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ABSTRACT

This paper presents a hybrid method for single-source local-
ization in wireless sensor networks, fusing noisy range mea-
surements with angular information extracted from video.
Although recent works found in the literature explore hybrid
schemes, these include several cumbersome assumptions. We
develop and test, both numerically and experimentally, a hy-
brid localization algorithm which surpasses the limitations of
previous fusing approaches. The proposed method (FLORIS)
is based on a nonconvex least-squares joint formulation, for
which a tight convex relaxation is applied to obtain a semidef-
inite program. Numerical simulations show that FLORIS has
comparable performance to state-of-the-art methods, even
outperforming them in some scenarios. Real experiments
show that FLORIS is feasible in practical application scenar-
ios, achieving very good accuracy and robustness. Impor-
tantly, coverage requirements for the infrastructure in a given
area are more flexible than resorting to a single type of sensor,
which may simplify practical deployments.

Index Terms— Hybrid single-source localization, convex
relaxation, semidefinite programming, ranges, video

1. INTRODUCTION

The “where am I” problem has always been a key issue in
the field of technology, both for human mobility and for
robots/autonomous vehicles. Currently, the most popular lo-
calization system is the Global Positioning System (GPS).
Nonetheless, there are several situations, such as indoors
or underwater environments, in which GPS is not available
and where location awareness will soon become an essen-
tial feature. These environments pose challenges such as
strong multi-path/non line-of-sight propagation, diffractions
or interferences, which lead to over-meter accuracy for the
majority of existing systems. Such accuracy may be insuffi-
cient for numerous applications, and [1] claims that the key
to overcome this issue lies on exploring hybrid schemes.
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Focusing on indoor environments, most of the proposed
localization systems use only one type of measurement. Yet,
wireless sensor networks (WSN) are becoming ubiquitous
and thus it is commonplace to find different sensors (e.g.
Wi-Fi, Bluetooth, mobile cameras) inter-connected in the
same space, the so-called Internet of Things. This work ad-
dresses the use of distances (obtained acoustically or with
electromagnetic signals) and angular information (gathered
by video cameras) to localize a target. More specifically, in
WSN localization, range information can be measured from
travel times [2], or inferred from received power [3], and
usually produces robust results for ranges up to about 10
meters. On the other hand, orientation (Angle of Arrival) [4]
and distance information retrieved by video is more reliable
at short ranges. Therefore the complementary strengths of
these techniques make them extremely appealing to be used
in synergy, paving the way to more accurate localization.

Recently, attempts to fuse these two types of information
have been presented in [4, 5], but these methods impose se-
vere limitations; the one in [4] is specific for 2D, whereas [5]
assumes that the range and visual anchors overlap. Our goal
is to overcome the limitations of [4, 5] by deriving a novel
formulation based on a single (centralized) optimization prob-
lem that jointly accounts for range and bearing data obtained
from arbitrarily placed heterogeneous sensors in 2D or 3D1.
Using semidefinite relaxation (SDR) techniques [6] we obtain
a convex problem that can be efficiently and globally solved
by general-purpose software in one step.

SDR techniques have been successfully used before in
range-based localization to obtain high-quality approxima-
tions to the maximum of the non-convex likelihood function
under Gaussian noise [7, 8]. The approach that we take for the
hybrid case builds upon our SLNN algorithm for range-only
measurements [8], adopting related reformulations and relax-
ation techniques for a modified cost function that includes
additional least-squares terms to account for angle measure-
ments. SLNN’s high precision and robustness is thus ex-
pected to carry over to the method proposed here. We in-
clude as one of the benchmarks another optimization-based

1The approach is actually valid for an ambient space of arbitrary dimen-
sion.
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method termed Squared Ranges Least-Squares (SR-LS) [9],
which does not belong to the SDR class but provides an inter-
esting tradeoff between good precision and very low compu-
tational complexity.

Our novel hybrid method for single-source localization,
termed FLORIS (Fused LOcalization using Ranges and Inci-
dent Streaks), is fully tested in simulation and in real exper-
iments with very encouraging results. In fact, we show that
FLORIS outperforms the other benchmarks in some scenar-
ios, particularly when the measurements are quite noisy. By
taking advantage of hybrid measurements in our fully unified
framework (as opposed to alternating between range-based
and bearing-based localization in some ad-hoc schemes) a
source may be localized even in extreme cases where the
number of available ranges or bearings, taken independently,
is insufficient to determine the position unambiguously.

