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ABSTRACT

This paper adresses the statistical performance of subspace DoA es-
timation using a sensor array, in the asymptotic regime where the
number of samples and sensors both converge to infinity at the same
rate. Improved subspace DoA estimators were derived (termed as
G-MUSIC) in previous works, and were shown to be consistent and
asymptotically Gaussian distributed in the case where the number
of sources and their DoA remain fixed. In this case, which models
widely spaced DoA scenarios, it is established that the traditional
MUSIC method also provides consistent DoA estimates having the
same asymptotic MSE as the G-MUSIC estimates. In the case of
closely spaced DoA (i.e. with a spacing of the order of a beamwidth),
it is shown that G-MUSIC is still able to consistently separate the
sources, while it is no longer the case for MUSIC.

Index Terms— DoA estimation, MUSIC, consistency.

1. INTRODUCTION

The estimation of the Direction of Arrival (DoA) of plane waves
impinging on an array of sensors is a fundamental problem in sta-
tistical signal processing and several methods have been developed
since the past 40 years. In the context ofK narrow-band and far-field
source signals received by an uniform linear array of M > K sen-
sors, the problem consists in estimating the DoA θ1, . . . , θK from a
set of N (we assume N ≥ M for simplicity) observations YN =
[y1, . . . ,yN ] modeled as

YN = ASN + VN ,

where

• A = [a(θ1), . . . ,a(θK)] is the matrix of steering vectors,
with

a(θ) =
1√
M

[1, . . . , ei(M−1)θ]T ;

• SN contains the transmit source signals, considered as un-
known deterministic ;

• VN has i.i.d complex circular N (0, σ2) entries, and repre-
sents a temporally and spatially white noise.

Among the most popular high resolution methods, the subspace al-
gorithms, such as MUSIC [1], are widely used due to their reduced
complexity since they involve a one-dimensional search over the set

This work has been partially supported by the French programs GDR
ISIS/GRETSI "Jeunes Chercheurs" and Project ANR-12-MONU-OOO3
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of possible DoA, and are usually prefered over Maximum Likeli-
hood which requires a multi-dimensional search. In particular, sub-
space methods are based in general on the observation that if the
source signal matrix SN is full rank K, the DoA θ1, . . . , θK are the
unique zeros of the pseudo-spectrum

η(θ) = a(θ)∗Πa(θ), (1)

where ΠN is the orthogonal projection matrix onto the noise sub-
space, defined as the kernel of N−1ASNS∗NA∗. In practice, ΠN

is usually estimated from the so-called sample correlation matrix of
the observations (SCM)

R̂N =
YNY∗N
N

=
1

N

N∑
n=1

yny∗n,

for which we will denote by λ̂1,N ≥ . . . ≥ λ̂M,N the eigenvalues
and by û1,N , . . . , ûM,N the eigenvectors. The MUSIC method con-
sists in estimating θ1, . . . , θK as the K most significant minima of
the estimated pseudo-spectrum 1

η̂
(t)
N (θ) = a(θ)∗Π̂Na(θ),

where Π̂N is the orthogonal projection matrix onto the eigenspace
associated with the M −K smallest eigenvalues of R̂N .

It is also well-known that MUSIC methods (or subspace meth-
ods in general) suffer the so-called "threshold effect", which involves
a severe degradation of performance when either the Signal to Noise
Ratio (SNR) and/or the sample size N are not large enough. In par-
ticular, this last situation may occur when the signal have short time
duration and/or short time stationarity, and when the number of sen-
sors M is large. In that case, M and N are of the same order of
magnitude, and the usual statistical analysis of MUSIC, which as-
sumedN >> M (see e.g. [2]), is irrelevant. One of the main reason
is that MUSIC mainly relies on the SCM, which does not properly
estimate the true covariance matrix RN = 1

N
ASNS∗NA∗ + σ2I in

this context.
To model this more stringent scenario, [3] proposed to consider

a new asymptotic regime in which both M,N converges to infinity
at the same rate, that is

M,N →∞ such that M
N
→ c > 0.

In particular, in this new asymptotic regime, the eigenvalues of R̂N ,
instead of converging to the eigenvalues of RN , spread in several
groups, involving a poor separation between the noise subspace and

1The superscript (t) refers to "traditional estimate".
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its orthogonal complement the signal subspace. Based on results
describing the behaviour of the eigenvalues and eigenvectors of large
random matrices, an improved MUSIC DoA technique, termed as
"G-MUSIC", was derived in [3] in the unconditional model case and
later extended in [4] to the conditional model case.

