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ABSTRACT

This paper addresses the direct geolocation of sources in
one step via a multi-base (or multi-array) context. The 1-step
methods such as DPD and LOST are working on a global
array composed of all the sensors of each base. However,
even if these algorithms introduce a narrowband decompo-
sition (unfortunately imperfect), these recent powerful algo-
rithms can be disturbed by the residual broadband effect due
to the partial coherence of signals (even incoherent signals)
between stations. The main contribution of this work is to
study the DPD performance in presence of a residual array-
broadband effect.

Index Terms— Geolocation - Parameter bias - DPD

1. INTRODUCTION

The context addressed in this article is source localization
using multi-sensor remote stations (the multi-sensor station
will be called array or base). On each array, the inter-sensors
distances are small enough so that the arrays are considered
narrowband vis-a-vis the radiations they receive (i.e., the re-
ceived signals on all the sensors of the array are spatially co-
herent). The transmitters (or sources) locations are tradition-
ally estimated in 2-steps with conventional algorithms. For in-
stance, the Angles of Arrival (AoA) of sources are estimated
by each station independently, exploiting the spatial coher-
ence on an array [2] in the first step and, in a second step,
the locations of sources are computed from the AoA (e.g.,
by triangulation) [1]. In practice the signals observed by dif-
ferent sensors are partially coherent and previous works dis-
cussed AoA estimation with imperfect coherence across the
array (e.g. [3]). The performance of geolocation with 2-step
methods in the presence of imperfect coherence between the
arrays is considered in [11].

The 1-step methods [4]-[8] have been introduced in or-
der to improve the performances of conventional algorithms
[9]. These methods are based on a direct estimation of the
geographical coordinates of the transmitters, working on the
global array, sometimes called “array of arrays” [11] in the lit-
erature. This global-array is composed of all the bases of the
multi-base context. Unfortunately, due to the broadband sig-

nals and the remoteness of arrays, a spatial incoherence effect
appears between the bases. Consequently, some works con-
sider the total spatial-incoherence between arrays [4] or a total
spatial-coherence between all the sensors of the global array
[5], [6]. In [11] the performance of the 1-step method which
not counteracts the broadband effect in presence of the partial
spatial coherence between the bases is treated. Then, A.Amar
and A.J.Weiss introduced the DPD (Direct Position Determi-
nation) algorithm [7] and J.Bosse et al the LOST (LOcaliza-
tion by Space-Time) algorithm [8] in order to counteract the
partial-coherence effect. The aim of both methods is to de-
compose the signals inK narrowband sub-signals assuming a
spatial coherence inside each array of the global array. More
precisely, a signal of bandwidth B is processed as multiple
signals of bandwidth B

K . Then, these algorithms (DPD and
LOST) assume that the signal of bandwidth B

K is narrowband,
which retrieves the spatial coherence of signals between the
bases.

The performance of direct geolocation which counteracts
the broadband effect has not been discussed to date in case
of partially coherent signals, except in [10]. In this last ref-
erence, the authors focused on the geolocation bias of LOST
algorithm where the complex attenuations of stations are as-
sumed to be known. Hence, our purpose is to evaluate the
performances of the DPD algorithm when the narrowband as-
sumption is not verified for the sub-band of bandwidth B

K and
the complex attenuations are unknown. More precisely, the
purpose is to give a closed form expression of the geoloca-
tion bias when the covariance matrix of the received signals
is perfectly known. In order to do this, we first provide a
closed form expression of the error on the covariance matrix
due to the narrowband hypothesis and deduce the bias.

