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ABSTRACT
This paper presents a learning-based approach to the task of direction
of arrival estimation (DOA) from microphone array input. Tradi-
tional signal processing methods such as the classic least square (LS)
method rely on strong assumptions on signal models and accurate es-
timations of time delay of arrival (TDOA) . They only work well in
relatively clean conditions, but suffer from noise and reverberation
distortions. In this paper, we propose a learning-based approach that
can learn from a large amount of simulated noisy and reverberant mi-
crophone array inputs for robust DOA estimation. Specifically, we
extract features from the generalised cross correlation (GCC) vectors
and use a multilayer perceptron neural network to learn the nonlin-
ear mapping from such features to the DOA. One advantage of the
learning based method is that as more and more training data be-
comes available, the DOA estimation will become more and more
accurate. Experimental results on simulated data show that the pro-
posed learning based method produces much better results than the
state-of-the-art LS method. The testing results on real data recorded
in meeting rooms show improved root-mean-square error (RMSE)
compared to the LS method.

Index Terms— microphone arrays, direction of arrival, least
squares, machine learning, neural networks.

1. INTRODUCTION

The direction of arrival (DOA) estimation of a sound source using
microphone arrays in noisy and reverberant environments is an im-
portant task in many applications such as distant automatic speech
recognition [1, 2], teleconferencing [3], and automatic camera steer-
ing [4]. However, accurate DOA estimation can be very challenging
when the received speech signals are significantly distorted due to
background noises and room reverberations. An approach for the
robust DOA estimation in such conditions is highly demanded.

Over the last few decades, a wide range of signal processing
approaches are developed for the DOA estimation in noisy and re-
verberant environments. These approaches can be generally divided
into following categories: i) the subspace based approaches such
as the multiple signal classification (MUSIC) [5, 6] and the estima-
tion of signal parameters via rotational invariance techniques (ES-
PRIT) [7], ii) the time delay of arrival (TDOA) approaches using the
generalized cross correlation method [8] and the least squares (LS)
method [9], iii) the signal synchronization based approaches such
as the steered response power with phase transform (SRP-PHAT)

[10], the multichannel cross correlation (MCCC) [11], the averaged
magnitude difference function (AMDF) and the averaged magnitude
sum function (AMSF) [12], iv) the approaches based on the blind
identification of impulse responses such as the adaptive eigenvalue
decomposition (AED) algorithm [13] and the independent compo-
nent analysis method [14], v) the l1−norm penalty based sparse sig-
nal representation approaches [15, 16], and vi) the model based ap-
proaches such as the maximum likelihood method (MLM) [17] and
the precedent echo effect modelling method [18]. In practice, the
above approaches may face either one or a combination of follow-
ing problems: high computational cost, non-realistic assumptions
on signal/noise models, and unreliable performance in real environ-
ments [19].

In this paper, we propose a learning-based approach to address
the DOA estimation in noisy and reverberant environments. Unlike
the existing methods which mainly rely on the array geometry and a
short signal observation to estimate the DOA (e.g., the LS method),
the proposed approach directly learns the nonlinear relationship be-
tween the received signals and the DOA from a large amount of train-
ing data synthesised for many noisy and reverberant environments.
We will show that if a testing environment has the noise and re-
verberant conditions similar to one of the trained environments, the
learning-based method can achieve very accurate DOA estimation
based on its “memory” learnt from the training process. As such,
the learning-based method is potentially more robust in challeng-
ing environments, i.e., the environments with low signal to noise ra-
tio (SNR) and heavy reverberation. Furthermore, as more synthetic
training data are available, a real environment is more likely to be
matched and DOA estimation performance can be more reliable.

The rest of this paper is organised as follows. Section 2 describes
the proposed approach that treats the DOA estimation problem as a
pattern classification problem. Section 3 presents the performance
study of the proposed approach from both simulations and the real
speech recording experiments. Finally, some conclusions are drawn
in section 4.

2. LEARNING-BASED DOA ESTIMATION APPROACH

We are interested in generating a system that can estimate DOA of
a speech source when the microphone array geometry is known, e.g.
an 8-channel circular array is used in our study. It is known that
there is a nonlinear relationship between the TDOA of each micro-
phone pair and the DOA. Classic LS-based DOA estimation meth-
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Fig. 1. System diagram of the proposed learning-based approach for
DOA estimation.
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ods make use of this relationship and estimate the DOA using an
iterative method. While the LS method works well in clean condi-
tions, its performance degrades significantly when the background
noise and/or reverberation are strong. Reliable DOA estimation in
adverse environments is challenging using only the observed micro-
phone signals. A possible solution to this problem is to rely on rel-
evant prior knowledge about the problem. In this study, we would
like to investigate how to use a big set of training data to achieve re-
liably DOA estimation in adverse environments. The idea is to learn
a mapping from features extracted from the microphone array inputs
to the DOA using a big set of training data.

