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ABSTRACT
High resolution direction-of-arrival (DOA) estimation is an
important problem in many array signal processing applica-
tions. This paper proposes an augmented covariance estima-
tor for DOA estimation. The new method exploits the peri-
odicity of the covariance lags when the DOAs are assumed
on a discrete grid with a certain resolution. Then, it achieves
twice the resolution of typical methods such as the direct aug-
mentable approach or forward backward spatial smoothing.
When the sources are not on the discrete grid, an interpolated
array manifold technique is proposed to mitigate the grid mis-
match error.

Index Terms— Direction-of-arrival estimation, non-
uniform array, minimum redundancy array, covariance matri-
ces, MUSIC algorithm

1. INTRODUCTION

Direction of arrival (DOA) estimation has been revolutionized
by the development of algorithms that exploit the structure in-
herit in non-uniformly spaced arrays (NUAs). In conventional
approaches assuming uniform linear arrays (ULAs), with N
antenna elements it is possible to estimate up to N −1 targets
with a resolution proportional to the array aperture, which in-
creases linearly with the number of antennas. High resolu-
tion spectral estimation algorithms like MUSIC rely on the
N ×N covariance matrix of the received signal. With NUAs,
by minimizing the redundancies present in the co-array, an
augmented covariance matrix of higher dimension from the
original matrix can be build. Thus, with the same number of
antennas as many as N(N − 1)/2 targets with higher resolu-
tion can be estimated. The common goal is to reduce the cost
and complexity of the array by having fewer sensors while
maintaining a similar performance of that achieved with a
filled ULA with the same aperture.

In [1], it was shown that there is a class of NUAs which
maximizes the resolution for a given number of elements by
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minimizing the number of redundant spacings present in the
array, minimum redundancy arrays (MRA). In [2] a superior
spectral estimator for this kind of arrays was proposed al-
lowing to detect more sources than the number of available
sensors. From a N -element NUA the direct augmentable ap-
proach (DAA) is able to estimate the augmented covariance
matrix of a “virtual” ULA with up toN(N−1)/2+1 sensors.
It was shown in [3], that the DAA can provide a non positive
definite covariance matrix for a finite number of snapshots,
which can result in a degradation of the estimations. Sev-
eral methods for constructing a proper positive definite co-
variance matrix were suggested [4][5]. More Recently [6],
authors proposed an alternative method for augmented co-
variance estimation using spatial smoothing (SS) and nested
arrays architectures. The SS augmented covariance estima-
tion strategy was used in [7] and [8]. The first work consider
spatial coprime sampling with two ULAs and difference inter-
element spacing. In [8], authors consider the MRA based on
sparse rulers [1][9] to increase the resolution and number of
detectable targets. Thus, with an N -element NUA both DAA
and SS can estimate an augmented covariance with dimension
bounded by N(N − 1)/2 + 1.

In this paper we show that under the assumption that the
DOAs lie on a grid with a certain resolution, the covariance
lags are periodic in the space. Using this fact, we introduce
a new cyclic augmented approach (CAA) able to estimate an
augmented covariance matrix up to dimension N(N − 1) +
1, twice the resolution achieved by DAA or SS. When the
sources are not on the grid, we have the commonly named
grid mismatch problem [10]. To mitigate this error, we pro-
pose an interpolated co-array technique that shows promising
results.

2. SYSTEM MODEL

Consider the DOA estimation scenario where K narrow-band
far-field sources are observed by an N -element linear array
with elements at positions ξi, i = 1 . . . N . Let us assume the
K narrow-band signals impinging on this array coming from
directions θi, i = 1 . . .K and have average powers σ2

i , i =
1 . . .K respectively. The goal of DOA estimation is to use
the data received at the array to estimate θi, i = 1 . . .K.
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The received signal is modeled as

y(t) = A(θ)s(t) + n(t), (1)

where A = [a(θ1), . . . ,a(θK)] is the matrix of steering vec-
tors and s(t) = [s1(t), . . . , sK(t)]T the t-th time snapshot of
the source signal vector. Let the locations of theN receive an-
tenna elements be normalized by half wavelength ξi := ξi · λ2 ,
and θ := sin(θ) with θ ∈ [−1, 1). The steering vector corre-
sponding to a direction θ is given by

a(θ) =
[
ejπξ1θ ejπλξ2θ . . . ejπλξNθ

]T
. (2)

A1) The sources are uncorrelated from each other.