In this paper, focused on the conditional case, we compare the
statistical performance of MUSIC and G-MUSIC in two scenarios
involving widely and closely spaced DoA. More precisely, we estab-
lish that

• when the number of sources K and the corresponding DoA
remain fixed as M,N → ∞, while the "pseudo-spectrum"
estimate of MUSIC is inconsistent, its minimization w.r.t.
the DoA provides N -consistent 2 estimates having the same
asymptotic MSE as G-MUSIC.

• for two sources with an angular spacing of the order of a
beamwidth, that is O(M−1) as M,N → ∞, G-MUSIC re-
mains N -consistent while MUSIC is no more N -consistent,
which means that MUSIC is no more able to asymptotically
separate the DoA.

2. THE G-MUSIC METHOD

We consider for the remainder the doubly asymptotic regime where
M = M(N) is a function of N such that the ratio M

N
converges to

c ∈ (0, 1), and where K is fixed and independent of N . In general,
the DoA θ1,N , . . . , θK,N may depend on N , and we also assume
supN ‖SN‖ <∞, where ‖.‖ stands for the spectral norm.

The G-MUSIC method, described in [4], relies on the asymp-
totic theory of random matrices, from which we recall below some
results. Let

m̂N (z) =
1

M
tr
(
R̂N − zI

)−1

.

The function z 7→ m̂N (z) represents the Stieltjes transform of the
empirical distribution µ̂N = 1

M

∑M
k=1 δλ̂k,N

of the eigenvalues of

the S.C.M. R̂N , that is

m̂N (z) =

∫
R

dµ̂N (λ)

λ− z .

From [5], for all z ∈ C\R+, m̂N (z) → m(z) a.s. as N → ∞,
where m(z) =

∫
R
(λ − z)−1dµ(λ) is the Stieltjes transform of the

so-called Marcenko-Pastur distribution µ, and which admits a den-
sity given by

dµ(x)

dx
=

√
(x− x−) (x+ − x)

2σ2cπx
1[x−,x+](x).

with x− = σ2(1−
√
c)2 and x+ = σ2(1 +

√
c)2. Moreover, m(z)

satisfies the following fundamental equation

m(z) =
1

−z (1 + σ2cm(z)) + σ2(1− c) . (2)

Equivalently, with probability one, µ̂N → µ in distribution, that is,
the empirical eigenvalue distribution of R̂N has the same asymptotic
behaviour as the Marcenko-Pastur distribution.

2An estimator θ̂N of a (possibly depending on N ) DoA θN is defined as
N -consistent if almost surely (a.s.), N

(
θ̂N − θ

)
→ 0, as N →∞.

Remark 1. The Marcenko-Pastur distribution was originally ob-
tained as the limit distribution of the empirical eigenvalue distribu-
tion of the noise part N−1VNV∗N . Nevertheless, since the rank K
of the deterministic perturbation N−1ASNS∗NA∗ is independent
of N implies that the Marcenko-Pastur limit still holds for R̂N .

Under an additional assumption ensuring that the K non-zero
eigenvalues λ1,N ≥ . . . ≥ λK,N of 1

N
ASNS∗NA∗ are sufficiently

separated from 0, we can describe the behaviour of the K largest
eigenvalues of R̂N .

Assumption 1. For k = 1, . . . ,K, we have λk,N → λk as N →
∞, where λ1 > . . . > λK > σ2√c.

This condition, termed as subspace separation condition, also
ensures that the range of 1

N
ASNS∗NA∗ is sufficiently separated

from its kernel. Under the previous assumption, it is shown in [6]
that for all k = 1, . . . ,K,

λ̂k,N
a.s.−−−−→
N→∞

φ(λk) =

(
λk + σ2c

) (
λk + σ2

)
λk

,

where φ(λk) > σ2(1 +
√
c)2. Moreover, for all ε > 0,

λ̂K+1,N , . . . , λ̂M,N ∈
(
σ2(1−

√
c)2 − ε, σ2(1 +

√
c)2ε

)
,

a.s. for N large enough. Rephrased in another way, under the sep-
aration condition, the K largest eigenvalues of R̂N escape from
the support of the Marcenko-Pastur distribution while the smallest
M−K eigenvalues are concentrated in a neighborhood of [x−, x+].

