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ABSTRACT

Recent developments in microgrids place strict constraints on the
underlying state estimation technology, including the need for a dy-
namic and distributed approach. Since the problem is reminiscent of
classical information fusion [2], the paper explores the application
of a fusion-based reduced order, distributed unscented particle filter
(FR/DUPF) for dynamic state estimation in microgrids. By parti-
tioning the nonlinear microgrid into a network of nsub localized and
dynamically coupled systems, the FR/DUPF provides computational
savings of a factor of nsub over its centralized version. Monte Carlo
simulations verify its accuracy by confirming that estimates from the
FR/DUPF and centralized filter evolve close to the ground truth.

Index Terms— Microgrids, Islanded grids, Distributed estima-
tion, Nonlinear estimation, Particle filters, Distributed generation.

1. INTRODUCTION

In power engineering, the existing electric power grid (EPG) frame-
work is steadily being transformed into a new grid paradigm, re-
ferred to as the smart(er) power grid. Used to deliver power from a
few generating plants to a large number of users, legacy EPGs oper-
ate as three level hierarchical systems (with the transmission, local
sub-transmission, and distribution levels) and only allow for one-
way power flow. Failure of a single EPG component, especially at the
transmission or sub-transmission levels, has the potential of trigger-
ing massive power disruptions, as was the case in the U.S. Northeast
blackout of 2003 that literally affected millions of consumers. Due
to the need to generate large amounts of electricity at short notices
at a few isolated stations, legacy EPGs depend on fossil fuel driven
backup generators, which produce extreme amounts of carbon emis-
sions. The emerging smart grid technology is being designed to ad-
dress these issues. In response to smart grid initiatives, distribution
networks should be able to host new components, technologies, and
a wide variety of distributed and renewable generators (DG), energy
storage devices, advanced grid control devices, advanced metering
infrastructure, demand side management, and two way communi-
cation. Distribution networks are thus undergoing a major transition
from being passive with unidirectional power flow toward active dis-
tribution networks (ADN) with multi-directional power and infor-
mation flow. Meanwhile, widespread implementation of the DG is
creating electrical regions with enough generation capacities to meet
all or most of its local demand. Referred to as microgrids, these elec-
trical regions have the ability to cut (island) themselves off from the
parent grid, for example, in the case of a local failure. The micro-
grids allow for two-way electrical flows creating their own delivery
and storage reservoirs. Hydrogen tanks and fuel cells replacing the
backup diesel generators perform double-duty, i.e., release power on
the grid from hydrogen at peak demand and in a reverse mode store

power by making hydrogen from electricity during off-peak hours.