A2) The noise on the different antennas are mutually uncor-
related

The spatial covariance matrix can be written as,

R = E
[
y(t)yH(t)

]
=

K∑
i=1

σ2
i a(θi)a

H(θi) + σ2
nI, (3)

whose elements are all of the form

[R]i,k =

K∑
k=1

σ2
i e
jπθk(ξi−ξk) + σ2

nδik ∀i, k

= r[ξi − ξk]. (4)

R is aN×N positive semidefinite Hermitian Toeplitz matrix
characterized by the distinct covariance lags r[m] with m =
(ξi − ξk) ∀i, k.

3. AUGMENTED COVARIANCE ESTIMATION

The spatial covariance matrix contains information regarding
the direction of propagation of any signal in the field. The
philosophy of augmentable approaches is to estimate an aug-
mented Na × Na covariance matrix R̂a of a “virtual” ULA
withNa elements from the smallerN×N sample covariance
matrix R̂ of theN -element NUA. The aim is to design arrays,
i.e. ξ1...N , with the minimum number of elements providing
that all the second order moments needed to build R̂a can be
estimated from R̂.

3.1. Direct Augmentable Approach

The DAA was introduced in [2]. Assuming it is possible
to estimate in R̂ all contiguous correlation lags r[m] from
m = 0..Na − 1, with Na ≤ N(N−1)

2 + 1, we can build the
augmented covariance matrix

R̂a =


r[0] r[1] . . . r[Na − 1]
r∗[1] r[0] . . . r[Na − 2]

...
...

. . .
...

r[Na − 1] r∗[1] . . . r[0]

 . (5)

The DAA estimates r[m] with m = 0 . . . Na − 1, by simply
averaging over the set of the corresponding redundant covari-
ance lags taken from R̂

r[m] =

∑N−1
i,k=0 R̂ikδ(m,ξi−ξk)∑N−1
i,k=0 δ(m,ξi−ξk)

ξk > ξi. (6)

When the DAA is considered, a sufficient condition for the
estimation of the Na × Na augmented covariance matrix is
that the co-array D = {ξi − ξk} contains all the integers
{0 . . . Na − 1}.

3.2. Spatial Smoothing Method

Alternatively to the DAA, another augmented covariance es-
timation technique was proposed in [6]. Forward-backward
spatial smoothing is used to generate an augmented positive
semi-definite spatial covariance matrix with suitable rank.
The method starts by vectorizing the covariance matrix. Let
us denote ry = vec [R] and rs = vec [Rs]. Using the Khatri-
Rao product we can write

ry = (A∗ �A)r̃s + σ2
ne

= B(θ)r̃s + σ2
ne.

r̃s = [σ2
1 σ2

2 , ..., σ
2
k]
> is the vector of nonzero entries in rs.

B = [b(θ1)...b(θk)] is the N2 ×K array manifold matrix of
the co-array, with columns b(θ) = a(θ)∗ ⊗ a(θ) containing
all the differences in the co-array

b(θ) =
[
ejπ(ξ1−ξ1)θ ejπλ(ξ2−ξ1)θ ... ejπλ(ξN−ξN )θ

]T
.

