
ANCHOR NODES REFINEMENT IN JOINT LOCALIZATION AND SYNCHRONIZATION OF
A SENSOR NODE

Liyang Rui Shanjie Chen K. C. Ho

ECE Department, University of Missouri, Columbia, MO 65211, USA

ABSTRACT

This paper proposes an estimator for refining the inaccurate posi-
tions and clocks of the anchors during the localization and synchro-
nization of a sensor node in a wireless sensor network. It solves the
highly nonlinear problem in closed-form through parameter transfor-
mation and multi-stage weighted least squares processing. Theoreti-
cal analysis and simulation studies show that the proposed estimator
is able to provide the CRLB accuracy for both the sensor node and
the anchors under reasonable amount of Gaussian errors.

Index Terms— Algebraic solution, localization, synchroniza-
tion, wireless sensor network

1. INTRODUCTION

Precise localization of sensor nodes in a wireless sensor network
(WSN) relies on range-based measurements, such as time of arrival
(TOA) [1–3] or time difference of arrival (TDOA) [4–7], among the
sensors and the anchors. Acquisition of the time information neces-
sitates synchronization. Many protocols have been proposed over
the years to synchronize the nodes, including the reference broad-
cast synchronization (RBS) [8], the flooding time synchronization
protocol (FTSP) [9] and more recently the distributed Bayesian in-
ference method [10]. Traditionally, the synchronization and local-
ization problems have been handled separately. When considering
and formulating synchronization as an estimation task, it is possible
to combine the synchronization and localization problems and solve
them together to improve performance.

Using successive message exchanges between a sensor node and
the anchors and modeling the clock differences by drifts and off-
sets, [11–14] have shown the feasibility of joint localization and syn-
chronization of a sensor node. The resulting problem, however, is
highly nonlinear and challenging to solve. [12] derived an explicit
solution by linearizing the time measurement equations with respect
to the unknowns. [13] proposed an algebraic solution that is able to
give the Cramer-Rao Lower Bound (CRLB) accuracy. The above
studies [11–13] used an ideal condition that the positions of the an-
chors are exactly known and their clocks are perfectly synchronized.
This condition is seldom satisfied in practice [10, 15–17], especially
considering that the anchors could be previously located and syn-
chronized sensor nodes. Simply pretending it is true would reduce
performance [14, 18].

To account for the anchor position and clock uncertainties, [14]
applied the generalized total least squares (GTLS) technique to ob-
tain a sub-optimum position and synchronization solution for a sin-
gle sensor node. Rui and Ho [18] extended the study for multiple
sensor nodes and proposed a different algebraic solution that is able
to attain the CRLB accuracy. These algorithms focus on the sensor
nodes only and ignore any opportunity to refine the anchors. The
anchor nodes could be used to locate and synchronize other sensors,

and they could also be previously estimated sensor nodes. It is im-
portant to improve the positions and synchronization of the anchors.

This paper proposes an estimator to perform joint localization
and synchronization of a single sensor node and the refinement of
those for the anchor nodes together. This is a highly nonlinear esti-
mation problem and we solve it using parameter transformation and
multi-stage processing. The proposed solution is algebraic, compu-
tationally attractive and able to reach the CRLB performance. Dif-
ferent from [19–21] that address either anchor position or clock un-
certainties, we improve both the positions and synchronizations of
the anchors jointly. In addition, the approach we take is separated
from those in [14, 18], where we exploit not only the connections
between the sensor node and the anchors, but also those among the
anchors. The connections among the anchors improve their estima-
tion, leading to better accuracy for the sensor node as well as improv-
ing the positioning and synchronization of subsequent sensor nodes
in the network.

We shall use bold lower case letter to denote column vector and
bold upper case letter to represent matrix. The symbols 1p, 0p and
1K
p designate length p column vectors of ones, zeros and alternating

´1 and 1. Ip is an identity matrix of size p and Opˆq is a pˆ q zero
matrix. The true value of an erroneous vector a is ao. apiq is the i-th
element of a and ap i : j q is the subvector having the i-th to the j-
th elements. The symbols b and d represent the Kronecker product
and the element by element multiplication. diag p `, ˆ, ¨ ¨ ¨ q is a
block diagonal matrix with blocks `, ˆ, ¨ ¨ ¨ .