Notations: A or (aij)1≤i≤I,1≤j≤J ∀(I, J) ∈ N2
∗ is a ma-

trix of dimension I × J and [A]i,j = ai,j is the ij-th element
of the A matrix, a or (ai)1≤i≤I ∀I ∈ N∗ is a column vector
of dimension I , II is the identity matrix of dimension I , a or
A is a scalar, (·)H is the Hermitian of a matrix or a vector,
(·)T is the transpose of a matrix or vector, (·)∗ is the con-
jugate of a scalar, E[·] is mathematical expectation, [[a, b]] is
the set defined by

{
x ∈ Z : a ≤ x ≤ b,∀(a, b) ∈ Z2

}
, for all

commutative ring or semiring K we have K∗ = K\{0} and
K+ = {x ∈ K : 0 ≤ x < +∞}.
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2. ASSUMPTIONS AND MODEL

2.1. Assumptions about the system
The global geolocation system is composed of L remote sta-
tions with the same reception band. Each of these bases are
composed of Ml sensors. Thus, the system has M sensors
(
∑L
l=1Ml = M ). In this paper, the number Q of sources is

assumed to be known. The analytic sources signals sq(t) at
the location pq are statistically independent. These sources
stem from a stationary and spectrally white signal modulated
for the transmission. We define the autocorrelation of the sig-
nal by:

rq(τ) = E
[
sq(t)s

∗
q(t− τ)

]
(1)

The bandwidth at the output of each station is B and Te is the
sampling time of all the bases. Moreover, all the bases are
perfectly time and frequency synchronized with each other.
Finally, a stationary additive white noise at the output of the
base station, with zero mean and variance σ2, is added. Fig.1
represents the propagation of one source to the remote sta-
tions.

Fig. 1. System diagram

2.2. Signal modeling
In this paper, we are interested in the multi-base geolocation
methods in one step where the signals, at the output of all
stations, are concatenated into a vector:

y(t) =
[
xT1 (t), ...,xTl (t), ...,xTL(t)

]T
(2)

In the Line of Sight (LoS) assumption, the M sensors
of the global system observe the direct paths of the sources.
Then, the output of the l-th station is:

xl(t) =

Q∑
q=1

ρl,qal(θl(pq))sq(t− τl(pq)) + nl(t) (3)

where ρl,q, al(θl(pq)) (noted al(pq) in the remainder of the
paper), θl(pq) and τl(pq) are the complex attenuation, the
steering vector, the Angle of Arrival (AoA) and the Time of
Arrival (ToA) respectively associated to the q-th source and
the l-th base and nl(t) the additive noise of the l-th base.

3. A CENTRALIZED METHOD: DPD
The DPD algorithm [7] filters the received signal at the sen-
sors of the stations by a filter bank composed ofK FIR filters,

centered at fk = k
KTe

, of bandwidth B
K and composed of J

coefficients wk = [wk[1], ..., wk[J ]]T . After this filter bank,
the signals are assumed narrowband in each sub-band. More-
over, the narrowband hypothesis is verified on the global array
if and only if the Time-Bandwidth (TB) product fulfills:

max
q∈[[1,Q]],(l,j)∈[[1,L]]2

Tl,j(pq)×
B

K
� 1 (4)

with Tl,j(pq) =
∣∣∣ ||bl−pq||−||bj−pq||

c

∣∣∣, where bl is the l-th
base location and c is the light speed in vacuum. Observing
Eq.(4) we note that the higher the number of decompositions
K is, the smaller the TB product is. However, the Q signals
have to be spectrally present on each sub-band. The DPD
assumes that the bandwidth B

K is small enough to consider the
narrowband hypothesis on the global array. If we note xl,k(t)
and sq,k(t) as the received signal and the transmitted signal at
the output of the k-th filter of the filter bank respectively, the
model of the received signal is:

yk(t) =

x1,k(t)
...

xL,k(t)

 ≈ Q∑
q=1

U(pq, fk)ρqsq,k(t) + nk(t) (5)

where nk(t) is the noise filtered by the k-th filter of the fil-
ter bank, the vector ρq is the vector of all the attenuations
(ρl,q)1≤l≤L of the q-th source, let U(pq, fk) be the matrix
such as:

U(pq, fk) =
(
δl,jal(pq)e

−2iπfkτl(pq)
)
1≤(l,j)≤L

(6)

with δl,j the Kronecker delta. Then, the covariance matrix of
the DPD model at the output of each frequency sub-band is:

Rk=E
[
yk(t)yHk (t)

]
∀k ∈ [[1;K]]

=

Q∑
q=1

E
[
|sq,k(t)|2

]
U(pq, fk)ρqρ

H
q UH(pq, fk)+σ2

kIM (7)

where σ2
k is the noise power on the k-th channel. The power

of the q-th signal with the k-th filter of the filter bank is:

E
[
|sq,k(t)|2

]
= wH

k Γqwk (8)

where, according to Eq.(1), Γq =
(
rq((v−j)Te)

)
1≤(v,j)≤J is

the cross-energy matrix of the shaping filter of the q-th source.
According to the MUSIC algorithm [2], we deduce the

projector onto the noise subspace, named Π⊥k , associated to
the covariance matrix Rk. Then, thanks to Rayleigh’s quo-
tient [12], the DPD criterion [7] is an incoherent sum of the
MUSIC criteria in each sub-band and permits us to deduce
the sources parameters pq

JDPD(p) = λ1 {Q(p)} (9)

with

Q(p) =

K∑
k=1

UH(p, fk)Π⊥k U(p, fk) (10)
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where, if we consider the eigenvalue decomposition of the
matrix A with λ1 ≤ λ2 ≤ ..., then, λ1 {A} designates
the smallest eigenvalue of the eigenvalue decomposition
of A. In the remainder of this paper, let the eigenvectors
V = [v1,v2, ...] (i.e., Av1 = λ1v1) associated to the eigen-
values. Finally, the position of theQ sources can be estimated
by searching the Q minimum of the cost function:

{p1, ...,pQ} = arg min
p∈R2

JDPD(p) (11)

4. PARTIALLY COHERENT SIGNALS

In this section, we will consider the partially coherent case
after an imperfect narrowband decomposition of the DPD
(where K is not high enough). We will establish the real
covariance matrix of the system, which will allow us to es-
tablish a disturbance on the projector in order to deduce the
error generated on the estimation of interest parameters.

Presently, the sub-signals of the DPD process do not re-
spect the narrowband assumption. Therefore, the approxima-
tion made in Eq.(5) is no longer satisfied. Consequently, the
signal filtered by the k-th filter is:

yk(t) =

Q∑
q=1

Ũ(ρq,pq)
(
sq,k(t− τl(pq))

)
1≤l≤L

+ nk(t) (12)

where

Ũ(ρq,pq) =
(
δl,jρl,qal(pq)

)
1≤(l,j)≤L

(13)

We recall that the sources are uncorrelated with each
other. Then, the theoretical broadband covariance matrix can
be written as follows:

R̂k = E
[
yk(t)yHk (t)

]
∀k ∈ [[1;K]] (14)

=

Q∑
q=1

Ũ(ρq,pq)Rsk (pq)Ũ
H(ρq,pq) + σ2

kIM (15)

The matrix Rsk(pq) is the covariance matrix of the trans-
mitted signals filtered by the k-th filter of the filter bank.

Rsk (pq) =

 rq,k(0) · · · rq,k(∆τ1,L(pq))
...

. . .
...

r∗q,k(∆τ1,L(pq)) · · · rq,k(0)

 (16)

with{
rq,k(τ) = E

[
sq,k(t)s∗q,k(t− τ)

]
∆τl,v(pq) = τl(pq)− τv(pq) ∀(l, v) ∈ [[1, L]]2

(17)

where ∆τl,v is the Time Differential of Arrival (TDoA) be-
tween the l-th and v-th bases and the q-th source. The term
rq,k(∆τl,v(pq)) depends on the coefficients of the k-th filter
and on the shaping filter associated to the q-th source:

rq,k(∆τl,v(pq)) = wH
k Γ̂q(∆τl,v(pq))wk (18)

where, according to Eq.(1),

Γ̂q(∆τl,v) = rq
(
(i− j)Te −∆τl,v

)
1≤(i,j)≤J (19)

is the matrix of cross-energy of the shaping filter applied to
the q-th source as in Eq.(8) and where the TDoA is now taken
into account. In other words, Eq.(18) generalizes the DPD
result in Eq.(8) in the sense that the time difference of the
signals at pairs of arrays is taken into account.