Below, (·)T denotes the transpose operator, In is the iden-
tity matrix of size n × n, and ⊗ represents the Kronecker
product.

2. PROBLEM FORMULATION: HYBRID SOURCE
LOCALIZATION (FLORIS)

Let x ∈ Rn be the target position to be estimated based on
a set of m known reference points (anchors) ai ∈ Rn, i =
1, ...,m. Of these, the ones whose indices belonging to setR
provide range measurements to the source, di = ‖x−ai‖+wi,
wherewi denotes a zero-mean Gaussian noise term with stan-
dard deviation σ, whereas those with indices in T measure
bearings. Each bearing, ui, is modeled as a von Mises-Fisher
random variable centered around the true direction x−ai

‖x−ai‖
with concentration parameter κ. We propose estimating the
source position by minimizing the joint cost function

f(x) =
∑
i∈R

D2(x,Ci) +
∑
i∈T

D2(x, Li), (1)

whereD(x,Ci) denotes the distance from point x to the circle
Ci centered at anchor ai with radius di. Similarly, D(x, Li)
denotes the distance from x to the line Li that originates in ai
with orientation ui.

The intuitive idea behind (1) is that this formulation at-
tempts to balance, on the one hand, the distances of the target
position estimate relative to the circles centered at the wire-
less anchors with radii di and, on the other hand, the distances
to the lines originating at the visual anchors with orientation
ui (see Figure 1). Under i.i.d. Gaussian noise the first term
in (1) is the likelihood of range measurements, but no such
interpretation can be given for the second term.

While the squared distances in (1) are explicitly given
by D2(x,Ci) = (‖x − ai‖ − di)

2 and D2(x, Li) = (x −
ai)

T (In − uiuTi )(x − ai) [10], we pursue the following al-
ternative parameterization for minimizing (1), inspired in [8]

ai

di

D(x, Ci)

x

ai

ui

C
i

L
i

Fig. 1. Geometric representation of terms in the joint cost
function (1)

minimize
x,yi,θi,ti

m∑
i=1

‖x− yi‖2

subject to yi = ai + diθi, ‖θi‖ = 1, i ∈ R,
yi = ai + uiti, ti ∈ R+, i ∈ T .

(2)

The first and second sets of constraints ensure that auxiliary
variables yi are located on the circles Ci or lines Li, respec-
tively. Problem (2) seeks the best possible match between
these and x. Given all yi, this is a standard least-squares
problem whose optimal solution for x is just the center of
mass of the constellation x = 1

m

∑
i yi, and this can be sub-

stituted back in the cost function of (2) to yield yTJy, where
y is a vector of size mn × 1 that stacks y1, . . . , ym, and J is
the projector on the orthogonal complement of 1m ⊗ In =
[In . . . In︸ ︷︷ ︸

m

]T . Compactly, we write

y = a+R

[
θ
t

]
, (3)

where θ stacks the unit vectors θi, i ∈ R, and t stacks the
scaling factors ti, i ∈ T . Matrix R, of sizemn×(n|R|+|T |),
is block diagonal-like, built from diIn, i ∈ R and ui, i ∈ T 2.
Problem (2) is thus reformulated as

minimize
θ,t

(
a+R

[
θ
t

])T
J

(
a+R

[
θ
t

])
subject to ‖θi‖ = 1, i ∈ R, ti ≥ 0, i ∈ T .

(4)

Cost function (4) may be written as a quadratic form in[
θT tT 1

]T
, and expressed using trace as

tr
([RTJR RTJa

aTJR aTJa

]
︸ ︷︷ ︸

M

θt
1

 [θT tT 1
]

︸ ︷︷ ︸
W

)
. (5)

We now redefine the optimization variable as matrix W de-
fined above, and rewrite the problem as

2Note that matrix R is not square, as each bearing ui adds n rows but a
single column to it. In spite of this nonstandard detail, its structure should be
clear from the above description.
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minimize
W

tr(MW)

subject to W � 0, rank(W) = 1

tr(Wi,i) = 1, i ∈ R
Wi,nm+1 ≥ 0, i ∈ T
Wnm+1,nm+1 = 1.