We present the problem in Section 2 and propose the solution in
Section 3. Section 4 provides the analysis and Section 5 examines
the performance by simulation. Section 6 is the conclusion.

2. PRELIMINARY

We are interested in using M anchor nodes at ao
i P R

K with clock
drift αo

i and offset βo
i to determine the location bo P R

K and clock
parameters αo

b and βo
b of a sensor node, where i “ 1, 2, . . . , M

and K is the dimension of localization. Anchor uncertainties are
present and we only observe the noisy values ai “ ao

i ` εa,i, αi “
αo
i ` εα,i, βi “ βo

i ` εβ,i, where εa,i, εα,i and εβ,i are additive
noise. The anchor parameters are collectively represented by θa ““
θT
1 , θ

T
2 , ¨ ¨ ¨ ,θT

M

‰T “ θo
a`εa, where θi “ “

aT
i , αi, βi

‰T
. We

assume εa is zero-mean Gaussian with covariance matrix Qa [10,
17]. The unknown vector for the sensor node is denoted similarly as

θo
b “ “

boT , αo
b , β

o
b

‰T
. The total unknown vector to be found is

θo “ “
θo
b
T , θo

a
T

‰T
.

The measurements to obtain θo are the time stamps from two-
way message exchanges [13, 14, 22–25] between the sensor node
and an anchor. As shown in Fig. 1, the sensor node sends out
the first message embedded with the sending time Ti,1, and anchor
node i returns back the message. The sequential l-th replication con-
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Fig. 1. The two-way message exchanges between the sensor node
and the i-th anchor node.

tains the stamps of current sending time and the most recent receiv-
ing time, Ti,l and Ri,l´1. After L exchanges, we collect them as

ti “ rTi,1, Ri,2, Ti,3, Ri,4, ¨ ¨ ¨ , Ti,L´1, Ri,L sT from the sen-

sor and ri “ rRi,1, Ti,2, Ri,3, Ti,4, ¨ ¨ ¨ , Ri,L´1, Ti,L sT from
the anchor. They are related to the unknowns θo

i and θo
b by [14, 18]

pti ´ 1Lβ
o
b q p1 ` αo

bq “ pri ´ 1Lβ
o
i q p1 ` αo

i q
` 1K

L }ao
i ´ bo} {c ` 1K

L d ni

(1)

where c is the speed of light, }˚} is the Euclidean norm of ˚, ni is
the measurement noise vector, and i “ 1, 2, . . . , M . We assume

the noise vector n “ “
nT
1 , n

T
2 , ¨ ¨ ¨ , nT

M

‰T
is zero-mean Gaussian

with covariance matrix Q. L is set to be even for ease of illustration.
The time stamp vectors between anchors j and k are denoted by

the length L vectors rtj,k and rrj,k. They are related to the anchor
parameters by´rtj,k ´ 1Lβ

o
j

¯ `
1 ` αo

j

˘ “ prrj,k ´ 1Lβ
o
kq p1 ` αo

kq
` 1K

L

››ao
j ´ ao

k

›› {c ` 1K
L d rnj,k

(2)

where j “ 1, 2, . . . , M ´ 1, k “ j ` 1, j ` 2, . . . , M . The noise

vector rn “ “ rnT
1,2, rnT

1,3, ¨ ¨ ¨ , rnT
j,k, ¨ ¨ ¨ , rnT

M´1,M

‰T
is zero-mean

Gaussian with covariance matrix rQ. We further assume εa, n and rn
are uncorrelated with one another [10, 14, 18, 26].

We next develop an algorithm to jointly estimate θo
b and θo

a us-
ing (1), (2) and the statistical distribution of anchor uncertainties.

3. ALGORITHM

The proposed algorithm employs multi-stage processing by intro-
ducing auxiliary variables, using nonlinear transformation and ap-
plying weighted least squares (WLS) optimization to obtain the solu-
tion. The number of auxiliary variables decreases and the estimation
accuracy increases from stage to stage. The algorithm derivation ig-
nores the second and higher order noise terms, which is valid under
the small noise condition

(C1) }εa,i} ! }ao
i ´ bo}, }εa,j} ! ››ao

j ´ ao
k

››, }εa,k} !››ao
j ´ ao

k

››
for i “ 1, 2, . . . , M , j “ 1, 2, . . . , M ´ 1 and k “ j ` 1, j `
2, . . . , M . It means the anchor position uncertainty is insignificant
relative to the node distances and it is easily satisfied with widely
deployed nodes [14, 18]. The algorithm described below is for fully
connected network to simplify the presentation and it can be modi-
fied directly for partially connected network.

