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ABSTRACT

In this paper, we consider the problem of distributed estima-
tion of node-specific signals in a fully-connected wireless sen-
sor network with multi-sensor nodes. The estimation relies
on a data-driven design of a spatial filter, referred to as the
generalized eigenvalue decomposition (GEVD)-based multi-
channel Wiener filter (MWF). In non-stationary or low-SNR
conditions, this GEVD-based MWF has been demonstrated
to be more robust than the original MWF due to an inher-
ent GEVD-based low-rank approximation of the sensor signal
correlation matrix. In a centralized realization where a fusion
center has access to all the nodes’ sensor signal observations,
the network-wide sensor signal correlation matrix and its low-
rank approximation can be directly estimated from the sensor
signals. However, in this paper we aim to avoid centralizing
the sensor signal observations, in which case this network-
wide correlation matrix cannot be estimated. We introduce a
distributed algorithm which is able to significantly compress
the broadcast signals while still converging to the centralized
GEVD-based MWF as if each node would have access to all
sensor signal observations.

Index Terms— wireless sensor networks (WSNs), dis-
tributed estimation, low rank approximation, generalized
eigenvalue decomposition (GEVD).
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1. INTRODUCTION
Most spatial filtering or beamforming techniques use a fixed
sensor array with a limited number of (often closely-spaced)
wired sensors, resulting in only a local sampling [1], [2].
An alternative could be to deploy a wireless sensor network
(WSN) [3], [4], with a larger number of sensor nodes, to
collect more diverse information of the spatial field.

To process the sensor signal observations of a WSN, one
possibility is to collect them in a fusion center, which we refer
to as a centralized approach. However, this centralized pro-
cessing requires a large communication bandwidth and com-
putational workload. In this paper, we aim for a distributed
approach, in which the nodes cooperate to solve an estima-
tion task by sharing compressed sensor signal observations,
and by distributing the computational burden amongst them.

A large class of estimation problems in WSNs deals with
the estimation of a common network-wide parameter or sig-
nal of interest [5–7], which basically means that all nodes col-
laborate to attain a global goal. In other estimation problems
however, the parameters or signals of interest differ at each
node, i.e., they are node-specific [8–11]. In some cases, these
node-specific desired signals are related across the different
nodes, e.g., when the signals of interest must be estimated as
they are observed at a local sensor of each node to preserve
the spatial properties in the signals [12–15].

The distributed adaptive node-specific signal estimation
(DANSE) algorithm [16] is originally designed to estimate a
node-specific desired signal at each node in a fully-connected
WSN in a distributed fashion. In essence, DANSE can be
viewed as a distributed realization of the centralized MWF
and it considers the case where the node-specific desired sig-
nals share a common (unknown) latent signal subspace. By
exploiting this common interest of the nodes, DANSE signifi-
cantly compresses the broadcast signals while still converging
to the centralized linear minimum mean square error (MMSE)
estimators as if each node would have access to all sensor sig-
nal observations of the WSN.

Originally MWF has been designed based on a low-
rank approximation of the signal correlation matrix with a
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so-called column decomposition [17], [18]. However, in low-
SNR conditions, and for highly non-stationary noise in par-
ticular, the signal correlation matrix is often estimated poorly,
which leads to suboptimal or even unstable filters [18]. Alter-
natively, either an eigenvalue decomposition (EVD)-based or
a generalized EVD (GEVD)-based low-rank approximation
of the signal correlation matrix can be applied to improve the
estimation performance in such cases. MWF with GEVD-
based low-rank approximation has been shown to deliver the
best performance, as it effectively selects the “mode” corre-
sponding to the highest SNR [18]. The resulting spatial filter
is referred to as the GEVD-based MWF.

In this paper, the objective is to design a DANSE-like
algorithm that computes the GEVD-based MWF in a dis-
tributed fashion in a fully-connected1 WSN. We will refer to
this as the GEVD-based DANSE algorithm. The proposed
GEVD-based DANSE algorithm compresses the multi-sensor
signals at each node into a smaller number of signal obser-
vations which are then broadcast to the other nodes. Re-
markably, even though the GEVD-based DANSE algorithm
is not able to compute the network-wide signal correlation
matrix (and its GEVD) from these compressed signal ob-
servations, the algorithm does converge to the centralized
GEVD-based MWF as if each node would have access to all
(uncompressed) sensor signal observations.

The paper is organized as follows. The data model is pre-
sented in Section 2. The centralized GEVD-based MWF is
explained in Section 3. The GEVD-based DANSE algorithm
and its convergence analysis is addressed in Section 4. Nu-
merical simulations are presented in Section 5. Finally con-
clusions are drawn in Section 6.

