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ABSTRACT

We consider self-localization in an ad-hoc, asynchronous sensors
network. A mobile beacon transmits a short wideband signal from a
few locations, unknown to the sensors. Each of the sensors receives
the transmissions and estimates their Times of Arrival (TOAs) rel-
ative to its own timebase, which has an unknown relative synchro-
nization offset. If the positions of the beacon were known, each
sensor could estimate its own time-offset and position. Since the
beacon’s positions are unknown, the sensors need to collaborate in
order to estimate these positions along with their own. We propose
a collaborative iterative scheme, where in each iteration each sensor
announces its current estimate of the beacon’s positions, along with
an associated uncertainty covariance matrix. This information is re-
ceived by neighboring sensors, and each sensor exploits the received
information to refine its own estimates of the beacon’s positions, as
well as of its own time-offset and position. We show simulation re-
sults indicating successful self-localization using this scheme.

Index Terms— ad-hoc sensor network, decentralized self local-
ization, TOA, beacons.

1. INTRODUCTION

Self localization in wireless sensors networks has attracted con-
siderable research efforts in recent years (see, e.g., [12], [13] for
overviews). Many existing methods (e.g., [7], [4], [3], [11], [15])
consider range and/or direction measurements between the sensors
as the basis for the positions estimation. These measurements are
usually extracted from Time of Arrival (TOA), Received Signal
Strength (RSS) or Angle of Arrival (AOA) estimation. Operating
with TOA measurements usually requires the sensors to be able to
transmit wideband signals to each other (so as to facilitate accurate
TOA estimation), which may sometimes be too expensive. Thus,
alternative methods (e.g., [2], [17], [10], [8]) rely on an auxiliary,
mobile “assisting transmitter” (“beacon”), or several static beacons,
transmitting beacon signals from different positions. These beacon
signals are received by the sensors, and by extracting range and/or
direction information, each sensor can individually estimate its own
position - as long as the positions of the beacon(s) at the time of
transmission are known to the sensors.

Assuming a 2-Dimensional (2D) geometry for the area of de-
ployment of the sensors (e.g., assuming that all sensors are located
on flat grounds), if the ranging is TOA-based and the sensors are
synchronized to the beacon(s), transmissions from (at least) three
different known positions are sufficient for all sensors to determine
their own positions, without any need for centralized processing or
for collaboration between sensors. The same is true for the case of
asynchronous sensors (in fact, such a scenario can be regarded as

the inverse problem of localizing an unknown transmitter by asyn-
chronous sensors at known positions, as considered, e.g., in [5]),
however in that case the accuracy can still be improved by central-
ized or collaborative processing, because TOA measurements at dif-
ferent sensors carry information on their mutual time-offsets.

Nevertheless, this mode of operation heavily relies on the as-
sumption that the beacons’ positions are known to the sensors. In-
deed, such an assumption may be quite reasonable in various prac-
tical scenarios (these positions may either be fixed and known in
advance, or may be transmitted by the beacons to the sensors). How-
ever, some scenarios may come to mind, in which such information
would not be available to the sensors. This may be the case, e.g.,
when the flying beacon is an opportunistic, non-cooperating airborne
radar which transmits wideband pulsed signals along its flight tra-
jectory, but would not transmit any information about its positions.
Such beacons are completely external to the network and cannot be
simply regarded as additional nodes - since they cannot collaborate
with or pass information to / from the other sensors in any way.

A scenario in which the positions of the beacon(s) are unknown
to the sensors, and moreover, the sensors are not synchronized (nei-
ther to the beacon(s), nor among themselves) is much more chal-
lenging, and, to the best of our knowledge, has not been considered
before in literature. Evidently, in order to enable any localization,
some “anchor sensors” with known positions should be included in
the network. When a sufficient number of such anchor sensors ex-
ists, a simple two-stage scenario may be employed: In the first stage,
the anchor sensors would estimate the positions of the beacons, and
would announce these positions to all other sensors; Then in a sec-
ond stage, the other sensors would estimate their own positions uti-
lizing the information regarding the beacons’ positions. However,
such a scheme requires full connectivity between the anchor sensors,
which might not be available in practice. Moreover, while being rel-
atively simple, such a scheme would be significantly sub-optimal, as
it fails to exploit the additional information that the non-anchor sen-
sors’ TOA measurements contain regarding the beacons’ positions.

