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ABSTRACT
State estimation of a power grid under undetected power

injection attacks is considered. With a known prior proba-
bilistic description of the state variables, the maximum a pos-
teriori probability (MAP) estimator is adopted. Undetected
attacks lead to model mismatch, which may greatly degrade
the estimation performance. The mean square error (MSE)
of the MAP estimate under model mismatch is derived. Con-
sidering the case where we are able to protect a limited num-
ber of nodes under power injection attacks, we formulate and
solve an optimization problem to select which nodes to pro-
tect to minimize the MSE degradation that the attacker can
provide.

Index Terms— Maximum a posteriori probability (MAP),
mean square error (MSE), node selection for protection, state
estimation.

1. INTRODUCTION

Our society relies heavily on critical large-scale power grids
which connect electric power generators to consumers. Re-
siliency to attacks which inject bad data is of increased in-
terest lately, based on studies which suggest such attacks are
eminent. While current grids employ bad data detection meth-
ods, such as the energy conservation test, the Chi-squared
test and the normalized residuals test [1] in state estimation
procedures, these detectors lack the ability to identify highly
structured bad data that conforms to the network topology and
some particular physical laws governing the power grid oper-
ation [2]-[5].

While the majority of existing work [6, 7, 8, 9] seeks to
prevent undetectable attacks, this paper considers the case
where the attacks have been successfully launched and the
power system is unfortunately unaware of the attacks. The
one paper we saw [10] which did consider minimizing the
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impact of successfully launched attacks, did not consider state
estimation, and employed a significantly different criterion on
the impact than we consider here where we focus on state esti-
mation. We consider power injection attacks, either stealth or
not, and assume that they are undetected and thereby lead to
a model mismatch. The mean square error (MSE) of the mis-
matched maximum a posteriori probability (MAP) estimation
is derived and employed as the evaluation metric of the state
estimation performance. Considering the case where we are
able to protect a limited number of nodes under power injec-
tion attacks, we formulate and solve an optimization problem
to select which nodes to protect to minimize the MSE degra-
dation that the attacker can provide. It is shown that the opti-
mum node selection strategy is determined by the description
of the power grid network and the statistical description of
the state, noise and attack. Numerical results for a 9-bus sys-
tem and the IEEE 14-bus system are presented to verify the
theoretical findings.

2. PROBLEM FORMULATION

Consider a power system consisting ofN buses (nodes) andL
transmission lines. Define the node setN , {1, 2, ..., N} and
line set E , {(i, j)}, where (i, j) denotes a transmission line
between nodes i and j. Denote the admittance of the series
branch connecting buses i and j by gij + jbij with gij the
branch conductance and bij the branch susceptance. Likewise
[1], the admittance of the shunt branch from node i to ground
is gio + jbio with gio the shunt conductance and bio the shunt
susceptance. Thus, the real power flow from bus i to bus j
can be described as [1]

Pij =v
2
i (gio + gij)− vivj [gij cos(θi − θj)
+ bij sin(θi − θj)] (1)

where vi and θi denote the voltage magnitude and phase cor-
responding to the ith node. Consider the DC power flow
model, which assumes that the bus voltage amplitudes are
close to unity. Neglecting all the shunt elements and branch
resistances, the real power flow measured from bus i to j can
be approximated by the first order Taylor expansion around
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θ = 0, which reduces (1) to

Pij = bij(θi − θj) (2)

Therefore, the power injected at bus i, which is the sum of the
power flows through the branches connected to bus i, can be
expressed as

Pi =
∑
j∈Ri

Pij =
∑
j∈Ri

bij(θi − θj) =
∑
j∈Ri

hTijθ (3)

where Ri = {j|(i, j) ∈ E , j = 1, ..., N} is the index set of
the buses that are directly connected to bus i,

hij = [0, ..., 0, bij︸︷︷︸
column i

, 0, ..., 0 −bij︸︷︷︸
column j

, 0, ..., 0]T (4)

and the state vector to estimate consists all the voltage phases

θ = [θ1, θ2, ...θN ]T . (5)

