that F is nonempty, and a1/b1 < a2/b2.

1. If φ2/c2 > λ2(�1, �2), (λ
∗
1, λ

∗
2) is an arbitrary point in the

following line segment:{
(λ1, λ2) ∈ R

2
+ | λ2 = (P1β2/P2/β1)

2/α (1− θ1)/θ1λ1,

λ2 ∈ [λ2(�1, �2),min(λ2(�2, �4), φ2/c2)]
}
. (18)

2. If λ2(�1, �3) ≤ φ2/c2 ≤ λ2(�1, �2), (λ
∗
1, λ

∗
2) is unique:

(λ∗
1, λ

∗
2) =

(
ζ/P

2/α
1 − (P2/P1)

2/αφ2/c2, φ2/c2
)

(19)

The proof is on the basis of the analysis of the polygon geometry
of the feasibility region. The details are omitted for brevity.

Remark 2. For the first case in Corollary 1, although all points in the
said line segment are optimal, the point with minimum tier densities
is desirable to use in practice to minimize the deployment cost (e.g.,
(λ1(�1, �2), λ2(�1, �2)) for case 1).

Remark 3. For a two-tier network, the density optimization prob-
lem can be solved using the graphical method for analyzing the ge-
ometry of the feasibility region, thus yielding a closed-form solution.
However, for networks with many tiers, the number of edges/faces of
the feasibility region grows exponentially with the number of tiers.
For such cases, the graphical method is no longer efficient, and the
use of the LP approach based on Charnes–Cooper transformation
shown in (P1.1) is preferred.

4. NUMERICAL RESULT

In this section, we evaluate the throughput gain of a two-tier het-
erogeneous cellular network with the use of the proposed density
optimization. The evaluations in multi-tier networks show similar
results. The following settings are used in the simulation: The mo-
bile user density is λu = 1 per unit area, and the path-loss expo-
nent is α = 3. The transmission powers, target SIRs, minimum
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Fig. 2: Maximum network throughput T ∗ versus the maximum per-
missible deployment cost φ2 for tier 2.

fractional loads, and deployment prices of each tier are chosen as
(P1, P2) = (10, 1), (β1, β2) = (10, 1), (θ1, θ2) = (0.1, 0.6), and
(c1, c2) = (2, 1), respectively. The maximum deployment cost for
tier 1 is φ1 = 1 per unit area, whereas that for tier 2, φ2, is a vari-
able. The parameter ε for Constraint 1 is specified in the table and
figure.

Table 1 demonstrates the optimal BS densities in two-tier het-
erogenous cellular networks under different deployment cost con-
straints. We can see that the two proposed methods, namely LP
method and the graphical method, provide the same optimal solution
that maximizes the network throughput. The resultant deployment
cost also satisfies Constraint 3; i.e., (C1, C2) ≤ (φ1, φ2).

In Fig. 2, the network throughput is plotted against the con-
strained deployment cost φ2 for both the case of optimized deploy-
ment and the baseline case of equal tier densities. When φ2 is
small, tier densities are no longer supportable without violating Con-
straint 3. Thus, the feasibility region becomes empty, and throughput
reduces to zero. Given the intermediate values of φ2, the throughput
increases with φ2 because Constraint 3 shapes the feasibility region.
When φ2 is so large that Constraint 3 becomes redundant in terms
of shaping the feasibility region, the maximum throughput is always
achievable. By contrast, the throughput is (a1+a2)/(b1+b2) when
the equal density approach is used. As a result, the proposed density
increases the throughput by more than 50% as opposed to the equal
density approach. Moreover, as shown in Fig. 2, when Constraint 1
is activated, substantial throughput gain can be obtained by increas-
ing ε. This finding is attributed to the fact that more transmission
can be supported if higher outage requirement is allowed.

5. CONCLUSION
In this study, we have considered the tradeoff between the net-
work throughput and deployment cost when designing BS density in
multi-tier heterogeneous cellular networks. The optimization prob-
lem is formulated as an LFP that can be solved efficiently with the
use of Charnes–Cooper transformation. Moreover, a closed-form
solution has been derived for two-tier networks. The numerical re-
sults have demonstrated that the proposed BS density significantly
enhances throughput given the constraint on deployment cost.
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