In this work we propose a collaborative scheme, in which an ad-
hoc network of sensors with limited connectivity collaborates in an
iterative message-passing protocol to jointly estimate the positions
of the beacons, together with the positions of the sensors and with
their timing-offsets. The message-passing protocol is reminiscent
of a “Belief Propagation” (BP) scheme (e.g., [1] in a localization
context), but is essentially different from BP, since the messages be-
tween the sensors relate only to position estimates of the beacons,
and is not directly related to the unknown positions of the sensors
passing the messages. We consider topologies in which the anchor
sensors are not sufficiently connected among themselves to enable
them to estimate the beacons’ positions. Yet, through the collabo-
ration of the other sensors, whose positions are not known a-priori,
gradual refinement of the global information regarding the beacons’
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positions is attained, leading to successful self-localization of the
entire network - as we shall demonstrate by simulation.

Our proposed scheme is “free running”, in the sense that it does
not require any pre-assignment of different roles to different sensors,
or any advance knowledge of the network’s connectivity - and thus
accommodates ad-hoc configurations. No “hand-shaking” transmis-
sion procedure between sensors is needed and no fine synchroniza-
tion is required. In each iteration, each sensor transmits (in its pre-
assigned time-slots) its own current estimates of the positions of
the beacons, along with an associated uncertainty covariance matrix,
and the localization estimation is based on the “opportunistic” recep-
tions of these messages by neighboring sensors. The relative timing-
offsets of the timebases of all sensors are regarded as additional (nui-
sance) parameters, which are estimated along with the sensors’ po-
sitions - as considered, e.g., in [9], [14], [1], [5]. Our estimation
process basically relies on Weighted Least Squares (WLS) estima-
tion, but at the same time takes a Bayesian flavor, in which arbitrary
initial positions and time-offsets of most (non-anchor) nodes, as well
as positions of the beacons, are initially provided as “fictitious mea-
surements” with large uncertainty (poor accuracy), whereas just a
few initial positions of (anchor) nodes are provided with low un-
certainty (high accuracy). As the process evolves, the positioning
accuracies of the non-anchor nodes improves (and, as by-products,
so do the positioning accuracies of the beacons and the estimated
time-offsets of all sensors).

2. PROBLEM FORMULATION

Consider a wireless sensors network consisting of N sensors
(nodes), which are arbitrarily positioned at q1, ..., qN ∈ R2, most
of which are unknown. An additional set of K beacons is arbitrarily
positioned at unknown positions p1, ...,pK ∈ R2. These beacons
are possibly a single flying beacon, transmitting from K unknown
positions along its flight trajectory. In such a case the beacon’s posi-
tions are actually in R3, however, we shall assume that its altitude is
roughly known and is constant throughout the trajectory, and there-
fore only its 2D ground coordinates are assumed unknown.

The beacons transmit a sequence of wideband (possibly pulsed)
signals at known intervals, synchronized to each other. For example,
the beacon can be an airborne radar transmitting pulses at a known
Pulse Repetition Interval (PRI). These pulses are transmitted in the
course of flight of the beacon, and are thus transmitted form different
positions. We denote the transmission time of the k-th beacon signal
as tk, where all {tk}Kk=1 are measured relative to the beacons’ own
timebase, thus, without loss of generality we may assume, e.g., t1 =
0. Since the repetition intervals are assumed fixed and known, the
relative transmission times t1, ..., tK can be assumed known to the
sensors. Each sensor measures the time of arrival of each beacon
signal (relative to its own, unsynchronized timebase), and we denote
the raw measured TOAs as

t̂on,k = tk +
1
c
‖qn − pk‖ − τn + vn,k n=1,...,N k=1,...,K , (1)

where c denotes the propagation speed, ‖ · ‖ denotes the Euclidean
norm, τn denotes the unknown timing offset of the n-th sensor
relative to the beacons’ time-origin and {vn,k} denote zero-mean
estimation-errors. We further assume that M of the N sensors (nor-
mally with M � N ) are anchor sensor, with some prior knowledge
available regarding their positions. Without loss of generality we
shall assume that the anchor sensors are the first M sensors, so their
positions are q1, ..., qM , which are known in advance up to some
pre-specified precision. It is desired to estimate the positions of the

sensors based on the NK TOA measurements, using the known po-
sitions of the M anchor sensors.