First Stage: We begin from (1) and express the anchor parame-
ters in terms of the available noisy values by using

}ao
i ´ bo} “ }ai ´ εa,i ´ bo} » }ai ´ bo} ´ ρT

i εa,i (3)

and
βo
i α

o
i “ βiα

o
i ´ εβ,iα

o
i , i “ 1, 2, . . . , M. (4)

(3) is obtained from the Taylor-series expansion up to linear term of
εa,i that is valid under (C1), and ρi “ pai ´ boq { }ai ´ bo}. Let
ωo
b “ p1 ` αo

bqβo
b . We can then express (1) as

1K
L d ni ` 1Lα

o
i εβ,i “ ti ´ ri ´ 1K

L }ai ´ bo} {c ` tiα
o
b

´ 1Lω
o
b ` 1K

Lρ
T
i εa,i{c ´ pri ´ 1Lβiqαo

i ` 1Lβ
o
i .

(5)

Applying similar steps to (2) gives

1K
L d rnj,k ´ 1Lα

o
jεβ,j ` 1Lα

o
kεβ,k “ rtj,k ´ rrj,k

´ 1K
L }ai ´ aj} {c ` 1K

Lρ
T
j,kεa,j{c `

´rtj,k ´ 1Lβj

¯
αo
j

´ 1Lβ
o
j ´ 1K

Lρ
T
j,kεa,k{c ´ prrj,k ´ 1Lβkqαo

k ` 1Lβ
o
k

(6)

where we have used the approximation
››ao

j ´ ao
k

›› » }aj ´ ak} ´
ρT
j,kεa,j ` ρT

j,kεa,k from (C1) and ρj,k “ paj ´ akq { }aj ´ ak}.
(5) and (6) are linear with respect to the unknown vector ϕo

1 ““
ϕo

b
T , ϕo

a
T

‰T
where ϕo

b “ r }a1 ´ bo} , ¨ ¨ ¨ , }aM ´ bo} , αo
b ,

ωo
b sT and ϕo

a “ “
εT
a,1, α

o
1, β

o
1 , ¨ ¨ ¨ , εT

a,M , αo
M , βo

M

‰T
. Note

that we have introduced M variables }ai ´ bo}, i “ 1, 2, . . . , M ,
to represent bo indirectly. In addition, rather than solving ao

i di-
rectly, we estimate the correction term εa,i.

Left multiplying 1K
L elementwise on the two sides of (5) and

(6), stacking (5) for i “ 1, 2, . . . , M and (6) for k “ j ` 1, j `
2, . . . , M first and j “ 1, 2, . . . , M ´ 1 next, and using the sta-
tistical distribution of εa yield the matrix equation

B1e1 “ h1 ´ G1ϕ
o
1 (7)

where B1, e1, h1 and G1 are defined in Appendix A. The WLS
solution of ϕo

1 [27] is

ϕ1 “
´
GT

1 W1G1

¯´1

GT
1 W1h1 (8)

and the weighting matrix W1 is

W1 “
´
B1diag

´
Q, rQ, Qa

¯
BT

1

¯´1

. (9)

Second Stage: The second stage exploits the auxiliary variables
}ai ´ bo} to improve the estimation accuracy. Let e2 “ ϕ1 ´ ϕo

1

be the estimation error of ϕ1. From the definition of ϕo
1 and ωo

b “
p1 ` αo

bqβo
b , for i “ 1, 2, . . . , M ,

2ϕo
1piqe2piq » ϕ2

1piq ´ }ai}2 ` 2aT
i b

o ´ }bo}2 (10a)

e2pM ` 1q “ ϕ1pM ` 1q ´ αo
b (10b)

e2pM ` 2q ´ βo
b e2pM ` 1q “ ϕ1pM ` 2q ´ p1 ` ϕ1pM ` 1qqβo

b

(10c)
where we have neglected e22piq. Since the estimation errors within

ϕo
1 “ “

ϕo
b
T , ϕo

a
T

‰T
are correlated, we set ϕo

2 “ “
boT , }bo}2 ,

αo
b , β

o
b , ϕ

o
a
T

‰T
and obtain the matrix equation

B2e2 “ h2 ´ G2ϕ
o
2 (11)