We formulate the DOA estimation as a 360-class pattern classifi-
cation problem1, where the microphone array inputs are classified to
a DOA class from 0 degrees to 359 degrees. The classification sys-
tem comprises of training and test phases, as illustrated in Fig. 1. In
the training phase, a DOA classifier, a multilayer perceptron (MLP)
neural network [20] in our case, is trained from a training data set,
which contains pairs of array inputs and their DOA labels. For each
audio segment (e.g. 0.2s long), a fixed dimension feature vector is
extracted from GCC. In the test phase, the DOA classifier is used to
generate the posterior probabilities of all the 360 DOA classes given
a feature vector, and the class with the highest probability is selected
as the estimated class. In the following sections, the details of the
feature extraction, DOA classifier training, and DOA estimation will
be described in details.

2.1. GCC as feature representation for DOA estimation

The first task is to choose a representation that contains sufficient
information for the DOA estimation task. In the LS method, the
TDOAs of microphone pairs are estimated from their GCC vectors.
If TDOAs are estimated correctly, they are sufficient for DOA esti-
mation. However, the TDOA estimation is often unreliable in low
SNR and high reverberation conditions. Therefore, they are not suit-
able to be used as features for the DOA classifier. Compared to the
TDOAs, the GCC patterns are more reliable and contain all the in-
formation required for the DOA estimation. Therefore, the GCC is
chosen as feature representation of the MLP model in our study.

We now use a concrete example to describe the extraction of
GCC vectors. Suppose we use an 8-channel circular array with a di-
ameter of 20 cm2 . There are totally C8

2 = 28 pairs of microphones

1It is not compulsory to use 360 classes. Other number of classes, e.g.
180 or 720, may also be used. We also tried to formulate the DOA estimation
as a regression problem. However, it works worse than the classification
formulation.

2Our approach can also be extended to other array configurations.

Fig. 2. GCC patterns for different DOA degrees in clean condition.
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Fig. 3. GCC patterns for DOA=13 degrees in different SNR levels,
room sizes, and distances between sound source to the array.
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in the array, from each of them a GCC vector is computed for ev-
ery 0.1s using the generalized cross correlation method with phase
transform (GCC-PHAT) [8] for its good robustness to reverberation.
The maximum possible time delay between any 2 microphones is
τ = 0.2/340 = 0.5882ms where the sound speed is assume to be
340m/s. Suppose we are using a sampling rate of 16kHz, then the
maximum delay in samples is n = 16000τ ≈ 21. Hence, for each
microphone pair, only the 21 correlation coefficients near the cen-
ter3 contains useful information for DOA estimation. If we arrange
all the GCC vectors from the 28 microphone pairs to a 21× 28 ma-
trix, interesting patterns can be observed as shown in Fig. 2. In the
figure, different DOAs correspond to different GCC patterns. There-
fore, the DOAs can be potentially inferred from the GCC patterns.

The GCC patterns are not only determined by the DOA, but also
distorted by other nuisance factors, such as noise and reverberation.
In Fig. 3, we show 12 GCC patterns computed from the same DOA
in different room conditions. It can be observed that the 12 GCC pat-
terns are very different in different SNR levels, rooms, and distances
conditions, although some similarities of the GCC patterns can still
be perceived. Hence, for robust DOA estimation, the DOA classifier
needs to generalise well to unseen test conditions, such as unseen
room configurations, noise types, and reverberation characteristics.

2.2. DOA estimation as a classification problem

Given the GCC patterns as input, the DOA classifier is used to gen-
erate the posterior probability of all the 360 DOA angles. Let ot de-

3The centre is the correlation coefficient corresponding to TDOA=0.
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Fig. 4. The architecture of the MLP-based DOA classifier.
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notes the 588× 1 feature vector obtained by converting the 21× 28
GCC pattern into vector format and t is the frame index. The pos-
terior probability of a DOA angle is p(θt|ot) for θt = 0, ..., 359
degrees. To predict the posterior probabilities, we choose to use
MLP as it can handle high dimensional inputs without making any
assumption to the input data distribution. The structure of the MLP-
based DOA classifier is shown in Fig. 4. The input layer of the MLP
has the same number of nodes as the input feature dimension, i.e.
588 in our case. There is only one sigmoid hidden layer in the il-
lustrated network although more hidden layers are possible. The
weight matrix W1 between input features and hidden layer has a di-
mension of H × 588 where H is the number of hidden nodes. The
activations of the hidden nodes are converted to DOA class posterior
probabilities by using a linear transformation with weights W2 (size
360 ×H) and the softmax activation function. Mathematically, the
posterior probabilities are nonlinear functions of the input features:

at = f(W1ot + b1) (1)
zt = W2at + b2 (2)

p(θt = i|ot) =
exp(zt(i))∑C
j=1 exp(zt(j))