Since the estimation process involves the exchange of messages
between the sensors, we need to assume some model for the connec-
tivity within the network. To this end, let us assume a simple model,
where each sensor has its own transmission power, so that messages
transmitted by sensor n can be received up to range rn from that
sensor. For convenience let us denote a connectivity indicators ma-
trix G ∈ {0, 1}N×N , such that Gm,n = 1 iff ‖qm − qn‖ ≤ rn,
m 6= n, indicating that sensor m can receive the messages transmit-
ted by sensor n. Note that since different sensors may have different
ranges,G is not necessarily symmetric.

3. COOPERATIVE ESTIMATION

Each sensor is characterized by three unknown parameters - its time-

offset and 2D position, which we concatenate into vectors θn
4
=

[τn qTn ]
T ∈ R3 for n = 1, ..., N . Each beacon is characterized by

its 2D position (taking its possible altitude as known) pk ∈ R2 for
k = 1, ...,K. We shall denote by φ = [pT1 · · · pTK ]T ∈ R2K the
concatenation of all the unknown beacons’ positions.

By subtracting the known relative transmission times of the bea-
cons t1, ..., tK from the raw TOA measurements, each sensor can
obtain a shift-eliminated measurement

t̂n,k
4
= t̂on,k − tk = 1

c
‖qn − pk‖ − τn + vn,k. (2)

Note that if a fixed, known altitudeA of the beacons is involved, then
‖qn−pk‖ should be interpreted as ‖q̃n−p̃k‖, where q̃n = [qTn 0]T

and p̃k = [pTk A]T . Defining the function

h(θn,pk)
4
= 1

c
‖qn − pk‖ − τn, (3)

each sensor can model its K shift-eliminated TOA measurements as
t̂n,1
t̂n,2

...
t̂n,K


︸ ︷︷ ︸
tn

=


h(θn,p1)
h(θn,p2)

...
h(θn,pK)


︸ ︷︷ ︸
h(θn,φ)

+


vn,1
vn,2

...
vn,K


︸ ︷︷ ︸
vn

∈ RK n=1,...,N . (4)

A plausible approach for each sensor n for estimating the unknown
parameters θn and φ would be to seek the Least-Squares (LS) solu-

tion, minimizing CLS(θn,φ)
4
= (tn −h(θn,φ))T (tn −h(θnφ))

with respect to (w.r.t.) θn and φ, but obviously this would be an ill-
posed problem (admitting infinitely many solutions) with K equa-
tions in 3+ 2K unknowns. Nevertheless, we note that if centralized
processing (using a fusion center) were possible, all these measure-
ments (from the N sensors combined) could be concatenated into
KN equations in 3N + 2K unknowns, but these would still be ill-
posed as long as they do not involve any additional information re-
garding the positions of the anchor sensors. An apparently straight-
forward remedy would then be to plug these 2M known parameters
into the equations (4) for n = 1, ...,M , thereby reducing the number
of remaining unknown parameters to 3N + 2K − 2M and hoping
to gain uniqueness of the global minimum.

However (still in the framework of hypothetical centralized pro-
cessing), an alternative approach, such as the one taken in [15], is
also possible: Rather than regard the prior information on the an-
chors as known parameters, we would assume that additional “fic-
titious measurements” are available, directly providing the values
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of all unknown parameters, but with varying levels of uncertainty:
the uncertainty of the position “measurements” would be arbitrarily
large for most sensors, but negligibly small for the anchors. Like-
wise, we would assume fictitious measurements of the timing offsets
and of the beacons’ positions, initially with very large uncertainty.
We would then seek a Weighted LS (WLS) solution, which would
attribute proper relative weights to all the available measurements,
“true” and “fictitious”. The uncertainly levels would be expressed
by the variances (or covariances) attributed to the fictitious measure-
ments’ errors, and the weighting matrix for the WLS solution would
be the inverse of the overall covariance matrix. In fact, this approach
can be regarded as a regularization strategy with a Bayesian flavor.