Under the previous assumption, we also have results on the be-
haviour of the eigenvectors associated with λ̂1,N , . . . , λ̂K,N ; for all
deterministic sequence (dN ) of unitary vectors,

|d∗N ûk,N |2 = h (φ(λk)) |d∗Nuk,N |2 + o(1) a.s., (3)

where

h(z) =
m(z)2 (czm(z)− (1− c))

cm(z)2 + 2czm′(z)m(z)− (1− c)m′(z) .

Using algebric relations between m(φ(λk)) and λk, one can obtain
the explicit formula

h (φ(λk)) =
λ2
k − σ4c

λk (λk + σ2c)
.

The convergence (3) is the keystone of the G-MUSIC method. In-
deed, by taking dN = a(θ), and using the fact that φ(λk) = λ̂k,N+
o(1) a.s., we obtain

ηN (θ) = 1−
K∑
k=1

|a(θ)∗uk,N |2 = η̂N (θ) + o(1), (4)

where

η̂N (θ) = 1−
K∑
k=1

1

h
(
λ̂k,N

) |a(θ)∗ûk,N |2 . (5)

Therefore, η̂N (θ) is a consistent estimator of the pseudo-spectrum
ηN (θ), for all fixed θ, in the doubly asymptotic regime considered
above. The G-MUSIC method then consists in estimating the DoA
by considering the K deepest local minima of θ 7→ η̂N (θ).

The consistency of these DoA estimates, which is the object of
the next section, requires a stronger result on the following uniform
convergence of the pseudo-spectrum, that is proved in [7].

sup
θ∈[−π,π]

∣∣∣|a(θ)∗ûk,N |2 − h (φ(λk)) |a(θ)∗uk,N |2∣∣∣ a.s.−−−−→
N→∞

0.

(6)
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3. MUSIC AND G-MUSIC FOR WIDELY SPACED DOA

In this section, we consider a widely spaced DoA situation, which
occurs in practice when the DoA have an angular separation much
larger than a beamwidth 2π

M
. Mathematically speaking, we consider

that the DoA θ1, . . . , θK are fixed with respect to N . In that case,
A∗A → I and the separation condition holds if and only if the
eigenvalues of SNS∗

N
N

converge to λ1 > . . . > λK > σ2√c, which
we will assume for the remainder of this section.

Let I1, . . . , IK ⊂ [−π, π] beK compact disjoint intervals such
that θk ∈ Int (Ik), where Int (Ik) is the interior of Ik. We define
formally the G-MUSIC and MUSIC DoA estimators as

θ̂k,N = argmin
θ∈Ik

η̂N (θ) and θ̂
(t)
k,N = argmin

θ∈Ik
η̂
(t)
N (θ). (7)

Theorem 1. Under the separation condition, for k = 1, . . . ,K,

N
(
θ̂k,N − θk

)
a.s.−−−−→
N→∞

0 and N
(
θ̂
(t)
k,N − θk

)
a.s.−−−−→
N→∞

0.

Proof. The N -consistency of G-MUSIC is established in [7], and
we prove here the N -consistency of MUSIC. From (6), we obtain

sup
θ∈[−π,π]

∣∣∣η̂(t)N (θ)− η(t)N (θ)
∣∣∣ a.s.−−−−→
N→∞

0. (8)

where

η
(t)
N (θ) = 1− a(θ)∗UNDU∗Na(θ),

with UN = [u1,N , . . . ,uK,N ], D = diag(d1, . . . , dK) and

dk =
λ2
k − σ4c

λk (λk + σ2c)
.

Using the fact that UN and A share the same image, we have

UN = A (A∗A)
−1/2

VN ,

where VN is a K ×K unitary matrix. Since A∗A→ IK and

sup
θ∈Ik

|a(θ)∗a(θ`)| → 0

for all ` 6= k, as N →∞, we obtain for all k = 1, . . . ,K,

sup
θ∈Ik

∣∣∣∣η(t)N (θ)−
(
1− |a(θ)∗a(θk)|2

∥∥∥D1/2V∗Nek

∥∥∥2)∣∣∣∣ −−−−→N→∞
0,

(9)

Moreover, supθ 6∈⋃k Ik
η
(t)
N (θ) −−−−→

N→∞
1. As the function θ 7→

|a(θ)∗a(θk)|2 has a unique global maximum at θk, we deduce that

θ̂
(t)
k,N

a.s.−−−−→
N→∞

θk. (10)

We now improve (10) by showing theN -consistency, and follow the
approach of [8] (also used in [7, Sec. 4]).