(7)
Extracting and sorting the rows from B corresponding to the
distinct differences, a new (2Na − 1) ×K matrix B̃ is con-
structed

r̃y = B̃r̃s + σ2
nẽ. (8)

Comparing (1) to (8), we find out that the rows of B̃ pro-
vide an array manifold matrix for a 2Na− 1 linear array. The
equivalent source signal vector r̃s consists of the powers σ2

i of
the real sources and hence behave like fully coherent sources.
Therefore, forward-backward spatial smoothing is used for
rank enhancement. After an averaging process over the rows
of B̃, a new Na × Na covariance matrix R̂a is produced
with proper rank. Spatial smoothing can only be applied to
uniform linear arrays. Therefore, the same sufficient condi-
tion as with DAA is needed to estimate R̂a. The co-array
D = {ξi− ξk} should contain all the integers {0 . . . Na− 1}.

3.3. Cyclic Augmentable Approach

In this section we consider the next assumption which is made
in many DOA estimation papers [11][10][8] and commonly
appears in sparse signal recovery applications:
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A3) The angles of arrival lie on a grid with resolutionNa, i.e.
θi =

−Na+2Xi

Na
with Xi ∈ [0..Na − 1] for i = 1..K.

Under the assumption (A3), the entries of the correla-
tion matrix R satisfy the following circular property r[m] =
(−1)pNar[m+ pNa] with p ∈ Z. .

r[m+ pNa] =

K∑
i=1

σ2
i e
jπθi(m+pNa)

=

K∑
i=1

σ2
i e
jπθimejπ(

−Na+2Xi
Na

)pNa

= r[m]ejπpNa

= (−1)pNar[m]

The relationship r[m] = (−1)pNar[m + pNa] implies that
the sufficient condition for estimation of the augmented co-
variance matrix R̂a is that the set D̃ = {(ξi − ξj) mod Na}
contains all the numbers {0, ..., Na − 1}. We propose Algo-
rithm 1 to estimate all the covariance lags and build the matrix
Ra.

Definition 1. Difference set. A subset u = {u1, ..., uk} of
ZN is called an (N,K, λ) difference set if the K(K − 1)
differences

(uk − u`) mod N, k 6= ` (9)

take all possible nonzero values 1, 2, ..., N − 1, with each
value exactly λ times.

We can find an extensive list of difference sets with λ = 1
in [12]. Sparse arrays based on this type of difference sets
don’t have redundancies in the set D̃ and produce all the num-
bers {0..N(N − 1)}. Using the cyclic augmentable approach
(CAA) from a N-element array we can estimate a covariance
matrix with dimension up to Na = N(N − 1) + 1 instead of
N(N − 1)/2 + 1 with DAA or SS.

Algorithm 1 Cyclic Augmentable Approach (CAA)

Require: R̂, ξ,Na
r[m]← 0 m = 0..Na − 1
count← 0
for i = 1 : N do

for j = 1 : N do
d = (ξi − ξj)
r[ mod (d,Na)]+ = (−1)b

d
Na
cR̂(i, j)∗

count[ mod (d,Na)] + +
end for

end for
r = r./count

R̂a = Toeplitz(r)

3.4. Grid Mismatch and Interpolated Co-Arrays

When the targets are not on the discrete grid (A3) we have
the so-called grid mismatch error. Grid mismatch minimiza-
tion is an active research topic. Several approaches have been
proposed to model and reduce the error [13][14][10]. Alter-
natively to CAA and to mitigate the grid mismatch error, we
propose an interpolated co-array technique similar to classical
array interpolation [15].

The basic assumption is that the co-array manifold of the
virtual ULA bula(θ) = [1, ejπθ, . . . , ejπ(Na−1)θ] can be ap-
proximated by a linear transformation of the co-array mani-
fold of the NUA (7),

Bula(θ) ' GB(θ), (10)

with Bula(θ) = [bula(θ1), ...,bula(θK)]. Given the trans-
formation matrix G, we can estimate all the correlation lags
r = [r [0] . . . r [Na − 1]]

T from the covariance matrix of the
real array (ry = vec[R])

r = Bula(θ)r̃s

' GB(θ)r̃s

' Gry. (11)

From r we can build the augmented Toeplitz covariance ma-
trix R̂a of the virtual ULA.