The very same approach can also be applied in our decentral-
ized processing scheme: For each sensor n, the set of TOA mea-
surements would be augmented with a set of direct “fictitious mea-
surements” of the sensor’s parameters θn, as well as with a set of
fictitious measurements of the beacons’ positions, obtained from es-
timates thereof, as announced by neighboring sensors. The various
measurements will be associated with errors-covariance matrices, re-
flecting the attributed or computed uncertainty.

Upon initialization, these fictitious measurements and their as-
sociated variances / covariances would be the following:

• For the timing offsets τn - the fictitious measurements are
denoted τn and are all taken as zeros. Their associated vari-
ances are denoted σ2

τ , taken to be of the (squared) order of the
assumed range of synchronization errors.

• For the sensors’ positions qn - the fictitious measurements
are denoted qn. For anchor nodes we take qn to be their true,
known positions, whereas for the other nodes we take qn to
be at the center of the area of deployment of the sensors. The
associated covariance matrices are denotedCn and are taken
to be of the form Cn = σ2

nI2×2, where I2×2 denotes an
Identity matrix and where σn is small for the anchors, but
large relative to the diameter of the deployment area for all
other nodes. Note that using this strategy we may also allow
“soft anchors” - sensors for which some a-priori position in-
formation is available, but with some level of uncertainty (as
expressed by their covariance matrices).

• For the k-th beacon’s position as viewed by the n-th sen-
sor we take p(k)

n to be located at the center of the area of
deployment. The associated covariance matrix is denoted
P

(k)
n = σ2

pI2×2, where σp is large relative to the diameter of
the deployment area.

For convenience we define the following augmented fictitious
measurements vectors and associated error-covariance matrices:

θn
4
=

[
τn
pn

]
∈ R3 Cn

4
=

[
σ2
τ 0

0 Cn

]
∈ R3×3, (5)

φn
4
=

p
(1)
n

...
p(K)
n

 ∈ R2K P n
4
=


P

(1)
n 0

. . .

0 P
(K)
n

 ∈ R2K×2K .

(6)
Each iteration begins in a sequence of timed announcements by

each of the sensors. On its turn to announce, sensor n announces
its current estimate φn of the beacons’ location vector φ, as well as
the associated errors covariance matrix P n. For ease of reference
let us denote by Tn the set of all sensors whose transmissions can
be received by sensor n, namely Tn = {m|Gn,m = 1}, and let Tn

denote the cardinality of this set. We may then denote the identities
of these sensors as mn(1),mn(2), ...,mn(Tn), all comprising Tn.

We are now ready to reformulate an augmented version of the
basic measurement model (4) for the n-th sensor, accounting also
for the fictitious measurements and for information regarding the
beacons as received by this sensor from its Tn neighbors:

tn
θn
φn

φmn(1)

φmn(2)

...
φmn(Tn)


︸ ︷︷ ︸

yn

=



h(θn,φ)
θn
φ
φ
φ
...
φ


︸ ︷︷ ︸
g(θn,φ)

+



vn
un
en

emn(1)

emn(2)

...
emn(Tn)


︸ ︷︷ ︸

εn

∈ RK+3+2+2Tn . (7)

Here un and em denote the errors in θn and in φm, respectively. In
each iteration, each sensor attempts to solve a WLS problem, min-

imizing CWLS(θn,φ)
4
= (yn − g(θn,φ))TW n(yn − g(θnφ))

w.r.t. θn and φ, where W n is an optimal weight matrix, given by
the inverse of the covariance matrix of εn,

Λn
4
= Bdiag{Γn,Cn,P n,Pmn(1), ...,Pmn(Tn)}. (8)

Here Bdiag{·} denotes a block-diagonal matrix, and Γn denotes the
covariance of the vector vn of TOA measurements errors, which can
usually be assumed uncorrelated and with equal variance ∀n, k.