Incorporating the aforementioned two-way power and informa-
tion flow, and demand response features in smart power grids calls
for timely knowledge of the operating status of the system based on
real-time observations. Unlike state estimation in legacy EPGs [17]-
[20], where state estimates are either static or updated only once ev-
ery few minutes (mainly to reduce the computational complexity of
the EPG estimator), smart grids in general and microgrids in partic-
ular require accurate and dynamic state updates, at times within a
fraction of a second. For instance, when microgrids operate in the
islanded mode, dispatchable DG units become responsible for hold-
ing the microgrid frequency and voltage amplitudes. Further, in typ-
ical microgrids, the interface between the DG units prime movers
and the distribution systems is often based on power electronic con-
verters acting as voltage sources. This kind of interface lacks the
physical inertia that is typically available in the synchronous gener-
ators rotating masses. The lack of physical inertia in turn introduces
a high level of susceptibility in the microgrid systems to parame-
ter variations, system disturbances and load/generation variability.
Therefore, one of the most important challenges related to ADNs is
the realization of microgrids concept with the consideration of its
special features and operational characteristics. Two recent studies
[3, 4] have applied distributed state estimation to microgrids, how-
ever, the underlying power flow model used for estimation is static,
limiting the accuracy of the estimator. Other studies [6-8],[13],[14]
using a dynamical state model are based on the extended Kalman
filter, whose limitations (lack of optimality, linearization error, and
slow convergence) when applied to non-linear systems are quite well
known. Reference [2] suggests more advanced Kalman filter based
solutions, such as the second-order extended Kalman filter and un-
scented Kalman filter, but the exact implementations for state esti-
mation in microgrids are not yet available. This paper takes a dif-
ferent approach and applies a distributed implementation of the un-
scented particle filter (UPF) [21]-[32] for state estimation in micro-
grids. Monte Carlo approaches such as the particle filter have been
less explored in the context of state estimation in power grids due
to the computational complexity involved despite their inherent abil-
ity to deal with nonlinear system dynamics and non-Gaussian noise
models. Our UPF approach partitions the microgrid into nsub coupled
subsystems on the basis of the underlying microgrid structure and
exploits the sparseness in each microgrid state model to its advan-
tage. Rather than estimating the complete microgrid state vector at
each microgrid, a subset of states relevant to the microgrid is instead
estimated. The state variables estimated at each microgrid are largely
different and those which are shared achieve consistency through a
consensus step. The resulting fusion-based reduced order, distributed
unscented particle filter (FR/DUPF) [12] limits the amount of infor-
mation shared between neighbouring microgrids, reduces commu-
nication overhead, and provides computational savings of an order
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Fig. 1: (a) Illustrative example of a microgrid; (b) Equivalent network for the microgrid in (a); (c) DQ reference frame used in power networks.

of nsub over the centralized particle filter. Our Monte Carlo simula-
tions verify that the FR/DUPF is near-optimal and follows its cen-
tralized version closely. In [12], we derived the FR/DUPF algorithm
for dynamic state estimation in legacy EPGs. Here, we extend the
FR/DUPF to microgrids for reduced order state estimation.

In terms of the organization of this paper, Section 2 introduces
the state-space dynamics for microgrids. In Section 3, we present a
reduced-order model for the microgrid followed by the derivation of
the proposed FR/DUPF in Section 4. Results from Monte Carlo sim-
ulations are presented in Section 5. Section 6 concludes the paper.

2. NON-LINEAR SYSTEM MODEL FOR MICROGRIDS

In distributed generation, a combination of renewable energy sources
combine their power to satisfy large demands [9]. The voltages pro-
duced by these microsources are direct current (DC), which are con-
verted to alternating current (AC) using a voltage inverter. Such a mi-
crogrid is classified as an inverter based microgrid and the generation
units which produce power for the microgrid are called distributed
generators (DG). The microgrid includes an isolation switch, which
facilitates the connection of the microgrid to the main grid. With the
isolation switch turned on, the microgrid is connected to the main
grid with DGs injecting power to the bus. When the switch is off, the
microgrid enters the islanded mode, where it is cut off from the main
grid and services only its local power needs. A commonly known
power sharing strategy called droop control is used to share power
between different DGs to satisfy the overall load requirement.
Fig. 1(a) is an example of a section of a microgrid comprising two
DGs and a load. Its equivalent network in the islanded mode is shown
in Fig. 1(b). Each DG n supplies its output current {IoDn , IoQn} to a
node that connects the DG to the microgrid line. Modeled as a series
resistor-inductor circuit, current {IBDl , IBQl} flowing on line l is
the accumulative difference of DG source currents {IoDn , IoQn} and
currents {ILDm , ILQm} consumed by the loads connected to line l.
DQ Reference Frame: The voltages and currents in any AC power
network have three phases in a stationary phase coordinate system
(commonly referred to as the ABC frame). Since network analysis
in the ABC frame is complex, it is transformed to another framework
with two phases (direct and quad) rotating about an axis. The trans-
formed frame is called the DQ frame and is symbolized as (dn, qn).
In a microgrid, each DG rotates at it’s own angular frequency ωn

leading to several individual DQ frames. In order to analyze the over-
all system, all state variables in the microgrid are further transformed
from their individual reference frames (dn, qn) to a reference DQ
frame (typically the one associated with DG 1) by defining an an-
gle δn, which represents the phase difference between the individual
(dn, qn) frame and the reference DQ frame. Since the reference DG
is already aligned to the DQ axis, its angle is effectively zero. Using
this fact, the rotational frequency can be calculated and is referred
to as ωcom, which in turn can be used to compute the phase angles

