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ABSTRACT Here, we propose a Bayesian framework and method for dis-
tributed, cooperative, sequential localization with distributedr-
We propose a Bayesian method for cooperative localization anghation-seekingosition control. For distributed localization, fol-
control in mobile agent networks. Distributed, cooperative Se”'lowing [10] and [4], we use the SPAWN (sum-product algorithm
localization of each agent is supported by an information-seekingyer a wireless network) message passing scheme and sample rep-
control of the movement of the agents. For cooperative localizatiorsesentations of probability distributions. For distributed control, we
the SPAWN message passing scheme is used. Cooperative contglfine a global (holistic) objective function as the negative joint pos-
is achieved by maximizing the negative joint posterior entropy ofterior entropy of all the agent positions conditioned on all the mea-
the agent states via a gradient ascent. The localization part of odf;rements. This objective function is optimized jointly by all agents
method provides the control part with sample-based probabilistigiz a gradient ascent. The localization part of our method provides
information. Simulation results demonstrate intelligent behavior ofhe control part with sample-based probabilistic informati@ur
the agents and excellent localization accuracy. method advances beyond [14-17] in that (i) it constitutes a more
general information-seeking control framework that uses SPAWN
for distributed sequential estimation of multiple time-varying states,
and (i) it includes estimation of the own (controlled) positions of the
agents, thus enabling its use for cooperative localization.
1. INTRODUCTION The remainder of this paper is organized as follows. In Section
2, we describe the system model and formulate the joint localiza-
Location-aware mobile agent networks are important in many aption and control problem. The distributed cooperative localization
plications including target tracking, pollution source localization, technique used in our method is reviewed in Section 3. In Section
agricultural and healthcare monitoring, and chemical plume track4, the proposed information-seeking control technique is described.
ing [1-9]. In cooperative localization, each mobile agent estimateginally, simulation results are presented in Section 5.
its own position based on measurements relative to other agents and

the exchange of information with other agents. This is a nonlin-
ear and, for large networks, high-dimensional distributed estimation 2. SYSTEM MODEL AND PROBLEM FORMULATION

p_roblem. In a Bayesian gstimation context, efficient belief Propagaye consider a network of mobile agerits A c N. Fig. 1 de-
tion (BP) message passing methods can be used [4, 10, 11]. Thisixs the overall system model and corresponding signal processing
possible because the factor graph [12] corresponding to the pOStgg/stem relative to an arbitrary agdntThe state x ") of agentl at
rior probability density function (pdf) of the total state matches thediscrete timen € {0, 1,...} consists of the agent’ls 2D position, i.e
network’s communication and measurement topology. P I o . e

In many location-aware scenarios, it is advantageous to contrgft [z1,1, @5 ] - The agent states evolve independently accord-
certain properties of the agent network, such as the agent positions'&g t0[19,20]
the measurement characteristics (“controlled sensing”) [3,5, 8, 13] (n) _ _(n—1) (n) (n) o
In particular, here we will address the problem of combining dis- S +Tow+ VTog"”, n=12.... (1)
tributed estimation and distributed control in mobile agent networksygre
We will limit our discussion tdnformation-seeking control, which
seeks to maximize the joint information carried by the measuremen
of all agents about the total state to be estimated (in our case, all
the agent positions). Possible measures of information include neg,,

Index Terms— Agent networks, distributed estimation, coopera-
tive localization, information-seeking control, belief propagation.

, T is the sampling intervalugn) € R? is a controlled and
flence deterministic velocity, which is constrained|a§™ || < ™

N () J. o

ative posterior entropy [14—17] and scalar-valued functions of the - kea” ) B R I A

Fisher information matrix [18]. However, existing methddscom- x|  Sensor Locigzzfon FM [yt uim)y
bined estimation and information-seekiogntrol [14-18] are lim- Y

ited to simplesequentialBayesian filtering problems and are not =

suited to cooperative localization schemes that use message pdss-

ing techniques based on a possibly loopy factor graph.addi-

tion, [18] uses a Kalman filtering framework and therefore is no — X" ) Control

suited to highly nonlinear, non-Gaussian problems. Syiamics Layer [
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andq!™ € R? is driving noise that is independent acrdsand . FE [yt at ™)