Thus, the measurement vector that contains the power in-
jected at every bus is given by

z =[P1, P2, ..., PN ]T = Hθ + v (6)

where v represents the measurement noise vector and

H =

∑
j∈R1

hT1j ,
∑
j∈R2

hT2j , ...,
∑
j∈RN

hTNj

T . (7)

is the measurement matrix.
Assumption 1: The measurement noise vector v obeys a

Gaussian distribution with mean zero and full-rank covari-
ance matrix Rv .

Assumption 2: The prior distribution of the state vector θ
is known to be zero-mean Gaussian with full-rank covariance
matrix Rθ. The vectors θ and v are independent.

Under Assumptions 1 and 2, based on the observation
model in (6), the MAP estimate of θ can be obtained as

θ̂MAP =argmax
θ

{
pθ|z(θ|z)

}
= argmax

θ

{
pz|θ(z|θ)pθ(θ)

p(z)

}
= argmax

θ

{
pz|θ(z|θ)pθ(θ)

}
= argmax

θ

{
ln pz|θ(z|θ) + ln pθ(θ)

}
(8)

where

pθ(θ) =
1

(2π)
N
2 det(Rθ)|

1
2

exp

{
−1

2
θTR−1θ θ

}
(9)

and

pz|θ(z|θ) =
1

(2π)
N
2 det(Rv)

1
2

× exp

{
−1

2
(z−Hθ)TR−1v (z−Hθ)

}
(10)

in which det(R) denotes the determinant of matrix R. Taking
the derivative of (8) with respect to θ and setting it equal to
zero yields[

∂ ln pz|θ(z|θ)
∂θ

+
∂ ln pθ(θ)

∂θ

] ∣∣∣∣
θ=θ̂MAP

= 0, (11)

which can be written as

HTR−1v (z−Hθ̂MAP) +Rθθ̂MAP = 0. (12)

Thus, one can solve equation (12) to obtain

θ̂MAP =
(
HTR−1v H+R−1θ

)−1
HTR−1v z. (13)

3. STATE ESTIMATION UNDER MODEL
MISMATCH

When the observed data follows the DC model in (6), the es-
timate in (13) is optimal under the MAP criterion. In practice,
however, the observed data may not follow the model in (6)
exactly, possibly due to a failure or an attack. If the control
center is unaware of the attack and continues using (6) to es-
timate the state, it will lead to a model mismatch. Denote the
actual observation vector by za, then the mismatched MAP
estimation can be expressed as

θ̂MAP,a =
(
HTR−1v H+R−1θ

)−1
HTR−1v za. (14)

Note that due to the model mismatch, θ̂MAP,a in (14) is no
longer optimum under the MAP criterion.

Consider the scenario where additive attacks, denoted by
a column vector a, are injected covertly without the control
center’s knowledge. Assume that one can protect only M of
the N nodes such that any node under protection is not faced
with the power injection attack. Hence, the actual observation
vector can be written as

za = Hθ +Qa+ v (15)

where

Q = diag{q1, q2, ..., qN} (16)

and

qi =

{
0, bus i is protected
1, bus i is unprotected . (17)

In the special case when every bus is protected, then Q = 0,
the effect of the attacks can be neglected. If no protection is
taken, then Q = I, which may cause serious model mismatch
and severely degrade the estimation performance.

Next, we analyze how the model mismatch caused by the
undetected additive attack affects the performance of the state
estimation. Before proceeding, we make an assumption on
the statistical distribution of the additive attack.
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Assumption 3: The additive attack vector a is known to
follow a Gaussian distribution with mean µ and covariance
matrix R. The vector a is independent of v.