By definition, we have

η
(t)
N (θ̂

(t)
k,N ) ≤

∣∣∣η(t)N (θ̂
(t)
k,N )− η̂(t)N (θ̂

(t)
k,N )

∣∣∣+ η̂
(t)
N (θ̂

(t)
k,N )

≤ sup
θ∈[−π,π]

∣∣∣η(t)N (θ)− η̂(t)N (θ)
∣∣∣+ η̂

(t)
N (θk),

and from (8), we obtain

lim sup
N→∞

η
(t)
N (θ̂

(t)
k,N ) ≤ lim sup

N→∞
η̂
(t)
N (θk)

= 1− lim inf
N→∞

∥∥∥D1/2V∗Nek

∥∥∥2
< 1, (11)

since
∥∥∥D1/2V∗Nek

∥∥∥2 ≥ dK > 0. Assume that the sequence

N
(
θ̂
(t)
k,N − θk

)
is not bounded. Then we can extract a subsequence

ϕ(N)
(
θ̂
(t)

k,ϕ(N) − θk
)

such that ϕ(N)
∣∣∣θ̂(t)k,ϕ(N) − θk

∣∣∣ → ∞. This

implies that η(t)ϕ(N)(θ̂
(t)

k,ϕ(N)) → 1, a contradiction with (11). Since

N
(
θ̂
(t)
k,N − θk

)
is bounded, we can extract a subsequence such that

ϕ(N)
∣∣∣θ̂(t)k,ϕ(N) − θk

∣∣∣→ β. If β 6= 0, then (9) gives

η
(t)

ϕ(N)(θ̂
(t)

k,ϕ(N)) = 1− e∗kVNDV∗Neksinc (βc/2)
2 + o(1) a.s.,

where sinc(x) = sin(x)/x if x 6= 0 and sinc(0) = 1. Since

lim sup
N→∞

η
(t)
N (θ̂

(t)
k,N ) > 1− lim inf

N→∞
e∗kVNDV∗Nek,

this contradicts (11) again. Therefore all converging subsequences
of the bounded sequenceN

(
θ̂
(t)
k,N − θk

)
have the same limit, which

is 0, and thus the whole sequence converges itself to 0.

By Theorem 1, MUSIC and G-MUSIC have the same first order
behaviour, for widely spaced source DoA. This similarity also holds
at the 2nd order, for asymptotically uncorrelated sources :

Theorem 2. Assume that
√
N (cN − c)→ 0, and that

N−1SNS∗N → diag(λ1, . . . , λK).

Then, under the separation condition, if

N3/2
(
θ̂k,N − θk

)
D−−−−→

N→∞
N
(
0,

6

c2
σ2(λk + σ2)

λ2
k − σ4c

)
, (12)

and

N3/2
(
θ̂
(t)
k,N − θk

)
D−−−−→

N→∞
N
(
0,

6

c2
σ2(λk + σ2)

λ2
k − σ4c

)
. (13)

Convergence (12) was derived in [9], and the proof of (13) is omitted
due to space constraints. Theorems 1 and 2 are illustrated in Figure
1, where we compared the empirical MSE of θ̂1,N with its theoretical
MSE given in Theorem 2 and the empirical MSE of θ̂(t)1,N , for M =

40, N = 80, and θ1 = 0, θ2 = 5 × 2π
M

. SN has standard i.i.d
N (0, 1) entries, and the separation condition occurs around 0 dB.