where B2, h2 and G2 are defined in Appendix A. The WLS solution
is

ϕ2 “
´
GT

2 W1G2

¯´1

G2W2h2 (12)

where

W2 “
´
B2cov pϕ1qBT

2

¯´1 » B´T
2 GT

1 W1G1B
´1
2 . (13)
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Third Stage: We shall represent ϕ2 “ ϕo
2 ` e3. The elements

bo and }bo} in ϕo
2 are related. Since ϕo

2 p1 : Kq “ bo, we have
over the small error region

2ϕ2p1 : Kq d e3p1 : Kq » ϕ2p1 : Kq d ϕ2p1 : Kq ´ bo d bo.
(14)

The pK ` 1q-th element of ϕ2 can be expressed as

e3pK ` 1q “ ϕ2pK ` 1q ´ 1T
K pbo d boq . (15)

The unknown vector in this stage is ϕo
3 “

”
pbo d boqT , αo

b , β
o
b ,

ϕo
a
T

‰T
. From (14) and (15) and carrying the other elements of ϕo

2

yield
B3e2 “ h3 ´ G3ϕ

o
3 (16)

whose solution is

ϕ3 “
´
GT

3 W3G3

¯´1

GT
3 W3h3. (17)

B3, h3, G3 are given in Appendix A and W3 is

W3 “
´
B3cov pϕ2qBT

3

¯´1 » B´T
3 GT

2 W2G2B
´1
3 . (18)

Fourth Stage: The last stage maps the elements of ϕo
3 back to

θo
b and θo

a. For the sensor node,

b “ diag psgn pϕ2 p1 : Kqqq a
ϕ3p1 : Kq,

αb “ ϕ3pK ` 1q, βb “ ϕ3pK ` 2q . (19)

where sgn is the signum function. For the i-th anchor node,

âi “ ai ´ ϕ3ppK ` 2qi ` 1 : pK ` 2qi ` Kq,
α̂i “ ϕ3ppK ` 2qi ` K ` 1q, β̂i “ ϕ3ppK ` 2qpi ` 1qq. (20)

The covariance matrix for the θo “ “
θo
b
T , θo

a
T

‰T
is [18]

cov pθq “ B´1
4 cov pϕ3qB´T

4 »
´
BT

4 G
T
3 W3G3B4

¯´1

(21)

where B4 “ diag p diagpboq, I2, IM b diag p ´IK , I2 q q.
In summary, the proposed algorithm evaluates (8), (12), (17),

(19) and (20) in sequence. The algorithm requires M ě K ` 1 to
ensure the number of unknowns in the first stage is not less than that
of the second stage.

4. ANALYSIS

The CRLB for θo is given in (23). The analysis uses the small noise
condition (C1) as well as those of the followings:

(C2) |εα,i| ! 1 ` αo
i

(C3) |εβ,i| ! |riplq´βo
i |, |εβ,j | ! |rtj,kplq´βo

j |, |εβ,k| ! |rrj,kplq´
βo
k|

(C4) |niplq| ! }bo ´ ao
i } {c, |rnj,kplq| ! ››ao

j ´ ao
k

›› {c
for i “ 1, 2, . . . , M , j “ 1, 2, . . . , M ´ 1, k “ j ` 1, j `
2, . . . , M and l “ 1, 2, . . . , L. These conditions are often satis-
fied in practice for WSNs [18].

Sequentially substituting W3 in (18), W2 in (13) and W1 in
(9) to (21) gives

cov pθq “
ˆ
GT

4 diag
´
Q, rQ, Qa

¯´1

G4

˙´1

(22)

where G4 “ B´1
1 G1B

´1
2 G2B

´1
3 G3B4. Following similar steps

in Appendix G of [18], when (C1)´(C4) are satisfied, we can val-
idate that G4 » B pp ´ qq {BθoT , where p and q are defined in
Appendix B. Hence the proposed estimator provides the CRLB per-
formance under the small noise conditions.