For correct interpretation on§”> within (1), it is assumed that the n , , ,

agents know the orientation of the global reference frame. The sta- o JTAG) TT £ %™ Viuf™)

tistical relation betweelstl("’1> andxl(”> as defined by (1) can also leA n'=1 , , ,

be described by thetate-transition pdf f (x{™ [x{"~"; u{™). < T £ = x) . (5)
The communication and measurement topology of the network is rec™)

described by neighborhood sél,g“”) C A\ {!} as follows. Agent

‘ : ] . . . : (n) 1in), (L:in
communicates with agerit and acquires a measuremet’ rela- AN approximation of the marginal posterig(x;"’ |y utm))
tive to agent if k € C;n). This relation is symmetric, i.ek € C;n) can then be obtained by executing sample-based SPAWN message

o . . . passing [4, 23] on the factor graph corresponding to (5). As a result,
(n)
impliesl € C,'”. We consider noisy distance measurements )T . . (n) |« (1:n). . (1)
samples{x; }j:1 approximatingf (x," | y*"; u*) and a

ym) _ ||X§n>7x§c7l)|‘ I Ul(jl? ke C’F7l)’ @) corresponding approximation of (4),
1 (ma
wherevl(f,? is measurement noiskat is assumed independent across " = 5 ng””),
I, k, andn. The statistical relation betweeyj;? and the involved i=1

(n) (n) 5 ; @ ikeli . . .
statesx; ” andx,™ is also described by thecal likelihood func- 516 ayailable at ageit A more detailed description of the method

tion f(y7)|x™,x{™). In what follows, we denote bx™ £ ysed in the localization layer is presented in [4, 21, 23].
(n) n) 4o (n) n) A (n)

[Xl ]ZE.A’ u™ 2 [ul ]ZEA’ andy( ) & [yl,k]leA,keCl(") the

vectors of, respectively, all states, control vectors, and measure- 4. CONTROL LAYER
ments at timex. Furthermore, we set(") £ [x(MT . x(WT)T, o _

utn) & u(l)T,“.’u(n)T]T‘ andy(L”) a y(l)T““’y(n)T T 4.1. Objective Function and Controller

We note that our framework and method can be extended to many;cording to our definition in Section 2, the vector comprising all

other state-evolution and measurement models. For example aIﬁQ . a1 (n+1)
. ! * URYeasurements at the next timeyi&' ™) = 1)
the state-evolution model (1) may be nonlinear [21]. i [y’*’“ ]lEAﬂ ree(" D)

At each timen, the following two tasks are to be performed: (i) However, to develop the controller, we formally replace in this def-
- . (o IR (n+1) (n) gi ; (n+1)
Each agent € A estimates its own state (positior)” from prior ~ inition C;™"** by ;™ since at the current time, the sets’;
information andy (", i.e., all past and present measurements in thé*"® Nt ye(t 'ﬂ?wn- Then, each agértA calculates its next control
entire network. (ii) The position of each agent is controlled suchvariableu; "™ such that the global information about the next total
that the negative joint posterior entropy of all states in the networistatex ™" giveny 1) is maximized. This information can be
at the next time, conditioned on all measurements in the network @uantified by the negative conditional differential entropy [24, Chap.
the next time, is maximized. 8] of x("*+1) giveny ™+, with y 1) included as an additional con-
In the next two sections, we will present a distributed, recursivedition that has already been observed and is thus fixed:
method for these tasks. Our method consists latalization layer
and acontrol layer, as shown in Fig. 1. In the localization layer, — h(x
ag(;:.)nt{ computes an approximation of the marginal posterior pdf of B f(x(”“) (n+1)| (1:m) u(MH))
x, "’ given all the past and present measurements and control vectors= Y y )
in the entire network, and a corresponding position estirﬁé‘i’é x log f (x
In the control layer, agerituses the approximate marginal posteri- & 6
ors computed in the localization layer to calculate a quasi-optimal ®)
control vectorul(’”r 2 where log denotes the natural logarithm. Note that we use a
sans serif font fox™" ) andy™ 1) in b (x(" D [y )
3. LOCALIZATION LAYER u"™ ) in order to indicate thath(x(" |yt y )
: - i (1my  ut"™V) depends on theandom vectors x" ") andy " ", i.e.,
Bayesian estimation of the(Tf’)OS't'f“j oI”agentl €Afromy™ on their joint distribution but not on their values. Furthermore note
is based on the posterig(x," |y *; ut"")), whichis amarginal  that, within the total control vectan*"+*) parametrizing the pdfs
of the joint posteriorf (x| y ™) u ™), je., in (6), u*™ has already been determined and is thus fixed.
According to (6),—h (x(" ) |y y () (D) s g func-
£ [y ®ma ) = /f(x(”‘) |y, u) dx(m (3)  tion of the next control vecton ™Y, to be denoted as