(6)

The third constraint, where Wi,i denotes the submatrix of W
comprising the rows/columns that pertain to θi in (3), encodes
‖θi‖ = 1. The fourth constraint, where Wi,nm+1 denotes the
subvector of W comprising the row pertaining to ti in the
rightmost column, encodes ti ≥ 0.

Finally, we drop the rank constraint in (6) to obtain the re-
laxed SDP. Vectors θ and t are obtained by SVD factorization
of the solution W or directly from its rightmost column (or
bottom row), from which the yi are computed by (3) and the
source position estimated as the average of these m points.

Calibration: From the existence of two uncoupled types
of sensors (range and visual), which contrasts with [4, 11],
emerged the need to calibrate both networks, as a precondi-
tion to perform localization. Range measurements obtained
acoustically will lead to a target position estimation in the co-
ordinate system defined by the acoustic anchors. On the other
hand, the orientation of the camera, relative to the identified
visual features, is determined in a different coordinate system
defined by such features. Hence, we should define a global
frame and express both classes of measurements in this com-
mon coordinate system. Due to space constraints we omit the
discussion of the calibration procedure, and assume through-
out that suitable translations/rotations have been determined.

3. SIMULATION AND EXPERIMENTAL RESULTS

In this section we characterize the performance of FLORIS
in simulation and in real experiments, benchmarking against
SR-LS [9] and SLNN [8]. The latter were chosen based on
the assessment of [8] which showed that SLNN has higher
accuracy in 3D than previously proposed optimization-based
methods, while SR-LS is somewhat less accurate but faster.

3.1. Simulation results

The following experiments were run using MATLAB R2013a
and the general-purpose SDP solver CVX/SDPT3. Networks
of acoustic and visual anchors were randomly generated in a
[0, 5] × [0, 5] × [0, 5] cube. Gaussian noise was added to
the distance according to d = d0(1 + w), where d0 is the
ideal (noiseless) range measurement and w ∼ N (0, σ2) is
a zero-mean Gaussian random variable with standard devia-
tion (noise factor) σ. Similarly, the orientation follows a von
Mises-Fisher distribution u ∼ vMF(u0, κ), with mean di-
rection u0 denoting the ideal bearing and concentration pa-
rameter κ. Under this model range errors tend to increase
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Fig. 2. 3D source localization performance; RMSE vs noise
factor, for 6 acoustic and 4 visual anchors

for longer distances. A baseline scenario was established
with reference values σref = 0.05, κref = 2800 that ap-
proximately reflects the dispersion of measurements in the
experimental setup. To evaluate the performance as a func-
tion of noise power these were jointly scaled for other noise
factors η as σ = ησref , κ = 1

η2κref . To assess the per-
formance both the position estimation error and the rank of
matrix W were studied. The rank is used to assess the formu-
lation in (6) and its relaxation, since when rank(W) = 1, the
relaxed solution found holds the optimal value for the orig-
inal non-relaxed problem. The accuracy is evaluated com-
puting the Root-Mean-Square Error (RMSE), for every set of

MC Monte Carlo runs, defined as
√

1
MC

∑MC
i=1 ‖xi − x̂i‖2,

where xi and x̂i are the true and the estimated source posi-
tions for the ith run.

Example 1: Performing 1000 Monte Carlo runs for each
noise factor value, for randomly generated configurations of 6
acoustic and 4 visual anchors, the obtained relative frequency
of rank(W) = 1 is listed in Table 1. We conclude that the
relaxation used in FLORIS is tight, hence the optimal solution
is frequently found, even for very high measurement noise.

η 1/50 1/10 1/5 1 2 4
Rank-1 (%) 99.9 97.4 96.6 84.8 85.7 82.8

Table 1. Percentage of rank-1 solutions for different 6+4 net-
work configurations and noise factors

Example 2: A comparison among the three methods is
performed in Figure 2 for several values of noise factors η ∈
[ 1
50 , 14], and for 1000 randomly generated network configura-

tions, comprising 6 acoustic and 4 visual anchors. The figure
shows significant improvement in accuracy by adding angu-
lar information, such that FLORIS consistently outperforms
the other two (range-only) state-of-the-art methods. It can be
remarked that the comparison is unfair, as SLNN and SR-LS
operate with less information (6 acoustic anchors alone) than
the hybrid method (which adds 4 additional visual anchors).
A more equitable situation is discussed next.