5. SIMULATION

The simulation results presented are the averages from 100 randomly
generated geometries. Each geometry consists of 1 sensor and 4 an-
chor nodes whose positions are created by a uniform random num-
ber generator in an area of 40 m ˆ 40 m with the following con-
straints to avoid bad configuration: (1)

››ao
i ´ ao

j

›› ą 10 m; (2)

15o ă arccos
`
ρT
i,jρi,k

˘ ă 165o; where i, j, k “ 1, 2, . . . , M
and i ‰ j ‰ k. We also impose transmission range limit of
30 m [28] in the nodes to validate the partial connected scenario of
the proposed algorithm, although it was presented with full connec-
tion in Section 4. The clock drifts αo

b , αo
i and offsets βo

b , βo
i , i “

1, 2, . . . , M , are randomly sampled from the uniform distributions
over r ´0.002, 0.002 s and r 1, 10 sμs respectively. We set Qa “
diag pQa,1, ¨ ¨ ¨ , Qa,M q, where Qa,i “ diag

`
σ2
a,iI2, σ

2
α,i, σ

2
β,i

˘
and σa,i, σα,i, σβ,i are randomly drawn over

“
0.1,

?
0.1

‰
m [29],”

10´4,
?
10´7

ı
[14] and r 30, 150 s ns [30] from uniform distri-

bution separately for different anchors. Also, Q “ σ2IML andrQ “ σ2IMpM´1qL{2 and L “ 8. The number of ensemble runs
in each geometry is 5,000. To the best of our knowledge, we do not
find in literature any work solving similar problem for performance
comparison.

Fig. 2 shows the estimation accuracy of the sensor and anchor
node positions as the time measurement noise power σ2 increases.
The proposed algorithm achieves the CRLB accuracy for both an-
chor and sensor nodes pretty well. When σ2 is small, e.g. 0.1 ns2,
the anchor position accuracy is improved by nearly 5 dB.

Figs. 3 and 4 give the result of the clock drifts and offsets. The
proposed algorithm attains the CRLB as anticipated by the analysis,
and it effectively reduces the anchor clock drift and offset uncertain-
ties.

6. CONCLUSION

We have developed a closed-form algebraic efficient solution to es-
timate the positions and clocks of a sensor node and at the same
time refine those of the anchors, using two-way message exchanges
among the nodes. The proposed algorithm has been shown both an-
alytically and experimentally to reach the CRLB accuracy for Gaus-
sian noise over the small error region. The refined anchor positions
and clocks will be able to the localization and synchronization of
subsequent sensor nodes in a WSN.

APPENDIX A. THE MATRICES AND VECTORS
IN ALGORITHM DEVELOPMENT

The B1, e1, h1 and G1 in (7) are

B1 “
„

IMpM`1qL{2
“
BT

b , B
T
a,1, ¨ ¨ ¨ , BT

a,M´1

‰T
OpK`2qMˆMpM`1qL{2 IM b diag p ´IK , I2 q

j
Bb “ diag

`
1K
Lα

o
1, ¨ ¨ ¨ , 1K

Lα
o
M

˘ b “
0T
K`1, 1

‰
Ba,j “ “

BT
a,j,j`1, ¨ ¨ ¨ , BT

a,j,M

‰T
Ba,j,k “ “

0T
j´1, ´αo

j , 0
T
k´j´1, α

o
k, 0

T
M´k

‰ b 1K
L b “

0T
K`1, 1

‰
e1 “ “

nT , rnT , εT
a

‰T
, h1 “ “

hT
b , h

T
a,1, ¨ ¨ ¨ , hT

a,M´1, h
T
θ

‰T
hb “ 1K

ML d
”

