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ABSTRACT

When considering the problem of direction-of-arrival (DOA)
estimation, uniform noise is often assumed and hence, the
corresponding noise covariance matrix is diagonal and has i-
dentical diagonal entries. However, this does not always hold
true since the noise is nonuniform in certain applications and
a model of arbitrary diagonal noise covariance matrix should
be adopted. To this end, a simple approach to handling the
unknown nonuniform noise problem is proposed. In particu-
lar, an iterative procedure is developed to determine the signal
subspace and noise covariance matrix. As a consequence, ex-
isting subspace-based DOA estimators such as MUSIC can be
applied. Furthermore, the proposed method converges within
very few iterations, in each of which closed-form estimates
of the signal subspace and noise covariance matrix can be
achieved. Hence, it is much more computationally attractive
than conventional methods which rely on multi-dimensional
search. It is shown that the proposed method enjoys good per-
formance, simplicity and low computational cost, which are
desirable in practical applications.

Index Terms— Direction-of-arrival (DOA) estimation,
subspace estimation, nonuniform noise.

1. INTRODUCTION

Very often it is explicitly or implicitly assumed in direction-
of-arrival (DOA) estimation that the background noise is un-
known uniform white. Therefore, the noise covariance matrix
is diagonal and has identical diagonal entries. In this case, the
signal and noise subspaces can be simply separated according
to the eigenvalues of the array covariance matrix. However,
it has been shown that in certain practical applications, e.g.,
when the sensors are sparsely deployed, though the sensor
noise is spatially white, the variances are not identical to each
other [1]–[4]. This is referred to as nonuniform noise environ-
ment where the noise covariance matrix is still diagonal but
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the diagonal entries are no longer identical. Without appropri-
ate preprocessing, the conventional subspace-based methods
[8], [9] as well as the maximum-likelihood (ML) method [10]
cannot offer satisfactory performance. As a result, much at-
tention has been given to the problem of DOA estimation in
nonuniform noise environments [1]–[7].

For instance, a deterministic nonuniform ML estimator
was studied in [1]. This method is implemented by the so-
called stepwise concentration of the log-likelihood function
with respect to the signal and noise nuisance parameters. It
was shown that this method converges fast, but needs to solve
a highly nonlinear optimization problem in each iteration. As
a result, a time-consuming multi-dimensional search should
be performed in general. To reduce the complexity, anoth-
er iterative algorithm, which can avoid the estimation of nui-
sance parameters, is proposed in [2]. However, this method
is still time-consuming due to the optimization of the non-
linear problem in the power domain (PD). Unlike the above-
mentioned methods, a computationally efficient method is p-
resented in [3]. This methods has the ability to estimate the
noise covariance matrix in closed-form and hence, the obser-
vations can be prewhitened. Nevertheless, it is limited to spe-
cific scenarios where the sensor number is larger than three
times of the source number.

In this paper, a new approach to dealing with the unknown
nonuniform noise is presented. The proposed method start-
s from an least-squares (LS) minimization problem with re-
spect to the signal subspace and noise covariance matrix. A
simple iterative procedure is then designed to achieve the so-
lution. On one hand, different from the earlier iterative meth-
ods such as nonuniform ML estimator [1] and PD approach
[2] which involve nonlinear optimization problems, the resul-
tant problem in each iteration of the proposed method can be
solved analytically. On the other hand, the proposed method
is free of the limitation imposed by the method [3] and there-
fore can resolve much more sources. More precisely, for an
array with M sensors, the proposed method can resolve M−1
sources while the prewhitening method [3] resolves ⌊M/3⌋
sources at most, where ⌊·⌋ denotes the floor function. Numer-
ical examples are provided to evaluate its performance.
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2. PROBLEM FORMULATION

Consider an array with M sensors and L noncoherent narrow-
band signals income from far-field. It is assumed that L < M .
The array output can be expressed as

x(t) =
∑L

l=1
a(θl)sl(t) + n(t) = As(t) + n(t) (1)

where a(θl) ∈ CM is the steering vector corresponding to the
DOA of the lth source, i.e., θl, and the array geometry which
is governed by the steering matrix A ∈ CM×L composing of
the steering vectors as follows

A = [a(θ1),a(θ2), · · · ,a(θL)]. (2)

In (1), s(t) = [s1(t), s2(t), · · · , sL(t)]T ∈ CL is the vector
of the signal waveforms and n(t) ∈ CM is the noise vector.
The array covariance matrix is given by