, i ∈ [0, C − 1] (3)

where f(x) = 1/(1 + e−x) is the sigmoid function and applied to
the elements of its input individually, and softmax function is used
in equation (3). C = 360 is the number of classes, b1 and b2 are
biases for the hidden layer and output layer, respectively.

The MLP is trained from a training data set {{ot, θt}|t =
1, .., T} and T is the total number of samples (frames) in the train-
ing set. During the preparation of the training data, the DOA of
a sound source is made to remain constant for several seconds.
Multiple GCC vectors computed by using 0.1s frame shift can be
generated. All the GCC vectors use the same DOA label. Some of
these vectors correspond to silence portion of the recording and do
not contain the useful patterns as shown in Fig. 2. Therefore, it is not
suitable to use GCC vectors from silence portions to train the MLP.
As we are using clean speech signals to generate simulated training
data, accurate voice activity detection (VAD) can be obtained and
only GCC vectors from speech segments are used for training. The
stochastic gradient descent (SGD) algorithm [20] can be used to
train the MLP iteratively.

2.3. Robust DOA classification

The DOA angle for a test recording needs to be estimated. In this
study, we constrain the test recording to be several seconds long.
Considering that the GCC pattern of a single test frame is noisy and
may come from non-speech frames, we proposed to use a weighted

Table 1. Configurations used for generating training and test data.
All rooms are 3m high. Distances are between array and source.

Simulated Training Data

Speech 7861 sentences from WSJCAM0 training set

Room size (m) small (7x5), medium (12x10), large (17x15)

Distance (m) near (1) and far (2, 4, 6.5 for small, medium, large)

T60 (s) 0.1s to 1.0s with 0.1s step

SNR (dB) Uniformly sampled from 0 to 20dB

Simulated Test Data

Speech 538 sentences from WSJCAM0 et1 test set

Room size(m) small (6x4), medium (10x8), large (14x12)

Distance (m) near (1) and far (1.5, 3, 5 for small, medium, large)

T60 (s) 0.3s for small, 0.6s for medium, 0.9 for large room

SNR (dB) 3 categories: 0dB, 10dB, and 20dB

sum of the GCC patterns from all the frames of the test recording:

o =

L∑
m=1

wmom (4)

wm =

∑D
d=1 |om(d)|α∑L

m=1

∑D
d=1 |om(d)|α

(5)

where L is the number of frames in the test recording and wm is the
weight of frame m. D = 588 is the dimension of GCC vectors, | · |
takes absolute value, and α is a control parameter. If α = 0, the
mean of the GCC vectors is obtained. A large α should be used to
reduce the contribution of silence frames. It is from the observation
that the GCC vectors from speech frames usually contain strong cor-
relation coefficients near 1, while GCC vectors from silent frames
contain weak correlation coefficients near 0.

To improve the robustness of the DOA classifier, we also applied
two feature normalisation methods to the mean GCC vector. The first
normalisation is the histogram equalisation (HEQ) and widely used
in image processing [21] and noise robust speech recognition [22,
23, 24]. The HEQ is used to normalise the histogram of the test GCC
pattern to the average histogram of training GCC patterns to reduce
the mismatch between test and training GCC patterns. We also scale
the HEQ-processed GCC pattern such that its max value is 1. This is
from the fact that the theoretical maximum correlation coefficients
in GCC vector is 1, but the actual maximum value of a GCC vector
may be quite low, e.g. 0.2, due to noise and reverberation.

3. EXPERIMENTS

3.1. Experimental Settings

The proposed learning based approach is evaluated and compared to
the classic LS method [9] for DOA estimation on both simulated and
real data. The 8-channel circular array with a diameter of 20cm is
used. The simulated data is synthesized by convolving clean speech
signals with the room impulse responses (RIRs) measured from the
array based on the image method [25], and the additive noises are
added. Variations of the simulated data were made with different
room sizes, reflection rates, source to array distances, and SNR lev-
els. The real test data was recorded in a small (6x4m) and a large
(10x7m) meeting rooms using a real circular array. The source to
array distances are 1.5 m and 3 m in the small meeting room and 6
m in the large meeting room.
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Fig. 5. Average RMSE of the DOA classifier on the simulated test
data of 3 rooms using different amount of training data. 100% refers
to the case where all 47,166 simulated training recordings are used.
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Table 2. Performance of LS and MLP methods on Simulated Data.