4. MUSIC AND G-MUSIC FOR CLOSELY SPACED DOA

In this section, we consider a closely spaced DoA scenario, where we
let the DoA θ1,N , . . . , θK,N depends onN and converge to the same
value at rateO

(
1
M

)
. To simplify the presentation, we only consider

K = 2 sources with DoA θ1,N and θ2,N = θ1,N+ α
N

, where α > 0,
and assume asymptotic uncorrelated sources with equal powers, that
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Fig. 1. Empirical MSE of θ̂1,N and θ̂(t)1,N for widely spaced DoA

is N−1SNS∗N → I. In this case, it is easily seen that the two non
zero eigenvalues of ASNS∗

NA∗

N
converge to

λ1 = 1 + |sinc (αc/2)| and λ2 = 1− |sinc (αc/2)| .

and the subspace separation condition holds iff λ2 > σ2√c.
Since the DoA are not fixed with respect to N , we define, in the

same way as (7), the G-MUSIC and MUSIC DoA estimates as

θ̂k,N = argmin
θ∈Ik,N

η̂N (θ) and θ̂
(t)
k,N = argmin

θ∈Ik,N

η̂
(t)
N (θ) (14)

where Ik,N is defined, for ε ∈ (0, α), as the compact interval

Ik,N =
[
θk,N −

α− ε
2N

, θk,N +
α− ε
2N

]
,

Theorem 3. Under the separation condition and the close DoA sce-
nario, for k = 1, 2,

N
(
θ̂k,N − θk,N

)
a.s.−−−−→
N→∞

0.

Moreover, there exists values of α such that N
(
θ̂
(t)
k,N − θk,N

)
does

not converge to 0.

Proof. From (6), supθ |η̂N (θ)− ηN (θ)| →N 0 a.s., with

ηN (θ) = a(θ)∗ΠNa(θ) = 1− a(θ)∗A (A∗A)
−1

A∗a(θ).

Like for (11), we have

lim sup
N→∞

∣∣∣η̂N (θ̂k,N )
∣∣∣ ≤ lim sup

N→∞
|η̂N (θk,N )| = 0. (15)

The proof relies on the property that if (ψN ) is a sequence of angles,

ηN (ψN )→

{
1 if N |ψN − θk,N | → ∞
1− κ(β) if N (ψN − θk,N )→ β

, (16)

where

κ(β) =
sinc (βc/2)2 + sinc ((β − α)c/2)2

1− sinc (αc/2)2

− 2sinc (αc/2) sinc (βc/2) sinc ((β − α)c/2)
1− sinc (αc/2)2

.

Morever, κ(β) ≤ 1 with equality iff β = 0 or β = α. There-

fore, if a subsequence of N
(
θ̂k,N − θk,N

)
converges to β, we get

thanks to (15) and (16), that β = 0 necessarily, which proves the N -
consistency of G-MUSIC. In the same way for MUSIC, we obtain

η
(t)
N (ψN )→

{
1 if N |ψN − θk,N | → ∞
1− κ(t)(β) if N (ψN − θk,N )→ β

,

where

κ(t)(β) = (sinc(βc/2)− sinc ((β − α)c/2))2 d1(α)

2 (1− sinc(αc/2))

+ (sinc(βc/2) + sinc ((β − α)c/2))2 d2(α)

2 (1 + sinc(αc/2))
,

with

d1(α) =
(1− sinc(αc/2))2 − σ4c

(1− sinc(αc/2)) (1− sinc(αc/2) + σ2c)

d2(α) =
(1 + sinc(αc/2))2 − σ4c

(1 + sinc(αc/2)) (1 + sinc(αc/2) + σ2c)
.

Function κ(t)(β) does not admit in general a maximum at β = 0, α.
As for (15), we can show that for all |β| < α/2, and all sequence
(ψN ) such that N (ψN − θk,N )→ β,

lim sup
N→∞

∣∣∣η(t)N (θ̂
(t)
k,N )

∣∣∣ ≤ lim sup
N→∞

∣∣∣η̂(t)N (ψN )
∣∣∣ ≤ 1− κ(t)(β). (17)

If N
(
θ̂
(t)
k,N − θk,N

)
→ 0, then η(t)N (θ̂

(t)
k,N ) → 1 − κ(t)(0), which

contradicts (17), since in general, it may exist some values of α for
which 0 is not maximum of κ(t)(β) on the interval [−α

2
, α
2
].

Theorem 3 is illustrated in Figure 2 where we use the same param-
eters as in Figure 1, except for the DoA set to θ1 = 0, θ2 = π

2M
.

We observe a difference of 4 dB between the threshold points of
G-MUSIC and MUSIC.
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Fig. 2. Empirical MSE of θ̂1,N and θ̂(t)1,N for closely spaced DoA
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