δn associated with every other DG in the network. Once the angle
for each DG has been obtained, the state variables (say fd, fq) of the
individual DGs are mapped to (fD, fQ) in the reference DQ frame
using the following transformation[

fD
fQ

]
=

[
cos(δn) − sin(δn)
sin(δn) cos(δn)

] [
fd
fq

]
(1)

Modeling DGs: In the simplified DG-inverter coupled model, each
DG unit is modeled by a set of 5 state variables: δn is the angle
associated with DG n; {PGn , QGn} the active and reactive power
generated by the DG; Iodn the output current in the dth dimension,
and; Ioqn the output current in the qth dimension. The nonlinear state
model for DG n consists of the following equations

.
δn(t) = ω∗n −MpnPGn − ωcom (2)

.
PGn(t) = 1.5ωcn[Vo∗n −NqnQGnIodn ]− ωcnPGn (3)
.
QGn(t) = 1.5ωcn[Vo∗nIoqn −NqnQGnIoqn ]− ωcnQGn(4)

Lcn

.
Iodn(t) = −RcnIodn + ωcomIoqnLcn + Vodn − V bDn (5)

Lcn

.
Ioqn(t) = −RcnIoqn − ωcomIodnLcn + Voqn − V bQn (6)

where ω∗n is the DG output voltage angular frequency; {Mpn, Nqn}
the active and reactive droop gain; ωcn the cutoff frequency of the
output filter; Vo∗n the nominal output voltage magnitude set point;
Rcn the resistance of the output filter; and Lcn the inductance of the
output filter. These parameters are all constants. Symbol ‘·’ at the top
of variables (e.g., in

.
δn(t)) denotes derivation with respect to time t.

Originally expressed in the local dq frame, the DG parameters in (2)-
(6) are transformed to the reference DQ frame using (1).
Parameters {VbDp , VbQp} are the DQ-components of the nodal volt-
age at node p. To ensure the solution of the microgrid network is well
grounded, a virtual resistor Rp of a high value (1MΩ) is placed at
each node [11]. Using the Kirchoff’s current law, the nodal voltage is

VbDp = Rp

(
ΣIoDp(in) +ΣIBDp(in)−ΣIBDp(out)−ΣILDp(out)

)
(7)

VbQp = Rp

(
ΣIoQp(in) +ΣIBQp(in)−ΣIBQp(out)−ΣILQp(out)

)
(8)

where subscript ‘(in)’ denote current entering the node and ‘(out)’
current leaving the node. For example, notation {ΣIoDp(in) ,ΣIoQp(in)}
represent the DQ components of the accumulative current generated
by DGs that enters node p. Likewise, {ΣILDp(out) ,ΣILQp(out)} repre-
sent the DQ components of the accumulative current consumed by
loads that leaves node p. Other variables use similar notations.
Modeling Distribution Lines: The transmission lines connecting
nodes are modeled as a series resistor-inductor circuit. For line l, the
state variables are the line currents {IBDl , IBQl} given by, [11],

LBl

.
IBDl(t) = −RBlIBDl +ωcomLBlIBQl +VBDl(to)−VBDl(from) (9)

LBl

.
IBQl(t) = −RBlIBQl−ωcomLBlIBDl +VBQl(to)−VBQl(from)(10)

2875



whereRBl is the resistance of line l andLBl the inductance of line l.
Also, VBDl(to) denotes the D-component of the voltage of the to bus
and VBDl(from) the D-component of the voltage of the from bus.
Modeling Loads: The loads are modeled by their admittances. The
states for load m are its current {ILDm , ILQm} in the DQ frame

LLm

.
ILDm(t) = −RLmILDm + ωcomLLmILQm + VBDm(11)

LLm

.
ILQm(t) = −RLmILQm − ωcomLLmILDm + VBQm(12)

where {RLm , LLm} are the resistance and inductance of load m,
{VBDm , VBQm} the DQ-components of the bus voltage connected
to load m and ωcom the rotational frequency of the reference DG.