Dy, (u(n+1)) A h(x(n,+1) ‘ y('r‘1+1)7 y(l:n)7 u(l:n+1)) ) (7)

(n+1)}y<n+1>; <1:n)7u<1:n+1>)

y

(n+1) | y(n+1)7 y(l:n); u(l:n+1)) dx(n+1) dy(n+1)7

Here, x;") is x(*™ with x{™ removed. The minimum mean-

square error (MMSE) estimator [22] aﬁ’” is then obtained as This function will be used by each agent as the objective function
for control. At each time:, toward a maximization abj, (u™ ),
~(n) a (n) (n)|..(1:m). . (1:n) (n) we perform one step of a gradient ascent [25] with reference vector
Xise = /xln POy ) d, le A (@) 0. Thus,u™*Y is determined as
Unfortunately, straightforward evaluation of (3) and (4) is com- a ) = (YD, (u ) |yt —g s ®)
putationally infeasible. However, using Bayes’ rule and common -
assumptions [4], the joint posterior can be factorized as wherec™+Y > 0 is a step size. We have
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Here, because of (10), the local likelihood functions involved in (14)

" 8D, ()
VDu (™) = [M} are given by
leA

8ul(n+1)

) . + N
sinceu™ ) = [u{""V] _ . Itthen follows that the gradient as- Tl xi 0, wy)

cent (8) is equivalent to separate local gradient ascents at the indi-
vidual agentd, each performed only with respect to the respective

local control vectom!" ™, i.e.,

_ + gt

= f(yl,k|xl ’X’“)}x,*:waoul*,xI:xk+TouI' (15)
Letau(y™,x,u™) £ T ce, f(vi | %t x5 0/, uy)) denote the part
of the product (14) that depends on the local control veaforThen,

L (n+1) _ (nt1) aDh(u(nH)) ; > S
o, =G using (14) and (15), the following sample-based approximation of

. leA.
8ul(n+1)

ulnt) =0

(©)

Note that, following [17], we allow for different local step sizes
cl("+1) at the individual agent& This deviation from (8) accounts
for the possibly different boundg™ and avoids the necessity of de-
termining a common step size across all the agents. Each local step
sizec{" ™" is constrained by the conditigha{" ™" || < u"*.

Next, we will derive a convenient expression of the gradient

% in (9). To simplify the notation, we no longer
ou u(r+D—g
indicate the conditioning ory™™ and u*™ because at time
n + 1, y*™ has already been observed ant™ has already
been determined, hence both are fixed. Furthermore, we suppr
the time indexn and designate variables at time+ 1 by the su-
perscript “+”; for example, we writeh(xt|y";u™) instead of
h(x( D [yt y (i) (D) Finally, for calculating the gra-

dient, following [16] and [17], we disregard the unknown driving pare y

noiseq; in (1) and thus rewrite (1) (with replaced by + 1) as

xl+ =x; + Tou?'7 (20)
which implies for the stacked vectors
xT=x+Tou™. (11)

Using (11) and the fact thai™ is deterministic, the objective
function Dy (u™) = —h(x*|y*;u™) in (7) can be expressed as [24,
Chap. 8]

Dh (u+)

= —h(x|y+;u+) = —h(x)+I(x;y+;u+). (12)

Here,I(x;y";u™) denotes the mutual information betweerand
y T [24, Chap. 8] (withu™ being a deterministic parameter),

+. 49+
Ix; +;u+ :/ X, +;ll+ lo M
bayiiw) = [ JI0ey w08 o iy ut
Then, using (12) and the fact thafx) in (12) does not depend on
u™, we obtain for the gradient

ODp(u™)  9I(x;yTi;uh)

dxdy+.

ou; ou;
_ [[ofyTIxu) fytlxut) +
7/ o Jx) loe fly*;ut) dXd(}is’)
where the final expression follows by virtue of [17, Th. 1].
4.2. Sample-based Computation
We now present a cooperative computation%g(“fﬂ . that
u, ut=0

uses importance sampling [26]. This computation requires commu-
nication with neighboring agentse C; and uses the marginal pos-
terior samples computed by the localization layer.