pt1 ´ r1qT , ¨ ¨ ¨ , ptM ´ rM qT
ıT

ha,j “ “
hT
a,j,j`1, ¨ ¨ ¨ , hT

a,j,M

‰T
ha,j,k “ 1K

L d
´rtj,k ´ rrj,k¯

´ 1L }aj ´ ak} {c
hθ “ “

0T
K , α1, β1, ¨ ¨ ¨ , 0T

K , αM , βM

‰T
G1 “”
GT

b , G
T
a,1, ¨ ¨ ¨ , GT

a,M´1,
“
OpK`2qMˆp2`Mq, IpK`2qM

‰T ıT
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Gb “ “
GT

b,1, ¨ ¨ ¨ , GT
b,M

‰T
, Ga,j “ “

GT
a,j,j`1, ¨ ¨ ¨ , GT

a,j,M

‰T
Gb,i ““
OLˆpi´1q, 1L{c, OLˆpM´iq, ´1K

L d ti, 1
K
L, OLˆpK`2qpi´1q,

´1Lρ
T
i {c,1K

L d ri ´ 1K
Lβi, ´1K

L, OLˆpK`2qpM´iq
‰

Ga,j,k “”
OLˆpM´K`pK`2qjq, ´1Lρ

T
j,k{c, 1K

Lβj ´ 1K
L d rtj,k, 1K

L,

OLˆpK`2qpk´j´1q, 1Lρ
T
j,k{c, 1K

L d rrj,k ´ 1K
Lβk, ´1K

L,

OLˆpK`2qpM´kq
‰
.

The B2, h2 and G2 in (11) are

B2 “ diag

ˆ
2ϕo

1p1q, ¨ ¨ ¨ , 2ϕo
1pMq,

„
1 0

´βo
b 1

j
, IpK`2qM

˙
h2 “ “

ϕ2
1p1q ´ }a1}2 , ¨ ¨ ¨ , ϕ2

1pMq ´ }aM}2 ,
ϕT

1 pM ` 1 : pK ` 3qM ` 2q‰T
G2 “
diag

˜ „´2 ra1, ¨ ¨ ¨ , aM s
1T
M

jT

, 1, 1 ` ϕ1pM ` 1q, IpK`2qM

¸
.

In (16), the B3, h3 and G3 are
B3 “ diag

`
2diag pϕ2 p1 : Kqq , IpK`2qM`3

˘
h3 “”
pϕ2p1 : Kq d ϕ2p1 : KqqT,ϕT

2 pK ` 1 : pK ` 2qpM ` 1q ` 1q
ıT

G3 “ diag
´

r IK , 1K sT , I2`pK`2qM
¯

.

For implementation, the true anchor clock drifts in B1 are re-
placed by their noisy values. βo

b in B2 is replaced by ϕ1pM `
2q{p1 ` ϕ1pM ` 1qq. The other unknown elements in B2 are ap-
proximated by their estimates from the previous stage. The error
introduced by the approximation is negligible [18].

APPENDIX B. CRLB

Given (1) and (2), the CRLB for θo, by following similar steps
in [14, 18], is

CRLB pθoq “
´

B pp ´ qqT {Bθo

diag
´
Q, rQ, Qa

¯´1 B pp ´ qq {BθoT

˙´1 (23)

where p “ “
pT
b,1, ¨ ¨ ¨ , pT

b,M , pT
a,1, ¨ ¨ ¨ , pT

a,M´1, θ
T
a

‰T
, q ““

qT
b,1, ¨ ¨ ¨ , qT

b,M , qT
a,1, ¨ ¨ ¨ , qT

a,M´1, θ
o
a
T

‰T
, pb,i “ 1K

L d
pti ´ 1Lβ

o
b q p1 ` αo

bq, qb,i “ 1K
L d pri ´ 1Lβ

o
i q p1 ` αo

i q `
1L }ao

i ´ bo} {c, pa,j “ “
pT
a,j,j`1, ¨ ¨ ¨ , pT

a,j,M

‰T
, pa,j,k “

1K
L d

´rtj,k ´ 1Lβ
o
j

¯ `
1 ` αo

j

˘
, qa,j “ “

qT
a,j,j`1, ¨ ¨ ¨ ,qT

a,j,M

‰T
,

qa,j,k “ 1K
L d prrj,k ´ 1Lβ

o
kq p1 ` αo

kq ` 1L

››ao
j ´ ao

k

›› {c, i “
1, 2, . . . , M , j “ 1, 2, . . . , M´1 and k “ j`1, j`2, . . . , M .
The differentiation can be computed following similar steps in Ap-
pendix F of [18] and is omitted here for brevity.
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Fig. 2. Position estimation performance of the sensor node and an-
chors under different time measurement noise powers.
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Fig. 3. Estimation accuracy of clock drifts of the sensor node and
anchors under different time measurement noise powers.
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Fig. 4. Estimation accuracy of clock offsets of the sensor node and
anchors under different time measurement noise powers.
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