2.1 Overall State and Observation Models
The overall state vector is formed by stacking all state variables cor-
responding to the DGs, lines, and loads in a vector

X(t) = {δn(t), PGn(t), QGn(t), IoDn(t), IoQn(t), (13)
IBDl , IBQl(t), ILDm(t), ILQm(t)}n,l,m ,

which leads to the a set of nonlinear ordinary differential equations
.
X(t) = f(X(t)) + ξ(t) (14)

based on (2)-(6) and (9)-(13), where vector ξ(t) contains all in-
put terms. The information used for estimation is a subset of ac-
tive/reactive power flows, active/reactive power injections, and volt-
age/current magnitudes. We consider node voltages {VbDp , VbQp},
(7)-(8), as measurements leading to the observation model

Z(t) = g(X(t)) + ζ(t) (15)

whereZ(t) = {VbDp , VbQp}p and ζ(t) the observation noise vector.

3. MICROGRIDS: REDUCED ORDER CONFIGURATION

In the proposed state estimator, the reduced-order state-space model
is obtained by spatially decomposing the overall system into nsub

subsystems based on the observable states at each subsystem. In
other words, the state model for Subsystem S(s) consists of a subset
of state variables X(s)(k) ⊂X(t) (referred to as the local state vec-
tor). A local observation vector Z(s)(t) is then attributed to Subsys-
tem S(s), which is a collection of local measurements corresponding
to the local state vector X(s)(t). For such reduced-order subsystem
S(s), (1 ≤ s ≤ nsub), the localized observation model is

Z(s)(t) = g(s)
(
X(s)(t)

)
+ ζ(s)(t). (16)

The local state vectors in (16) may have shared states. The reduced-
order state model (derived from (14) by partitioning) is then given by

.
X(s)(t) = f (s)(X(s)(t),d(s)(t)

)
+ ξ(s)(t). (17)

where d(s)(t) is the coupling force term. When the overall system
is partitioned into subsystems, the dynamical model for a subsystem
may contain states that are directly observed by the subsystem and
additional states that are not observed but are part of the global state
model. The coupling force vector d(s)(t) includes states which are
not directly observed but are part of the subsystem’s model.
Example: In Fig. 2, we apply the partitioning approach to the mi-
crogrid test system of Fig. 1(a), which results in the following state,
observation, and forcing terms’ vectors for the two subsystems.

State vectors:X(1)(t)=[δ1(t), PG1(t), QG1(t), IoD1(t), . . .

IoQ1(t), IBD1 , IBQ1(t), ILD1(t), ILQ1(t)]
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Fig. 2: Microgrid of Fig. 1 partitioned in 2 subsystems {S(1), S(2)}.
X(2)(t)=[δ2(t), PG2(t), QG2(t), IoD2(t), . . .

IoQ2(t), IBD2 , IBQ2(t), ILD1(t), ILQ1(t)]

Observ. vectors: Z(1)(t)=[VbD1(t), VbQ1(t), VbD3(t), VbQ3(t)]

Z(2)(t)=[VbD2(t), VbQ2(t), VbD3(t), VbQ3(t)]

Forcing vectors: d(1)(t)=[IBD2(t), IBQ2(t)],

d(2)(t)=[IBD1(t), IBQ1(t)].

The shared states between the subsystems are [ILD1(t), ILQ1(t)]. Each
subsystem S(s) runs its own local filter based on its subsystem state
and observation model (16)-(17) to estimate its local state X(s)(t).
The forcing term d(s)(t) is received from the neighbouring node(s).
A consensus algorithm maintains consistency in the shared states.