Lemma 1: Consider a DC power system with protected
nodes facing an undetected additive attack. Suppose the MAP
estimator (13) designed for (6) is employed, while the actual
observations follow the model in (15). Under Assumptions
1-3, the mean square error (MSE) matrix of the mismatched
MAP estimation (14) is

Rεθ =E{εθεTθ }
=B−1 + (CQRQTCT −D−DT ) (18)

where E{·} is the expectation operator,

εθ , θ − θ̂MAP,a (19)

B = HTR−1v H+R−1θ (20)

C = B−1HTR−1v (21)

and

D = B−1R−1θ E{θaT }QTR−1v HB−1. (22)

Proof of Lemma 1: Plugging (14) and (15) into (19) yields

εθ =θ −B−1HTR−1v (Hθ +Qa+ v)

=B−1
[(
HTR−1v H+R−1θ

)
θ −HTR−1v Hθ

−HTR−1v Qa−HTR−1v v
]

=B−1(R−1θ θ −HTR−1v Qa−HTR−1v v) (23)

It is seen from (20) that both B and B−1 are symmetric.
Recall that θ, v and a are mutually independent, and θ and v
both have zero mean. Thus, the MSE matrix can be computed
as follows

Rεθ = E{εθεTθ } (24)

=E
{
B−1(R−1θ θ −HTR−1v Qa−HTR−1v v)

×(θTR−1θ − aTQTR−1v H− vTR−1v H)B−1
}

=B−1
[
R−1θ E{θθT }R−1θ +HTR−1v E{vvT }R−1v H

−R−1θ E{θaT }QTR−1v H−HTR−1v QE{aθT }R−1θ
+HTR−1v QE{aaT }QTR−1v H

]
B−1

=B−1 −D−DT +CQRQTCT

which completes the proof.
According to Lemma 1, the MSE performance of the

mismatched MAP estimation is dependent on the prior in-
formation about the observation noise, the additive attack,
and the states to be estimated. It also depends on the struc-
ture of the power system, the nodes selected to be protected,
and on E{θaT}. In the case of no attacks, it can be shown
that the MSE matrix is reduced to Rεθ = B−1. Comparing
this with (18), we see that the effect of the additive attack
enters the MSE matrix through the second term of (18),
(CQRQTCT −D−DT ).

4. OPTIMAL NODE PROTECTION

This section attempts to determine which nodes to protect to
minimize the impact of undetected attacks on the MSE perfor-
mance, assuming we are able to protect only a limited number
of nodes. Denote the index set of the protected buses by

M = {i|qi = 0, i = 1, ..., N}. (25)

The optimization problem is formulated as

min
M

tr(Rεθ ) (26)

s.t. |M| =M (27)

where |M| denotes the cardinality of the set M. Plugging
(18) in (26) and recalling that tr(AB) = tr(BA) for square
matrices A and B, we have

tr(Rεθ ) = tr(B−1 +CQRQTCT −D−DT )

= tr(B−1) + tr(JQRQT )− 2tr(D) (28)

where

J = CTC. (29)

Since the first term in (28) is independent of the variables to
be optimized, the objective function in (26) can be rewritten
as

min
M

tr(JQRQT − 2D) (30)

To solve this optimization problem, one could try all solutions
or a greedy algorithm can be employed.

The analysis provided so far is very general. It allows a
non-diagonal covariance matrix R of the attack vector a, as
well as possible correlation between a and the state vector θ.
It is worth noting that any correlation between different com-
ponents of a implies communication between agents at spa-
tially separated physical locations which may be very costly
to implement. The attack vector a being correlated with θ im-
plies that the attackers must have information about the states,
which also requires high complexity. It also requires signifi-
cant communication between the agents that are attacking at
different nodes. In the sequel, we focus on a more practical
class of attacks of much lower complexity.

Definition 1: Uncoordinated and state-uninformed at-
tacks employ attack vectors a with uncorrelated components
which satisfy E{θaT } = 0.