This nonlinear problem can be solved using the Gauss-Newton
(GN) method (e.g., [6]). The Jacobian of g(θn,φ) is given by

Gn(θn,φ)
4
=
∂g(θn,φ)

∂(θn,φ)
=



∂h(θn,φ)/∂θn ∂h(θn,φ)/∂φ
I3×3 03×2K

02K×3 I2K×2K

02K×3 I2K×2K

...
...

02K×3 I2K×2K


(9)

where

∂h(θn,φ)

∂θn
=

∂h(θn,p1)/∂θn
...

∂h(θn,pK)/∂θn

 (10)

∂h(θn,φ)

∂φ
=

∂h(θn,p1)/∂p1 01×2

. . .
01×2 ∂h(θn,pK)/∂pK

 (11)

∂h(θn,pk)

∂θn
=

[
−1 1

c
· (qn − pk)

T

‖qn − pk‖

]
(12)

∂h(θn,pk)

∂pk
= −1

c
· (qn − pk)

T

‖qn − pk‖
. (13)

Given estimates θ̂
(i)

n and φ̂
(i)

at the i-th GN iteration, the estimate
at the next GN iteration would be given by[

θ̂
(i+1)

n

φ̂
(i+1)

]
=

[
θ̂
(i)

n

φ̂
(i)

]
+
[
GT
n (θ̂

(i)

n , φ̂
(i)
)Λ−1

n G
T
n (θ̂

(i)

n , φ̂
(i)
)
]−1

·GT
n (θ̂

(i)

n , φ̂
(i)
)Λ−1

n

(
yn − g(θ̂

(i)

n , φ̂
(i)
)
)
. (14)
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As an initial guess, each sensor can use its available prior informa-

tion, θ̂
(0)

n = θn and φ̂
(0)

= φn. After running a pre-defined num-
ber of GN iterations, each sensor has a refined estimate θ̂n of its
own parameters (time offset and position), as well as an updated es-
timate φ̂ of the beacons’ positions, along with updated uncertainties
in the form of the respective blocks in the Mean Square Error (MSE)
matrix, known (e.g., [6]) to be given (approximately) by

Rn =
[
GT
n (θ̂n, φ̂)Λ

−1
n G

T
n (θ̂n, φ̂)

]−1

∈ R(3+2K)×(3+2K).

(15)
To share the updated estimates of the beacons’ positions with its
neighboring sensors, each sensor will then announce a new fictitious
measurement φn = φ̂, along with an associated updated covariance
matrix P n, given by the lower-right 2K × 2K block of Rn. In
addition, each sensor would update its own fictitious measurement of
its own parameters, θn = θ̂n, with its associated updated covariance
Cn, given by the upper-left 3× 3 block ofRn. Consequently, once
all messages are announced and received, each sensor will have a
new set of measurements yn and associated covariance matrix Λn,
so as to run a new sequence of GN iterations using the new θn and
φn as an initial guess. The algorithm is summarized below.

Algorithm 1 Cooperative Self Localization with Unknown Beacons

Inputs: TOA measurements t̂n,k as per (2); Anchors positions qm.
Initialization: Initialize θn and φn and the associated covariance

matrices Cn and P n as in (5), (6), where all {τn}Nn=1 are set to
zeros, all {qn}Mn=1 take the anchors’ positions, all {qn}Nn=M+1

and {pk}Kk=1 are set to the middle of the deployment zone.
for j = 1, 2, ... Number of desired global iterations do

for all sensors n = 1, ..., N do
Announce (transmit) your id n, together with φn and P n;
Record φmn(1), ...,φmn(Tn) and Pmn(1), ...,Pmn(Tn)

from all Tn sensors mn(1), ...,mn(Tn) ∈ Tn that you
heard (received);
Construct the measurements vector yn as per (7);
Construct the covariance matrix Λn as per (8);

Set θ̂
(0)

n := θn and φ̂
(0)

:= φn and run a fixed number I
of GN iterations using (14);

Set θn := θ̂
(I)

n and φn := φ̂
(I)

n ;
ComputeRn using (15) and setCn andP n to its upper-left
3× 3 and lower-right 2K × 2K blocks, respectively.

end for
end for

Outputs: Each sensor n has in θn its own estimates τn and qn of
its time-shift and position (resp.);
As a by-product, each sensor n has in φn its own estimates
p1, ...,pK of the beacons’ positions.