4. DISTRIBUTED PARTICLE FILTER IMPLEMENTATION

We apply the fusion-based reduced order, distributed unscented par-
ticle filter (FR/DUPF) [12] for state estimation in microgrids. Each
subsystem S(s) runs its local unscented particle filter (UPF) based
on the discretized version of the localized models, (16)-(17). Index
k is used instead of time t after the variables to denote their dis-
cretized values. Thus, local particles X(s)

i (k) and weights W (s)
i (k),

(1 ≤ i ≤ N
(s)
s ), are associated with each subsystem S(s). Note

that N (s)
s denotes the number of particles associated with subsys-

tem S(s). In addition, the particle update at each subsystem requires
forcing terms d(s)(k) that are obtained from the neighbouring sub-
systems. The FR/DUPF consists of the following four steps.
1. Local Particles Update via UPF: The UPF couples the particle
filter with the unscented Kalman filter (UKF). The optimal proposal
distribution function is approximated as a Gaussian whose statis-
tics (mean and covariance matrix) are computed using the UKF.
All nodes estimate the state vector X̂(s)(k) and covariance P̂ (s)(k)
from their individual particle sets. See [12] for details.
2. Weight Update using Observation Fusion: The FR/DUPF ap-
proximates the weight update equation as a function of two terms:
one depends on local state estimates and other on state estimates in
the immediate neighbourhood as follows

W
(s)
i (k) ∝W (s)

i (k − 1)P
(
z(k)|X(s)

i (k), X̂(6=s)(k|k−1)
)

×
P
(
X(s)

i (k)|X(s)
i (k−1), X̂(6=s)(k−1)

)
q
(
X(s)

i (k)|X(s)
i (k−1), X̂(6=s)(k−1),z(k)

) , (18)

where X̂(6=s)(·) are estimates of the state variables not included in
the local state vector X(s)(·) for subsystem S(s). Eq. (18) still re-
quires all observations from the entire network. Clearly, this is im-
practical. A further approximation is to limit the observation fusion
to the neighboring nodes of S(s). This approximation works well
due to the localized nature of the observations in the microgrids.
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Fig. 3: Schematic for the 8-Bus, 5-DG, and 6-load microgrid used
in our simulations. Each rectangle represents a bus labeled 1 to 8.
Buses connected to a distributed generator has ‘DG’ written next to
them. Buses connected to a load has a bold arrow pointing outwards.

3. State Fusion: For each shared state Xn(k), Subsystem S(s) es-
timates its mean µ(s)

n (k) and covariance P (s)
n (k) from its weighted

particles and applies the following fusion rule [14]

X̂ (fuse)
n (k)=

(∑[
P (s)
n (k)

]−1
)−1(∑[

P (s)
n (k)

]−1
µ(s)
n (k)

)
, (19)

with covariance P̂ (fuse)
n (k) =

∑
[P

(s)
n (k)]−1. The summation terms

in Eq. (19) are computed using average consensus [24] within im-
mediate neighbourhoods of the nodes. Once the state fusion process
for shared state Xn(k) is complete, S(s) generates its local particles
for Xn from the Gaussian distributionN (X̂

(fuse)
n (k), P̂

(fuse)
n (k)).

4. Computing Forcing Terms: The final step in the FR/DUPF is to
compute d(s)(k) and X̂(6=s)(k) for the next iteration. At this stage,
all subsystems have consistent estimates for their shared states.
Subsystem S(s) requests the required forcing term d(s)(k) from its
neighbours. This completes iteration k of the FR/DUPF.
Computational Complexity: The computational complexity [34] of
the particle filter with nx state variables and Ns vector particles of
dimensions of (nx× 1) is of O(n2

xNs) flops. Partitioning the micro-
grid into nsub subsystems, on average the number of state variables
per subsystem is roughly nx/nsub. If Ns vector particles are main-
tained for each reduced state vector at the subsystems and assuming
no shared state variables between subsystems, the complexity of the
FR/DUPF is nsub × O((nx/nsub)

2Ns) ≈ O(n2
xNs/nsub) leading to

a computational saving of a factor of nsub in favour of the FR/DUPF.