Assumption 4: We assume uncoordinated and state-
uninformed attacks.

Theorem 1: Consider an N -bus DC power system with
M protected nodes facing additive attacks. Suppose the MAP
estimator (13) designed for (6) is employed, while the actual
observations follow the model in (15). Under Assumptions
1-4, in order to minimize the trace of the MSE matrix (18),
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an optimum solution is to protect the M nodes with the M
largest value of RiiJii, i = 1, ..., N .

Proof of Theorem 1: Substituting (16) in (30), after ma-
nipulation, and considering that D = 0 since E{θaT } = 0
as per Assumption 4, we obtain

tr(JQRQT ) =

N∑
i=1

N∑
j=1

JijRjiqiqj (31)

where Aij denotes the ijth entry of matrix A. Since R is
diagonal according to Assumption 4, (31) can be reduced to

tr(JQRQT ) =

N∑
i=1

JiiRiiq
2
i . (32)

Further, based on the definition of qi, minimizing the objec-
tive function in (32) is equivalent to

max
M

∑
i∈M

JiiRii. (33)

Let

xi = JiiRii (34)

and sort the values of xi, i = 1, ..., N in descending order,
such that

xd1 > xd2 > ... > xdN (35)

where the dn denotes the bus index associated with the nth
largest xi, i = 1, ..., N . Obviously, the solution to the opti-
mization problem is

Mopt = {d1, d2, ..., dM} , (36)

meaning that the nodes with the M largest xi should be pro-
tected first, which completes the proof.

5. NUMERICAL RESULTS

In this section, we present some numerical examples to il-
lustrate the MSE of the state estimation obtained using the
optimum node protection method stated in Theorem 1. As-
sume that Rθ = σ2

θI, Rv = σ2
vI, and the attacks have mean

zero and are uncoordinated and state-uninformed such that R
is diagonal. For convenience we define ρ = σ2

θ/σ
2
v .

Consider the 9-bus system from [11]. Assume that we
are able to protect M = 3 nodes and Rii = 0.0002 for
i = 1, 2, ..., 9. Fig. 1 shows the trace of the MSE matrix for
the MAP estimate of θ under attack with the several sets of
nodes protected, called protection plans, for the 9-bus system.
For comparison purposes, the cases with a suboptimal protec-
tion plan (black dash-dot curve), the protection plan proposed
in Theorem 1 (green solid curve), the optimal protection plan
from a global enumeration (purple square marks), all nodes
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Fig. 1: The MSE for the MAP estimate of θ for 9-bus system
under various attacks. The number of protected nodes is 3.
The covariance of attack is Rii = 0.0002, i = 1, 2, ..., 9.

protected (blue dashed curve), and no nodes protected (red
dotted curve) are presented. The suboptimal protection plan
chooses protected nodes {2,4,9}. The protection plan pre-
sented in Theorem 1 was found to coincide with the optimal
plan found by enumeration. It can be seen that if there is no
protection, the MSE under attack is above the case with the
suboptimal protection plan under attack at high SNR. This in-
dicates that in power systems under attack, if arbitrary nodes
are protected, the MSE will generally be smaller than if no
nodes are protected. Note that the MSE under attack with the
proposed protection plan is below the case with the subopti-
mal protection plan which further supports the claims of op-
timality. Similar results were obtained using the IEEE 14-bus
system [11].

6. CONCLUSION

This paper studied the performance of MAP estimation for
a power grid under a DC model which is attacked. The af-
ter attack MSE for MAP estimation was computed. Then
by assuming there are M protected nodes, we developed a
method to select the protected nodes to attain the minimum
possible MSE under attack for the MAP estimate. For unco-
ordinated and state uninformed attacks, it is shown that the
optimal nodes to protect can be found by rank ordering the
values of a set of coefficients in descending order. Numer-
ical results for a 9-bus system and the IEEE 14-bus system
demonstrated the optimal solution for a specific example.
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