In the remainder of this article we will build on this result
to observe some consequences due to the broadband effect.

5. BIAS CLOSED FORM EXPRESSION

We will give a closed form expression of the asymptotic bias
(asymptotic in the number of snapshots) on the sources lo-
calization, named ∆pq = pq − p̂q , where pq is the source
position deduced from the DPD model (Sec.3), and p̂q the
source position when we have partial coherence between the
bases (Sec.4.1). In fine, this error is caused by the difference
between the covariance matrix model of DPD and the broad-
band one: ∆Rk = R̂k − Rk. We express here the bias of
the projector where, in [13], it is shown that the first-order
relationship between Π⊥k and Π̂⊥k is:

Π̂⊥k = Π⊥k −∆Π⊥k (20)

with

∆Π⊥k≈Π⊥k∆Rk(Rk)++(Rk)+∆RkΠ
⊥
k (21)

where (·)+ is the MoorePenrose pseudoinverse. We note the
estimated quadratic form for the DPD (Eq.(10)) as:

Q̂(p) =

K∑
k=1

UH(p, fk)Π̂⊥k U(p, fk) (22)

and its derivative with i ∈ {x, y}:

∂Q̂(p)

∂pi
= 2

K∑
k=1

<
{
∂UH(p, fk)

∂pi
Π̂⊥k U(p, fk)

}
(23)

Since the Rayleigh’s quotient of Eq.(9) was used so that
the criteria only depends on the position p, the eigenvector v1

is independent of the position parameters. Indeed the complex
attenuations does not depend on the position of the sources. If
we note v1 = ρq + ∂v1 and JDPD(v1, p̂q) = vH1 Q̂(p̂q)v1

the estimated criteria, its Taylor-Young expansion can be writ-
ten as [15]:

JDPD(v1, p̂q) = JDPD(ρq,pq) +

[
∆pq
∂v1

]T
∇JDPD(ρq,pq) +

1

2

(
∆pTq H(JDPD(ρq,pq))∆pq+

∂vT1 Hv1(JDPD(ρq,pq)∂v1

)
+ o

(
∆p2

q + ∂v2
1

)
(24)

where ∇ is the gradient operator, H (respectively Hv1
) is

the Hessian matrix function of the position (respectively the
eigenvector). As one could see in Eq.(24), the parameters
p̂q and v1 are totally decorrelated, so we can optimize the
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position parameter of the source independently of v1. Then,
the expression of the bias on the parameters is given by the
2nd order approximation as follows:

∆pq ≈ −H̃−1(λ1{Q̂(pq)})∇λ1{Q̂(pq)} (25)

If we define the gradient as ∇T (p) =
(

∂
∂px

, ∂
∂py

)
, we have

for each element of the gradient in the DPD [15], [16]:

∂λ1{Q̂(pq)}
∂pi

= vH1
∂Q̂(pq)

∂pi
v1 (26)

and, for a mathematical tractability issue, we use the follow-
ing approximation of the Hessian:

H̃(p) =

(
H̃xx(px) H̃xy(px, py)

H̃yx(px, py) H̃yy(py)

)
(27)

we have for each element of the Hessian approximation [15],
[16]:

H̃ij(λ1{Q̂(pq)})=2vH1

K∑
k=1

<
{
∂UH(pq , fk)

∂pi
Π̂⊥k

∂U(pq , fk)

∂pj

}
v1 (28)

with (i, j) ∈ {x, y}2. Using Eq.(20) of the projector and
performing a first order Taylor expansion of the bias ∆pq
with respect to the matrix ∆Rk [14], the expressions of
∂λ1{Q̂(pq)}