2. DATA MODEL AND MOTIVATION
We consider a fully-connected WSN with K multi-sensor
nodes. Each node k ∈ K = {1, . . . ,K} is assumed to collect
observations of a complex-valued Mk-channel sensor signal
yk. Note that this also allows for a hierarchical WSN where
K master nodes collect sensor signal observations from Mk

slave nodes with a single sensor. The sensor signal yk can be
modeled as

yk = dk + nk = Aks + nk (1)

where s is a latent S-channel signal defining S latent source
signals, Ak is an unknown Mk × S complex-valued steer-
ing matrix, and nk is additive noise. The sensor signal yk
is assumed to satisfy short-term stationarity and ergodicity
conditions. By stacking all yk, nk and dk, we obtain the
network-wide M -channel sensor signals y, d and n, respec-
tively, where M =

∑K
k=1Mk and hence y = d + n.

The goal for each node k ∈ K is to denoise all Mk chan-
nels of yk. Hence the desired signal to be estimated at each

1It is noted that all results in this paper can be extended to tree topology
networks, using similar strategies as in [19].

node is the Mk-channel signal dk. This means that the es-
timation procedure will preserve the node-specific spatial in-
formation in dk while reducing the noise nk.

3. CENTRALIZED GEVD-BASED MWF
We first consider the centralized estimation problem. There-
fore the objective for each node k is to estimate a complex-
valued node-specific unknownMk-channel desired signal dk,
from the observations of all sensor signals in y. Node k uses
an M × Mk linear estimator Ŵk to estimate dk as d̂k =
ŴH

k y, where superscript H denotes the conjugate transpose
operator and where the hat (̂.) refers to the fact that the cen-
tralized solution is considered. The MWF [17] computes Ŵk

based on the minimum mean square error (MMSE) criterion,
such that

ŴMMSE
k = argmin

Wk

E

{∥∥dk −WH
k y
∥∥2} (2)

where E{.} is the expected value operator. Assuming Ryy =
E{yyH} has full rank, the unique solution of (2) is [17]:

ŴMMSE
k = R−1

yy Rdd (3)

where Rd = E{ddH}. We also define the network-wide
noise covariance matrix Rnn = E{nnH}, where it is as-
sumed that Rnn is either known a-priori or can be estimated
from noise-only segments in the sensor signal observations.
The latter can be performed in applications where the target
signal has an on-off behavior, such as in speech enhancement
where Ryy and Rnn can be estimated during “speech-and-
noise” and “noise-only” segments, respectively, using a voice
activity detection [17], [13]. The estimated correlation matri-
ces will be denoted as R̄yy , R̄nn and R̄dd.

Assuming d and n are uncorrelated, the signal correla-
tion matrix Rdd can be estimated as Ryy − Rnn. Note that
in theory Rdd is a rank-S matrix, which can be verified by
considering

Rdd = E{ddH} = AΨAH (4)

where A is the stacked version of all Ak steering matrices,
and where Ψ = diag{ψ1, . . . , ψS} is an S-dimensional di-
agonal matrix, where ψs = E{|st|2}, with t ∈ {1, . . . , S}.
In practice, however, the estimated R̄dd has generally a rank
greater than S, and it may even not be positive semi-definite
due to the subtraction R̄yy − R̄nn. In this case, it has been
demonstrated in [18] that incorporating a low rank approxi-
mation based on either the eigenvalue decomposition (EVD)
of R̄dd or the generalized eigenvalue decomposition (GEVD)
of R̄yy and R̄nn enhances the estimation performance of the
MWF, especially in low-SNR conditions. The GEVD-based
low-rank approximation has been shown to deliver the best
performance, as it effectively selects the “mode” correspond-
ing to the highest SNR [18]. In the rest of this section, the
GEVD-based MWF solution is explained in detail.

In order to perform a GEVD of the ordered matrix pair
(R̄yy, R̄nn), each generalized eigenvector (GEVC) and its
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corresponding generalized eigenvalue (GEVL), xm and λm
(m = 1 . . .M), respectively, must be computed such that
R̄yyxm = λmR̄nnxm [20], or equivalently

R̄yyX = R̄nnXΛ (5)

where X = [x1...xM ] and Λ = diag{λ1 . . . λM}. Note that
when R̄nn is invertible, (5) can be written as a non-symmetric
EVD as

R̄−1
nnR̄yy = XΛX−1. (6)

In the sequel, we assume w.l.o.g. that the GEVLs in Λ are
sorted in descending order. Since the GEVCs are defined up
to a scaling, we assume w.l.o.g. that all xm’s are scaled such
that XHR̄nnX = IM where IM denotes the M ×M iden-
tity matrix. It is noted that the GEVD is equivalent to a joint
diagonalization of R̄yy and R̄nn, i.e., it can be verified from
(6) that