Example 3: Figure 3 depicts simulation results when all
algorithms use the same number of anchors. Networks of 8
acoustic anchors were generated to test SLNN and SR-LS,
4 of which were randomly converted to visual ones for the
hybrid approach. Under these conditions, the performance of
FLORIS is closer to that of other methods. In fact, for very
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Fig. 3. 3D localization performance; RMSE vs noise factor
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Fig. 4. Target position estimations given by the hybrid algo-
rithm versus the ground-truth positions

low noise factors it is slightly outperformed by SLNN and
SR-LS. On the other hand, the proposed method seems to be
consistently more robust for noisier measurements. This is an
important property of FLORIS, as measurements in practical
scenarios tend to be quite noisy. Running times (on the order
of 1 sec) are similar to SLNN’s.

3.2. Experimental results

An experimental set-up was developed to test FLORIS. This
consisted on Cricket [12] beacon nodes as acoustic anchors
and ARUCO [13] augmented reality tags as visual anchors.
The target, comprising a video camera rigidly coupled to a
Cricket listener node, could roam in a covered volume of
about 50 m3. Several practical issues had to be overcome, in-
cluding tuning the directionality of Crickets, calibrating their
range measurements individually, and setting up transforma-
tions to translate between the coordinate systems of visual and
acoustic nodes (see the end of Section 2).

Several datasets (of range and orientation measurements)
were acquired. Figure 4 shows the ground truth and the target
positions estimated by FLORIS during a walk through the in-
stalled set-up. It can be observed that the estimated positions
are, globally, very close to the ground truth.

Table 2 compares the RMSE obtained for the proposed al-

SR-LS [9] SLNN [8] FLORIS
RMSE(m) 0.1738 0.1973 0.1609

Table 2. 3D source localization performance comparison, for
an experimental data set obtained with Cricket and ARUCO
anchor nodes

gorithm with SR-LS [9] and SLNN [8], for a particular data
set. For this specific case, it can be observed that FLORIS
does improve upon existing methods, corroborating the good
performance already found in simulation. This is a very en-
couraging result, showing that although several practical limi-
tations were found in the deployment of the experimental set-
up they were successfully overcome.

Overall, we believe that our experimental results validate
FLORIS as a practically relevant algorithm with appealing ac-
curacy and robustness properties. We stress that FLORIS is
potentially more flexible than other methods operating on a
single type of sensed variable. More specifically, the hybrid
approach is able to successfully localize a target in situations
where other algorithms are not. For example, in 3D, when
information from only 3 acoustic anchors is received, it is not
possible to estimate a correct position. Yet, if an object (or
a tag in our current implementation) is recognized FLORIS
produces a valid estimation. Furthermore, although FLORIS
experiences a well-known deterioration in performance as the
source moves outside the convex hull spanned by the anchors,
we have observed that the degradation is more progressive
and graceful than in range-only algorithms. So far, the evi-
dence for this effect remains only anecdotal, and a more care-
ful characterization should be undertaken.

4. CONCLUSIONS AND FUTURE WORK

This work addresses the growing need for solutions and appli-
cations for large-scale heterogeneous sensor networks, taking
advantage of distinct sensing devices. In particular, we de-
vised a new approach for centralized localization based on
nonlinear least squares that seamlessly fuses range and an-
gular measurements, as well as a tight SDP relaxation that
provides an efficient solution method using a generic convex
solver. FLORIS was numerically and experimentally vali-
dated, showing that it can provide accurate position estimates.
In numerical results FLORIS achieves higher accuracy than
state-of-the-art methods, specially for high noise scenarios.
Findings from a real indoor deployment are promising, show-
ing better accuracy of estimates than the benchmarks, includ-
ing in cases that cannot be tackled by previous methods using
a single type of sensor. Noisy acoustic range measurements
are an important practical concern, and alternatives (e.g. us-
ing low-cost UWB nodes) are being assessed. The procedure
to translate between coordinate systems for the various types
of nodes also requires improvement. Longer-term future work
will explore the replacement of visual anchors (tags) by detec-
tion/recognition of more general artificial objects.
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ation and detection of highly reliable fiducial markers
under occlusion,” Pattern Recognition, vol. 47, no. 6,
pp. 2280 – 2292, 2014.

2883