To understand how this form of collaboration operates, we note
that in the beginning of the process the only reliable data are the TOA
measurements and the anchors’ positions. As already mentioned,
if the anchors were fully connected, they could collaborate directly
and use this data to determine the beacons’ position. Fortunately,
even when they cannot communicate directly with each other, while
none of them can determine the beacons’ positions on its own, each
can still obtain rough estimates of these positions up to differently-
oriented uncertainties (estimation covariance): For example, given
the TOA measurements, the uncertainties in the radial directions
from each anchor are much smaller than those in the tangent direc-

tions. But the radial directions from different anchors are different,
and therefore regular (non-anchor) sensors, which may receive infor-
mation containing the uncertainty (covariance) matrices from several
anchors, can apply proper geometrical weighting in fusing the data
from these anchors (and from other neighboring sensors), so as to
narrow-down the uncertainties in all directions. As the information
from different anchors and sensors propagates within the network,
the covariance matrices Cn and P n, which were initially diagonal,
take different forms which reflect the reduction of uncertainties in
the relevant directions for each sensor, so as to be properly exploited
by the other sensors.

4. SIMULATION RESULTS

We simulated N sensors, four of which were anchor sensors placed
at the four corners of a 20[Km] × 20[Km] square, and the rest
uniformly and independently deployed within the square. K bea-
cons were evenly deployed on a circle of radius 10[Km], centered
about the square’s center, at a fixed (known) altitude of 1[Km].
The transmission ranges r1, ..., r4 of the anchor sensors were all
set to 19[Km], whereas the ranges r5, ..., rN of each of the other
sensors were uniformly and independently drawn between 5[Km]
and 10[Km]. This disables direct communication between the an-
chor sensors (each is 20[Km] away from the nearest anchor), and
yields (empirically) an average connectivity level of approximately
32%. The synchronization offsets τ1, ..., τN of all sensors were in-
dependently drawn as τn ∼ N (0, σ2

n) with σn = 1[Km]/c ≈
3.3[µS] ∀n. The TOA estimation errors vm,n were drawn as
vm,n ∼ N (0, σ2

v) with σv = 30[m]/c ≈ 100[nS].
We noted that sometimes the estimated covariance matrices tend

to shrink too fast, thereby impeding the convergence. To circumvent
this problem, we incorporated two heuristics into the algorithm: In
forming P n we bounded its eigenvalues from below by 302[m2];
And we incorporated a “refresh” stage once every 100 iterations, in
which allCn and P n are reinstated to their initial values.

A short animated video clip (a Matlabr Movie from a simula-
tion run), demonstrating the convergence of the position estimates to
their true values, can be accessed online [16].

Table 1 shows numerical results taken from 100 independent tri-
als, running 400 iterations per trial, with I = 5 GN iterations per
each global iteration. We note that comparison to alternative algo-
rithms could not be applied here in a meaningful way, due to incom-
patibility of the presumed operational scenario.

N=25 N=50 N=100
K P M P M P M
3 73% 235[m] 97% 158[m] 100% 163[m]
4 67% 87[m] 99% 85[m] 100% 124[m]

Table 1: P : percentage of successful trials (A successful trial is counted
when for at least 90% of the sensors the error distance ‖q̂n−qn‖ is smaller
than 1[Km]); M : median error distance, averaged over the successful trials.

5. CONCLUSION

We proposed a collaborative, iterative estimation scheme for an
asynchronous ad-hoc sensors’ network measuring TOAs from bea-
cons at unknown locations. The scheme is based on simple message-
passing sequences, interlaced by iterative solutions of a WLS prob-
lem by each sensor. The opportunistic nature of the approach allows
pre-programming of all sensors, with no need for prior knowledge
of the eventual network topology.
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