R̄yy = QΣQH , R̄nn = QΓQH (7)

where Q = X−H is a full-rank M × M matrix (not nec-
essarily orthogonal), and where Σ = diag{σ1, . . . , σM} and
Γ = diag{γ1, . . . , γM} are diagonal matrices. Note that (6)
then implies that the GEVLs are equal to λm = σm

γm
. Recon-

sidering y = d + n and (7)), it follows that

R̄dd = R̄yy − R̄nn = Q
(
Σ− Γ

)
QH = Q∆QH (8)

where ∆ = diag{δ1, ..., δM} with δm = σm − γm. The
rank-R approximation of R̄dd becomes Q∆RQH with ∆R

denoting the diagonal matrix ∆ with the M − R smallest
diagonal entries set to zero. Ideally (but not necessarily), R is
set to R = S, which is motivated by (4). By replacing R̄dd

with its rank-R approximation in (3), the GEVD-based MWF
is defined as

Ŵk = R̄−1
yy Q∆RQHEk (9)

where Ek is a M ×Mk matrix which selects the Mk columns
corresponding to node k. The next section explains how the
GEVD-based DANSE algorithm obtains the signal estimates
d̂k = ŴH

k y, i.e., the outputs of (9) in a decentralized fashion.

4. GEVD-BASED DANSE
In this section, we briefly introduce the GEVD-based DANSE
algorithm to obtain the same node-specific solution (9) at each
node k ∈ K, without accessing to the full signal y.

In GEVD-based DANSE, each node k ∈ K first opti-
mally fuses its Mk-channel signal yk into a J-channel sig-
nal zk = FHk yk with an Mk × J fusion matrix Fk (which
will be defined later, see (13)), and then broadcasts observa-
tions of zk to all other nodes. Consequently and compared
to the centralized GEVD-based MWF, the algorithm reduces
the required per-node communication bandwidth by a factor
of max{(Mk/J), 1}.

Considering z = [zT1 . . . z
T
K ]T , z−k denotes the vector z

with zk omitted. Each node k in GEVD-based DANSE has

access to a Pk-channel signal ỹk which is defined as ỹk =
[yTk zT−k]T , with Pk = Mk + J(K − 1). We use a similar
notation for the desired and the noise component of ỹk, i.e.,
d̃k and ñk.

In the DANSE algorithm [16], at iteration i, node q is the
updating node where the local MMSE problem and its solu-
tion take the form (the iteration index i is omitted for concise-
ness):

W̃MMSE
q = argmin

W̃q

E

{∥∥∥∥dq − W̃H
q ỹq

∥∥∥∥2
}

(10)

W̃MMSE
q = (R̄ỹq ỹq )−1R̄d̃q d̃q

Ẽ (11)

(compare with (2)-(3)) where R̄ỹq ỹq , R̄ñqñq
and R̄d̃q d̃q

are
the Pk-dimensional correlation matrices corresponding re-
spectively to ỹq , ñq and d̃q signals, and where Ẽ is a Pk×Mk

matrix which selects the first Mk columns of R̄d̃q d̃q
.

Similar to (5)-(8), here we locally perform a GEVD at
node q on the matrix pair R̄ỹq ỹq and R̄ñqñq

. This leads to the
corresponding local Pk-dimensional matrices X̃q , Λ̃q , Q̃q ,
Σ̃q , Γ̃q and ∆̃q , where Q̃q = X̃−H

q . When replacing R̄d̃q d̃q
by its GEVD-based rank-R approximation, solution (11) be-
comes

W̃q = (R̄ỹq ỹq )−1Q̃q∆̃qRQ̃H
q Ẽ (12)

(compare with (9)) where ∆̃qR is the Pk-dimensional diago-
nal matrix ∆̃q with the Pk − R smallest diagonal entries set
to zero. The aforementioned fusion rule Fq at node q is then
chosen as

Fq =
[
IMq

0
]

W̃q

[
IJ
0

]
. (13)

Finally node q estimates its node-specificMk-channel desired
signal as dq = W̃H

q ỹq . The resulting GEVD-based DANSE
algorithm is described in Table 1.

Note that the fusion rule defined in (13) is the same as in
the original DANSE algorithm, but now W̃q is the result of
a low-rank approximation-based MWF instead of a full-rank
MWF. Due to this modification, the convergence proof of the
original DANSE algorithm in [16] is not applicable anymore.
Nevertheless, convergence of the GEVD-based DANSE algo-
rithm can be proven under some technical conditions, as given
by the following theorem:
Theorem I: If J = R and under some technical conditions,
the GEVD-based DANSE algorithm converges for any ini-
tialization of its parameters to the centralized GEVD-based
MWF solution, i.e., when i→∞, d̄k = d̂k.
Proof: Omitted.