R = E{x(t)xH(t)} = APAH +Q (3)

where E{·} denotes statistical expectation, (·)H denotes Her-
mitian transpose, P = E{s(t)sH(t)} ∈ CL×L and Q =
E{n(t)nH(t)} ∈ CM×M are respectively the signal covari-
ance matrix and noise covariance matrix. In practice, we have
R̂ = 1

N

∑N
t=1 x(t)x

H(t), where N is the snapshot number.
In this paper, nonuniform noise is considered. More pre-

cisely, it is assumed that the sensor noise is a spatially and
temporally uncorrelated zero-mean Gaussian process with co-
variance matrix given by

Q = diag{σ2
1 , σ

2
2 , · · · , σ2

M} (4)

where diag{·} denotes a diagonal matrix composed of the
bracketed elements, and σ2

m denotes the noise variance of the
mth sensor. In particular, when σ2

1 = σ2
2 = · · · = σ2

M = σ2,
we have Q = σ2I and the above nonuniform noise model is
reduced to uniform noise model. In the following section, the
problem of estimating the DOAs given the nonuniform noise
model in (4) is addressed.

3. PROPOSED DOA ESTIMATOR

In a uniform noise environment, it is well known that the sig-
nal and noise subspaces can be obtained through the eigende-
composition of the array covariance matrix R. However, this
is not directly applicable to the nonuniform case, where the
eigenvectors associated with the L largest eigenvalues do not
span the signal subspace any more. To tackle this problem, a
simple method is derived in this section to estimate the signal
subspace and noise covariance matrix, which are then utilized
for DOA estimation.

Under the assumption of noncoherent signals, the signal
covariance matrix P has full rank and hence can be factorized,
say using Cholesky decomposition, as follows

P = LLH (5)

where L ∈ CL×L is a nonsingular matrix. As a result, the
array covariance matrix in (3) can be rewritten as

R = ALLHAH +Q = BBH +Q (6)

where B = AL ∈ CM×L. Note that L is nonsingular and
therefore B spans the same column space as the steering ma-
trix A, which corresponds to the signal subspace. This im-
plies that B also spans the signal subspace, and hence, if it
has been obtained, the conventional subspace-base methods
can be applied directly to estimate the DOAs.

Based on the above observation, once we have obtained
the array covariance matrix estimate R̂, an LS minimization
problem with respect to B and Q can be formulated as follows

min
B,Q

∥R̂−BBH −Q∥2F

s.t. Q ∈ DL×L
(7)

where ∥ · ∥F denotes the Frobenius norm and D denotes the
set of diagonal matrices. It should be mentioned that the op-
timization problem in (7) has no unique solution. This is be-
cause for any nonsingular matrix T ∈ CL×L which satisfies
TTH = I, we have

BBH = BTTHBH = B̃B̃H , B̃
△
= BT (8)

and hence either (B,Q) or (B̃,Q) is the solution to (7). For-
tunately, though there exists a certain rotation between B and
B̃, they span the same column space. Thus, such a rotation
does not affect the DOA estimation. To avoid the problem of
infinite many solutions, an additional constraint, i.e., BHB
is diagonal, is imposed. Consequently, the problem of signal
subspace and noise covariance matrix estimation is given by

min
B,Q

∥R̂−BBH −Q∥2F

s.t. Q ∈ DL×L, BHB ∈ DL×L.
(9)

In order to solve the minimization problem in (9) subject
to the constraints that BHB and Q are diagonal matrices, we
first rewrite the objective function as

f(B,Q) = ∥R̂−BBH −Q∥2F
= tr{(R̂−BBH −Q)(R̂−BBH −Q)H}
= tr{R̂2} − 2tr{BHR̂B} − 2tr{QR̂}

+ 2tr{BHQB}+ tr{BBHBBH}+ tr{Q2}
(10)

where tr{·} denotes the matrix trace operator. In (10), we
have used the identities ∥X∥2F = tr{XXH}, tr{XY} =

tr{YX}, R̂ = R̂H , and Q = QH . It can be derived that
the partial derivatives of f(B,Q) with respect to Q and B∗

are respectively given by

∂f(B,Q)

∂Q
= −2D{R̂}+ 2D{BBH}+ 2Q (11a)

∂f(B,Q)

∂B∗ = −2R̂B+ 2QB+ 2BBHB (11b)
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where D{X} denotes a diagonal matrix composed of the di-
agonal elements of X, and (·)∗ is the conjugate operator. Due
to space limitation, a detailed derivation of the above partial
derivatives is omitted.