∂pi
and H̃ij(λ1{Q̂(pq)}) = H̃ij are:

∂λ1{Q̂(pq)}
∂pi

≈ −2vH1

K∑
k=1

<
{
∂UH(pq, fk)

∂pi
Π⊥k ∆Rk

R+
k U(pq, fk)

}
v1 (29)

H̃ij ≈ 2vH1

K∑
k=1

<
{
∂UH(pq, fk)

∂pi
Π⊥k

∂U(pq, fk)

∂pj

}
v1 (30)

6. SIMULATIONS

In this part, we will consider a single source case (Q = 1)
and a dual sources case (Q = 2), with two bases (L = 2).
We will also consider a zero noise (σ2 = 0), the goal be-
ing to eliminate any disturbance other than the broadband ef-
fect. In a Cartesian coordinate system, we place the first base
at (−400m,−400m), and the second at (400m,−400m). The
bases are composed of six sensors where five are in a circu-
lar formation around a sixth in the center. The bases radius is
0.8m. The two bases are perfectly synchronized with the sam-
pling frequency Te = 1

500·103 [sec]. The first source location
(presents in the two cases) is moved along the abscissa axis
with the position (d,0) with d ∈ R+. In the two sources case,
we consider that the second source follows the first source
with the position (d,−100m). Thus, in the two cases, the
sources go from the narrowband case to the broadband case.

We consider the sources with a carrier frequency f0 =
900MHz, a Nyquist shaping filter and boxcar as filters of the
filter bank (FFT filter bank). The bandwidth of the sources
is B1 = 426KHz. We note that, thanks to the triangular in-
equality, the Time-Bandwidth product defined as in Eq.(4) is

bounded: 0 ≤ TB < 1.14. The upper bound is reached when
d→∞. When d increases, the system becomes broadband.

We plot the bias with respect to the TB product normal-
ized in number of decomposition (K × TB) at Fig.2. The
real bias is given by the minimization of the broadband theo-
retical criterion determined thanks to the covariance matrix of
Eq.(15) (blue and green squares), and the closed form is given
by Eq.(25) (dashed line with cross). Thus, we observe that for
K = 2 the more the TB product increases the greater the bias
is and for K = 8 we have a smaller bias. We also show that
the closed form bias fits well with the real bias. We note that
a gap is created between the real and the closed form bias due
to the second order approximation on the parameters bias and
to the first order approximation on the error on the projector.

Fig. 2. Visualization of the bias
We plot the bias for the one source case (respectively the

two sources case) at the top (respectively at the bottom) of
Fig.2. We observe that the bias increases as the number of
sources increases.

7. CONCLUSION
The obtained results in this paper should sensitize the design-
ers of geolocation systems using one step methods to the in-
fluence on performances of the number K of channels they
employ. More precisely, we observed that the broadband ef-
fect due to the remote stations has an impact on the local-
ization performance. Consequently, the estimation methods
must now necessarily work in the broadband case and the re-
cently appeared solutions in the literature such as DPD are
based on a division of the spectral band in K channels. We
have established the bias of this method with respect to K.
This last relation will permit to predetermine K relatively to
an expected precision or a calibration quality of the antenna.
This work is preliminary and must now be deepened relatively
to the effective use of these results on an operational imple-
mentation.
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ray Processing Using the Mode Algorithm, Circuits, Sys-
temes, Signal Processing, vol.14, #1, p.17-38, 1995.

[6] E. Weinstein, Decentralization of the Gaussian Maximum
Likelihood Estimator and Its Applications to Passive Ar-
ray Processing, IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. ASSP-29, p.945-951, 1981.

[7] A. Amar & A. J. Weiss, Direct Position Determination of
Multiple Radio Signals, IEEE ICASSP 2004-Montreal,
vol.2, p.81-4.
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