Near Far Near Far Near Far

LS 18.64 27.62 10.97 8.33 7.07 6.19

MLP 0.45 1.26 0.11 0.50 0.00 0.44

LS 15.02 54.70 9.40 21.74 7.18 9.39

MLP 0.20 6.17 0.00 0.73 0.00 0.61

LS 14.80 54.98 6.02 17.21 1.08 13.37

MLP 0.12 7.33 0.05 0.83 0.00 0.75

LS 5.79 10.98 1.72 1.52 1.39 1.33

MLP 0.14 0.53 0.01 0.24 0.00 0.19

LS 4.97 31.36 1.81 7.05 1.47 2.99

MLP 0.04 1.53 0.00 0.44 0.00 0.34

LS 4.69 31.29 1.48 7.21 0.74 4.26

MLP 0.01 1.36 0.00 0.54 0.00 0.50
Large

Small

Medium

Large

Mean absolute error (MAE)

Small

Medium

Room Method
SNR=0dB SNR=10dB SNR=20dB

RMSE

The simulated data are divided into 2 sets with different set-
tings (see Table 1) for the training of the DOA classifier and per-
formance testing. In the synthesis of the training data, we convolved
7861 clean sentences from the WSJCAM0 [26] training set with the
simulated RIRs of the array. Then the additive noises taken from
the Reverb Challenge 2014 corpus [27] were added to the training
data with the SNR levels randomly chosen from 0dB to 20dB for
each sentence. Each of the 7861 clean sentences was used 6 times
with randomly selected RIR, noise signals, and SNR levels. Totally
47,166 training sentences were synthesised for the 360 angles. The
MLP model has one hidden layer with 512 hidden nodes.

Similar to the training data, the simulated test data is generated
by convolving 538 clean utterances from WSJCAM0 test set with an
average sentence length of 6.9s. For each room configuration, 360
test utterances are synthesised for 360 DOA angles. During test-
ing, α was set to 4 in (4). HEQ and maximum value normalisation
are applied in sequence on the averaged GCC patterns. The DOA
estimation performance is evaluated by two measures: the mean of
absolute error (MAE) and the root mean square error (RMSE).

3.2. Results

In Fig. 5, we show the average RMSEs of the MLP-based approach
for the DOA estimation using different amounts of training data. It
demonstrates that as more training data is used, the RMSE of the

Fig. 6. Comparison of LS and MLP performance on real recordings.
The 24 recordings were taken with distances of 1.5m, 3m, and 6m.
For each distance, 8 DOA were used, from 0 to 315 degrees with a
step size of 45 degrees.
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MLP-based approach decreases. This verified our claim that the
performance of the MLP-based approach is keeping improved when
relevant training data size becomes larger. The traditional methods
such as LS does not make use of training data, hence its performance
cannot be improved from the available data.

We compared the DOA estimation performance of the MLP
method with the LS method on the simulated data in Table 2. We
used the full percentage of the training data for the MLP method.
It is observed that for all the test conditions the MLP method out-
performs the LS method significantly, especially on the 0dB data
where the performance of the LS method degrades dramatically. The
results also demonstrate the robustness of the MLP method when
the test data can be matched by the training data. In fact, we may
take this advantage for the real applications in a known environment.
A training data set that tries to match the real environment may be
synthesized. We will study this further in our future work.

In Fig. 6, we show the DOA estimation results of the MLP and
LS methods on the real recordings. Without doing any matching
from the training data to the real test environment, the MLP method
obtained much smaller absolute errors than the LS method. The
RMSE of the MLP method is 1.37, which is also much smaller than
that of the LS method. We will study the possibility of matching a
training data to the given test environment in our future work.

4. CONCLUSIONS

In this paper, we proposed a learning-based approach using MLP to
the DOA estimation problem in challenging environments. A clas-
sification problem for the DOA estimation was presented. The MLP
input features and the robust DOA classification were discussed. We
have demonstrated that a MLP model which is trained on simu-
lated data can learn a regularity which maps the GCC patterns to
the DOAs. Experimental results on the simulated test data showed
that the learnt mapping is robust to high level noises and strong re-
verberations. We also demonstrated the performance of the MLP
method on the real recording data and superior performance over
the LS method was obtained. We believe that the true potential of
the proposed learning-based approach could be beyond the results
shown in this study. Using larger amount of training data, or trying
to match the training data to a test environment, or using multiple
hidden layers (i.e., deep neural networks) may further improve the
performance.
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