Due to the independence of thg;, in (2), the likelihood function

dDp (ut)

that are drawn from the importance density [2@ly",x) 2
(%) f(yT|x; u™ = 0) (note thatf (x) is short for f (x(™ |y (1))
via the following two-stage procedure:

(13) evaluated an =0 can be derived [21]:

~
~

1
ut=0 JJ

J J
Y
A al(y‘*’(]d/)?x(ﬂ)’o)

j=1j'=
y 8al(y+<j,j’)ix(j)7 ut)
Ou ut=0
fyT@30|x0); ut=0)
flytGiNut=0)

Bu;r

X log

Jwperef (y“j*j’); u™=0) canin turn be approximated as

J
i al 1 Py 11
f<y+(JvJ );u+:0) ~ 5 2: f(y+(./>J )|x(./ >;u+:0).

=1

+6:4) and x¥) are samples ofy ™ and x, respectively
A

1. Samples{x(j)};:1 are drawn fromf(x). This is done in
a distributed way as follows. As a result of the localization
layer, samples{xl(j)}‘j]:1 ~ f(x;) are available at agert
A flooding algorithm [27] is now used to make available to
each agent also the sample§x§j)};_':1 ~ f(xx) of all the
other agents € A\{l}. (The flooding algorithm requires
each agentto communicate with neighboring agets C;.)
Thus, at this point, all the sample se{tx,(c”}j:l, keA
are available at each ageht Then, samples{x@}j:1 ~
f(x) can be obtained at each agéntia a simple stacking
operationt i.e.,x") = [x,(j)}keA forj=1,...,J.

2. For each sample!”), samplegy */7" }‘j’,’:1 are drawn from

the conditional pdff (y*|x);u® = 0). The method for
doing this is based on the fact that, due to (2),

vy =[x ==l + vt ] (16)

l'eA keCy, ”
First, agent obtains sample§xl+,(j)}‘j]:1 forall I’ € A by
evaluating (10) fok;, = xl<,j) andul’? =0. Next, for eacly €
{1,...,J}, agent draws sample@f,rjj’j/) ;,IZIN fh)
for all I’ € A andk € C,. Finally, agent obtains the desired
samples{y“f'j')};,’,/:1 ~ f(y*|x9;ut = 0) by evaluat-
ing (16) using the appropriate samples, i.e.,

+(hd") +(7) _ ) +(7.3")
y O = [ = v ]l’EA,kECz/'

f(y*|x;u™) occurring in (13) factorizes as

Foytisu®) = [ [T Foilxe xesufuf).

leA kec,

(14)
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1This is based on the assumption thatthare conditionally independent
giveny ™) ie, f(x) = ;e f(x;). This assumption is also used in
SPAWN [4], and thus also in the localization layer.



An alternative distributed implementation that uses consensus or 100
gossip instead of flooding and an analysis of computation and com- o
munication costs can be found in [21]. 50 '

5. SIMULATION RESULTS

We consider a scenario with one anchor ageatl and three mo-
bile agentd = 2,3,4. The anchor agent is static; it broadcasts its

12 coordinate
(=]
Q"‘\

5 —50 [ ]

own (true) position to the mobile agents but does not perform any —agent 2 (J%=1)

P . . - max__ b
measurements. The driving noieg™ in (1) is zero-mean Gaus- —100 ___23223&%&; 83
sian with independent and identically distributed entries, 4 ~ _ R 100
N(0,0,1). The agent network is fully connected. The sampling 21 coordinate

interval isT, = 1. Each mobile agent measures its distances to the

other mobile agents and to the anchor agent according to (2). THa9- 2 Example trajectories of the mobile agents. The initial agent
(n) . . ) positions and the anchor position are indicated by bullets and a star,
measurement nomé ./ is zero-mean Gaussian with variance .
) respectively.