Let the derivative in (11a) be zero, i.e.,

−2D{R̂}+ 2D{BBH}+ 2Q = 0 (12)

and take the constraint that Q is diagonal into account, one
gets the solution to (12) with respect to B as follows

Q = D{R̂−BBH}. (13)

As a result, for a given B, the objective function f is mini-
mized if Q is given by (13).

On the other hand, to minimize the objective function f
for a given Q, we let the derivative in (11b) be zero, i.e.,

−2R̂B+ 2QB+ 2BBHB = 0 (14)

which is equivalent to

(R̂−Q)B = B(BHB). (15)

Recalling the constraint that BHB is an L× L diagonal ma-
trix, it can be concluded that B is a matrix consisting of L
eigenvectors of R̂−Q, and the diagonal entries of BHB are
the corresponding eigenvalues. Let us define

Σ
△
= BHB (16)

such that it is a diagonal matrix containing L eigenvectors of
R̂−Q. Then, substituting (15) and (16) into (10), one gets

f(B) =tr{R̂2 +Q2 − 2QR̂}
− tr{2BHR̂B− 2BHQB−BBHBBH}

=tr{R̂2 +Q2 − 2QR̂} − tr{Σ2}.

(17)

From (17), it can be seen that f is minimized if and only if Σ
contains the L largest (principal) eigenvalues of R̂−Q.

To proceed, we express the eigendecomposition of R̂ −
Q as R̂ − Q = UΛUH , where U = [u1,u2, ...,uM ] is
composed of the eigenvectors and Λ = diag{λ1, λ2, ..., λM}
is a diagonal matrix composed of the eigenvalues with λ1 ≥
λ2 ≥ ... ≥ λM . Moreover, we have UHU = I. Since Σ
contains the L principal eigenvalues, we denote

Σ = diag{λ1, λ2, ..., λL} (18)

and
UP = [u1,u2, ...,uL]. (19)

From (15)–(19), one gets (R̂ − Q)UP = UPΣ and hence,
(R̂−Q)(UPΣ

1/2) = (UPΣ
1/2)(UPΣ

1/2)H(UPΣ
1/2).

As a result, if we take

B = UPΣ
1/2 (20)

Table 1. Proposed method for subspace estimation
1. compute R̂ = 1

N

∑N
t=1 x(t)x

H(t) from N snapshots
2. initialization: k = 0, Q(0) = (D(R̂−1))−1

3. do
4. B(k) = UP (k)Σ

1/2
(k)

5. Q(k) = D{R̂−B(k)B
H
(k)}

6. U(k)Λ(k)U
H
(k) = R̂−Q(k)

7. Σ(k) = diag{λ1(k), λ2(k), ..., λL(k)}
8. UP (k) = [u1(k),u2(k), ...,uL(k)]
9. k = k + 1
10. while ||Q(k) −Q(k−1)||2F ≤ ϵ
11. return B(k) and Q(k)

then (15) and (16) are satisfied and, subsequently, f is min-
imized. This implies that, for a given Q, the solution which
minimizes f is given by (20). From the above analysis, it
can be found that B and Q can be estimated in an iterative
manner. The proposed algorithm is summarized in Table 1.

It should be noticed that in Table 1 the iteration procedure
is terminated when the condition ||Q(k) − Q(k−1)||2F ≤ ϵ is
reached and ϵ is a prescribed value. Furthermore, the algorith-
m can be initialized by other values such as Q(0) = I instead
of Q(0) = (D(R̂−1))−1. However, it is experimentally found
that the choice of these initializations only slightly affects the
convergence speed and hence, the choice Q(0) becomes less
crucial. It should be also mentioned that, theoretically, the
algorithm presented above converges to a local solution. For-
tunately, in our extensive simulations, it is observed that the
proposed method can always provide a satisfactory solution
regardless of the initializations above-mentioned.