5. NUMERICAL SIMULATIONS

As a proof on concept, our simulation consists of implementing both
the centralized and FR/DUPF particle filters on a 8-Bus, 5-DG mi-
crogrid test system shown in Fig. 3, which operates at 110V and at
60Hz frequency. The microgrid is configured for a black start, mean-
ing that all state variables are set to zero at t = 0. The system model
for the microgrid network is implemented in MATLAB and solved
using MATLAB’s ode15 solver on an iteration by iteration basis. At
each iteration, both state and observation vectors are corrupted with
Gaussian noise at a signal to noise ratio (SNR) of 30dB. In the im-
plementation of the centralized particle filter (CPF), all observations
are assumed available at the fusion centre. There are 20 particles for
each state variable to represent its posterior density, and with 51 state
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Fig. 4: Comparison of the DQ-components of load current connected
to Bus 8 estimated from the FR/DUPF and centralized particle filter
with the ground truth for the microgrid shown in Fig. 3.

Time (s)
0 0.5 1 1.5 2 2.5 3 3.5

R
oo

t M
ea

n 
Sq

ua
re

 E
rr

or
 (

R
M

SE
) 

- 
D

 C
om

po
ne

nt

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

CPF - RMSE
FR/DUPF -RMSE

(a) RMS Error for Fig. 4(a).
Time (s)

0 0.5 1 1.5 2 2.5 3 3.5

R
oo

t M
ea

n 
Sq

ua
re

 E
rr

or
 (

R
M

SE
) 

- 
Q

 C
om

po
ne

nt

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

CPF - RMSE
FR/DUPF -RMSE

(b) RMS Error for Fig. 4(b).

Fig. 5: Root mean square (RMS) errors for state estimates of Fig. 4.

variables, this leads to 1020 total particles being used for this filter.
The observations are voltage magnitude readings in the DQ frame at
each node based on the observation model (16).

Fig. 3 shows how the test microgrid is partitioned for the imple-
mentation of the FR/DUPF. The microgrid has been spatially decom-
posed into 3 subsystems {S(1), S(2), S(3)}. The observation model is
kept the same such that each bus in the subsystem is assumed to pro-
vide the voltage magnitude of that bus. A total of 12 shared states
exist between the three subsystems. In order to maintain the same
number of particles as in the centralized implementation, a total of
1020/63 ≈ 16 particles/state were used in each subsystem in the
FR/DUPF. As for the CPF, all states are initialized to zero.

Fig. 4 plots the estimated DQ-current waveforms for the load
connected to Bus 8. Fig. 5 plots the corresponding RMS errors over
a Monte Carlo simulation of 100 runs. It can be seen from the plots
that both centralized and particle filters are correctly tracking the
state values. The FR/DUPF is performing almost as well as the cen-
tralized particle filter. Given that the reduced order model is a near-
optimal implementation and has a lower complexity, the FR/DUPF
is proposed as an alternative to the centralized filter in microgrids.

6. CONCLUSION AND FUTURE WORK

We addressed the problem of nonlinear distributed data fusion in mi-
crogrids. The proposed FR/DUPF partitions the microgrid into sev-
eral localized but coupled subsystems, and runs a reduced order par-
ticle filter on each subsystem. A consensus step ensures consistency
among shared states across the microgrid. Compared to its central-
ized version, the FR/DUPF provides computational savings of up
to the order nsub of subsystems. Monte Carlo simulations verify the
FR/DUPF as an acceptable alternative to the centralized filter. Fu-
ture work will extend the single microgrid test system to a multi-
microgrid system (IEEE 69 bus) under the smart grid paradigm; re-
lax the full observability condition as measuring voltages at all nodes
is impractical, and account for differences in scanning time and syn-
chronization issues among instruments recording observations.
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