The accuracy of (10) directly depends on the array ge-
ometry. The transformation matrix G is usually computed
as the least squares solution over a discrete grid of angles
θ ∈ [−1, 1). For instance, for a difference set based array
with N elements and a grid of angles with resolution Na =
N(N − 1) + 1, it is possible to find G that solves (10). How-
ever, the accuracy of the mapping decreases if we consider a
more dense grid of angles.

To obtain a good approximation for the whole field of
view of the array, classical array interpolation is done by di-
viding the angles in multiple sectors and finding one transfor-
mation matrix for each sector. In [15], a process for applying
the high resolution root-Music algorithm to the set covariance
matrices is described in detail. In [16], initial DOA estimates
are used to remove the sector dependency and avoid possible
problems with the condition number of the mapping matrix.
Authors present a Wiener solution to compute the transfor-
mation matrix that has shown promising results and signifi-
cantly improves the DOA estimation performance. For sim-
plicity and to avoid the initial DOA estimation, we compute
here the transformation matrix over the whole field of view,
θ ∈ [−1, 1), as G = Bula(θ)B(θ)H

(
B(θ)B(θ)H + I

)−1
.

4. SIMULATIONS

In this section we present several simulation results. First,
we compare the performance of DAA and SS with the novel
CAA when the sources are on the discrete grid. DAA and
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SS are used to process the data from an sparse ruler based
array with N = 10 antennas, SR(10), with antenna lo-
cations ξSR(10) = {0, 1, 2, 17, 21, 24, 27, 30, 33, 35} [8].
CAA is applied to the data from a difference set based
array with the same number of elements, DS(10), with
ξDS(10) = {0, 1, 3, 9, 27, 49, 56, 61, 77, 81}. DAA and SS
provide augmented covariance matrices of dimension 36×36
while CAA 91 × 91. We consider K = 5 sources with
DOAs on a grid with resolution Na = 91 over the interval
θi ∈ [−1, 1). Equal average power is considered for all the
sources σ2

i = 1 with SNR=0 dB. 50 measurements are used
to estimate the sample covariance. We apply Music algorithm
to the augmented covariance matrices provided by each strat-
egy. Fig.-1 shows the Music pseudo-spectrum. We clearly
see CAA with the DS(10) offers better resolution than SS
and DAA leading to better DOA separation. Fig.-2 shows
the root mean square error (RMSE) of the Root-Music solu-
tion as a function of the number of snapshots. In this case
CAA employs the same array as DAA and SS, providing a
71 × 71 augmented covariance matrix. K = 5 sources with
DOAs randomly distributed on a grid [-1,1) with resolution
Na = 71 are considered. Finally, we evaluate the capabil-
ities of the interpolated co-array manifold technique (IA)
when targets are not on a grid. We consider K = 5 sources
with DOA randomly distributed in the continuous interval
[-1,1). Fig.-3 shows Root-Music RMSE. IA produces better
DOA estimations in comparison to SS or DAA due to the
higher dimensionality of the estimated augmented covariance
matrix.
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Fig. 1: Music Pseudo-spectrum in dB with K = 5 on-grid
targets θ = {−0.0769,−0.0549, 0.2088, 0.2308, 0.4286}.
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Fig. 2: RootMusic DOA estimation RMSE versus the number
of snapshots for SNR = 0 dB and K = 5 on-grid targets
randomly distributed in [−1, 1) with resolution Na = 71.
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Fig. 3: RootMusic DOA estimation RMSE versus the number
of snapshots for SNR = 0 dB and K = 5 targets randomly
distributed in [−1, 1).

5. CONCLUSION

We have introduced a novel augmentation approach for co-
variance estimation in DOA which achieves twice the resolu-
tion of DAA or SS when the sources are on a grid with a cer-
tain resolution. When it is applied to difference set based ar-
rays, with N antennas CAA is able to estimate an augmented
covariance matrix equivalent to that of anN(N−1)+1 virtual
ULA. Finally, when the sources are not on the grid, we intro-
duce an alternative interpolated co-array technique to mitigate
the grid mismatch problem with promising results.
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