Now, let B̂ and Q̂ be the estimated signal subspace and
noise covariance matrix, it is known that the MUSIC algo-
rithm can be applied to determine the DOAs. Note that, B̂ is
given by B̂ = ÛP Σ̂

1/2 and ÛP is an orthonormal matrix.
Therefore, the following spatial spectrum can be employed

G1(θ) =
(
a(θ)(I− ÛP Û

H
P )aH(θ)

)−1

. (21)

Alternatively, if the estimate of noise covariance matrix is
available, it can used for prewhitening. In other words, we de-
fine a prewhitened array covariance matrix and steering vector
as RW = Q−1/2R̂(Q−1/2)H = Q−1/2AP(Q−1/2A)H + I
and aW (θ) = Q−1/2a(θ), respectively. The noise subspace
can thus be computed from RW and the DOAs can be found
from the spatial spectrum

G2(θ) = ∥ÛH
WNaW (θ)∥−2 (22)

where ÛWN represents the noise subspace which is obtained
from R̂W = Q̂−1/2R̂Q̂−1/2. It is worth mentioning that (21)
and (22) may lead to slightly different results as shown in the
next section. One possible explanation is that ÛP and Q̂ do
not have exactly same level of accuracy in general.
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Fig. 1. RMSE of DOA estimation versus SNR.

4. SIMULATION RESULTS

In this section, the performance of the proposed method is e-
valuated. A uniform linear array with M = 8 sensors separat-
ed by half wavelength was performed. It is assumed that two
uncorrelated narrowband signals with equal power impinge
on the array from far-field. The DOAs of them are assumed to
be θ1 = −3◦ and θ2 = 6◦. The nonuniform noise covariance
matrix is Q = diag{6.0, 2.0, 0.5, 2.5, 3.0, 1.0, 5.5, 10.0} and
the signal-to-noise ratio (SNR) is defined as [1] SNR =
σ2
s

M

∑M
m=1

1
σ2
m

, where σ2
s denotes the signal power.

In our simulations, the proposed method is initialized with
Q(0) = (D(R̂−1))−1, and the termination criteria is ϵ =
10−3. To examine the convergence speed, assume that N =
500 and SNR = 5dB. Moreover, the algorithm is also initial-
ized with Q(0) = I for comparison. It is found that for these
two choices, the algorithm converges within 3 and 6 itera-
tions, respectively. This implies that though, to some extent,
the choice of initialization affects the convergence speed, the
algorithm converges very fast in general.

Next, we keep the number of snapshots to 500 and eval-
uate the performance of the proposed method at different S-
NRs. A total of 100 Monte Carlo experiments are run at each
SNR and the corresponding root-mean-square error (RMSE)
of DOA estimation is calculated as

RMSE =

√
1

KL

∑K

k=1

∑L

l=1
(θ̂k,l − θl)

2
(23)

where K = 100 is the number of Monte Carlo experiments,
and θ̂k,l is the estimated DOA of the lth signal in the kth ex-
periment. For comparison, we tested several existing meth-
ods including the MUSIC algorithm, uniform ML method,
nonuniform ML estimator, and prewhitening method [3]. The
deterministic CRB (see (31), [1]) is also shown. The proposed
method using (21) and (22) are both evaluated.
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Fig. 2. Averaged noise variance estimation when (a) SNR =
0dB and (b) SNR = 5dB.

Fig. 1 shows the resultant RMSEs of DOA estimation us-
ing different estimators. It can be seen that neither the MUSIC
algorithm nor the uniform ML estimator can offer satisfactory
performance. However, the performance can be considerably
improved by the nonuniform ML estimator and our proposed
method. A careful examination also shows that the nonuni-
form ML estimator and our proposed method perform simi-
larly. In particular, the proposed method using (22) performs
almost the same as the nonuniform ML estimator. However,
it is more computationally efficient. Additionally, though the
prewhitening method [3] shows some improvements over the
MUSIC and uniform ML estimator, it can only provide com-
parable performance to the proposed method at high SNRs.

Besides the performance of DOA estimation, we also e-
valuate the performance of noise variance estimation. Fig. 2
shows the estimated noise variances averaged from 100 exper-
iments at two selected SNRs, i.e., SNR = 0dB and SNR =
5dB. Interestingly, it is found that the proposed method also
gives a better performance in noise variance estimation than
the existing methods tested.

5. CONCLUSION

In this paper, a new and simple method for DOA estimation
in the presence of unknown nonuniform noise is proposed. It
is shown that the signal subspace and noise covariance matrix
can be estimated in closed-form and the DOAs can be found
by conventional computationally efficient subspace-based di-
rection finding algorithms. Simulation results illustrate that
on one hand the proposed method offers similar RMSE of
DOA estimation to the nonuniform ML estimator but with a
much lower complexity. on the other hand, it achieves higher
accuracy in noise variance estimation than existing methods.
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