Remark I: The conditions stated above are as follows: 1)
R̄yy is rank-M 2) W̃i

k,∀k ∈ K is rank-R in each iteration
i of the GEVD-based DANSE algorithm. In practice, these
conditions are usually satisfied . It is noted that both con-
ditions are also required for the convergence of the original
DANSE algorithm. However, the latter also requires strict
conditions on the data model, i.e., the node-specific desired
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Table 1. GEVD-based DANSE algorithm

1. Set i ← 0, q ← 1, and initialize all F0
k and W̃0

k , ∀ k ∈ K,
with random entries.

2. Each node k ∈ K broadcasts the J-channel fused signal of
its N new observations

zk[iN + j] = Fi H
k yk[iN + j], j = 1 . . . N (14)

where the notation [.] denotes a sample index.

3. At node q:

• Compute R̄i
ỹq ỹq

and R̄i
ñqñq

via sample averaging.

• Compute Q̃i
q and ∆̃i

q from the GEVD of
(R̄i

ỹq ỹq
, R̄i

ñqñq
) similar to (5)-(8).

• Compute the local MWF with rank-R approximation
of R̄i

d̃q d̃q
as follows:

W̃i+1
q = (R̄i

ỹq ỹq
)−1Q̃i

q∆̃
i
qR

Q̃iH
q Ẽ (15)

• Update the fusion rule as

Fi+1
q =

[
IMq 0

]
W̃i+1

q

[
IJ
0

]
(16)

4. Other nodes k ∈ K \ q update their parameters as W̃i+1
k =

W̃i
k and Fi+1

k = Fi
k .

5. Each node k ∈ K estimates its Mk-channel signal dk , as

dk[iN + j] = W̃i+1
k ỹk[iN + j] (17)

6. i← i + 1 and q ← (q mod K) + 1 and return to step 2.

signals dk should share a common latent signal subspace.
Although the existence of such a subspace motivates the low-
rank approximation of Rdd (see (4)), it is not a requirement
as such for the GEVD-based DANSE algorithm to converge
to the centralized GEVD-based MWF.

Remark II: It should be emphasized that for any choice of
J = R, the GEVD-based DANSE algorithm converges to the
centralized GEVD-based MWF, while only both are optimal
in MMSE-sense when J = R = S. However note that it has
been shown in [16] that the original DANSE algorithm only
converges to the centralized MMSE-based MWF solution if
J = S.

Remark III: It should be mentioned that GEVD-based
DANSE can be shown to be equivalent (up to specific per-
node transformations) to the DACGEE algorithm [21], based
on an invariance-property of the GEVD with respect to row
transformations. As a results, convergence of the latter can be
exploited to prove convergence of the former. Although the
proof of this relationship between both algorithms is not triv-
ial, the mere fact that they are related may not be a complete
surprise, since the GEVD-based MWF with rank-R approxi-
mation implicitly also computes a GEVD.

5. NUMERICAL SIMULATIONS
A Monte-Carlo (MC) simulation scenario withK = 10 nodes
and Mk = 15, ∀k ∈ K is considered. The observations of the
latent S-channel signal s, and the entries of the Mk×S steer-
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Fig. 1. Convergence of GEVD-based DANSE

ing matrix Ak, ∀k ∈ K are both independently drawn from
a uniform distribution over the interval [−0.5; 0.5]. Two tar-
get sources (S = 2) as well as two localized noise sources
are assumed, where the target sources have an on-off behav-
ior, while the noise sources are continuously active. In order
to model sensor noise as well (spatially uncorrelated com-
ponents), nk also contains an additive stochastic signal from
which the observations are independently drawn from a uni-
form distribution over the interval [−

√
0.2/2;

√
0.2/2].

Fig.1 illustrates the convergence results for two cases: 1)
J = R = 2 and 2) J = R = 1, averaged over 200 MC
runs (S = 2 in both cases). In the upper part, the mean
squared errors (MSEs) between the entries of d̂k and d̄k (av-
eraged over the nodes) are shown over the different iterations
of the GEVD-based DANSE. Similarly, the bottom part il-
lustrates the MSE between Ŵk and the corresponding filters
in the case of GEVD-based DANSE. It is observed that for
both cases, the GEVD-based DANSE algorithm converges
(with a random initialization of its parameters) to the cen-
tralized GEVD-based MWF solution. It is noted that the case
J = R = 2 converges faster than the case J = R = 1, which
can be explained by the larger number of degrees of freedom
in each update step in the case of the former.

6. CONCLUSION
In this paper, we have proposed a distributed algorithm for
the estimation of node-specific desired signals in a fully-
connected wireless sensor network. The estimation has been
based on a GEVD-based low-rank approximation of the cor-
relation matrices within the MWF that is locally computed
at each node. The resulting GEVD-based DANSE algorithm
significantly compresses the broadcasting signals compared
to a centralized approach with a fusion center. We have stated
(without a proof) that the GEVD-based DANSE algorithm
converges to the centralized GEVD-based MWF as if each
node would have access to all the sensor signal observations.
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