8, ngn)—xin)ﬂ < do 70

()2 _ ) ,
Ok = o2 [(M _ 1)'{4,- 1] Hxl(")—xén)n > do
0 ’ ’ .

That is, o;})? is a function of the distancix;™ — x{""|| that is
constant up talp and then increases polynomially with some expo-
nentx. This is a simple model for time-of-arrival distance measure-
ments [28]. We set? = 50, k = 2, anddy = 50.

In the localization layer, we usé = 3600 samples and the
resampling scheme presented in [21]. We also use a censoring 0
scheme [29] to reduce the number of samples and avoid numeri-
cal problems during the first time steps where the mobile agents
still have uninformative beliefs. More specifically, only agehts Fig. 3. ARMSE of the proposed localization/control method and two
with tr(C{™) < 10 are used as localization partners by the other'éference methods.
agents. HereCl“') is a sample-based approximation of the covari-
ance matrix off (x{™ |y*™); u¥™) [21]. In the control layer, this C—N methods decrease only very slowly whereas, after about 70
censoring scheme corresponds to the following strategy: as long disne steps, theARMSE of the proposed C-C method decreases
agentl is not localized (i.e.;tr(Cl(”)) > 10), its objective func- ~ rather quickly to a low value. This can be explained as follows.
tion is Dy, (u"V) £ fh(xl(”l) y(mHn,y m) ul(l:n+1))7 ie. Without cooperation (N-C) or without intelligent control (C-N),

. . . ) , o gents 3 and 4 need a long time to localize themselves because they
the negative differential entropy of only the own state conditioned, .o ¢iow and initially far away from the anchor. On the other hand,

on only the own measurement relative to the anch(l)r agefit,”. agent 2 localizes itself very quickly because it is fast and initially
The step sizes" in (9) are adapted such th"*"|| = u"™.  close to the anchor. With cooperation and control (C-C), agent 2
Thus, each mobile ageritmoves with maximum nominal speed moves in such a way that it supports the self-localization of the
(determined by.;"™) in the direction of maximum local increase of two other agents. In fact, as can be seen in Fig. 2, agent 2 first
the objective function. The number of samples used in the contrgbcalizes itself by starting to turn around the anchor and then makes
layer is.J.J" = 60000, with J = 1200 andJ’ = 50. The three  a sharp turn to approach agents 3 and 4, which helps them localize
mobile agents have different start points-$0,0]", [0, —50]", and  themselves. These results demonstrate the function and benefits of
[0,70]" for I = 2, 3, and4, respectively) and different nominal cooperative estimation with information-seeking control.

speeds«"™ = 1, 0.3, and0.1 for I = 2, 3, and4, respectively). Simulation source code and animated plots are available at

Example trajectories of the mobile agents are shown in Fig. 2. Th@ttp:/mwww.nt.tuwien.ac.at/about-us/staff/florian-meyer’.
anchor agent is located 60, 0]".

We compare the proposed method for cooperative self-localization
with information-seeking control (abbreviated as C-C) with a 6. CONCLUSION
method for noncooperative self-localization with information- We proposed a Bayesian framework and method for distributed, co-
seeking control (N-C) and a method for cooperative self-localizatioroperative, sequential localization with information-seeking control
without intelligent control (C-N). In the N—C method, the mobile in mobile agent networks. Localization is achieved by a sample-
agents do not measure their distances and thus use only the measubeded SPAWN message passing scheme. The resulting sample rep-
distance to the anchor for self-localization. In the C—N method, theesentations of the marginal posterior pdfs of the agent positions are
mobile agents cooperate in the localization layer but their conused by the controller to steer the movement of the agents. This is
trol degenerates in that each mobile agent randomly chooses tmsed on a criterion of maximal information jointly carried by the
direction initially and then moves in that direction with constantmeasurements of all the agents. Our main contribution is a coopera-
nominal speed determined "™ Fig. 3 shows thewverage root- tive sample-based scheme for calculating the control vector at each
mean-square errors (ARMSESJ the three methods, which were agent. Numerical simulations demonstrate intelligent agent behav-
determined by averaging over the three mobile agents and over 306r and substantial improvements of localization accuracy resulting
simulation runs. It can be seen that tARMSEsof the N-C and  from cooperation and information-seeking control.

50 100 150 200 250
time stepn
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