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ABSTRACT

The paper proposes a matrix completion based colocated
MIMO radar (MIMO-MC) approach that employs transmit
beamforming. The transmit antennas transmit correlated
waveforms to illuminate certain directions. Each receive an-
tenna performs sub-Nyquist sampling of the target returns
at uniformly random times, and forwards the samples to a
fusion center along with information on the sampling times.
Based on the forwarded samples, the fusion center partially
fills a matrix, recovers the Nyquist rate samples via matrix
completion, and subsequently proceeds with target estimation
via standard techniques. The performance of matrix comple-
tion depends on the matrix coherence. The paper derives the
relations between transmit waveforms and matrix coherence.
Specifically, it is shown that, for a rank-1 beamformer, the
coherence is optimal, i.e., 1, if and only if the waveforms are
unimodular. For a multi-rank beamformer, the coherence of
the row space of the data matrix is optimal if the waveform
power is constant across each snapshot. Simulation results
show that the proposed scheme achieves high resolution with
a significantly reduced number of samples.

Index Terms— MIMO radar, matrix completion, trans-
mit beamforming, coherence

1. INTRODUCTION

A colocated MIMO radar approach based on matrix comple-
tion (MC) [1] [2] [3] (MIMO-MC radar) has been recently
proposed in [4] [5] to achieve the high resolution of MIMO
radars while requiring significantly fewer samples to be col-
lected and forwarded to a fusion center. Based In MIMO-
MC radars, each receive antenna obtains samples at uniformly
random times and forwards them to a fusion center, which
partially fills a matrix, referred to as the data matrix. The
matrix can be subsequently recovered via matrix completion
techniques. As shown in [4] [6],[7] and [8],[9] the trans-
mit/receive array configuration as well as transmit waveforms
affect the matrix coherence and thus the MC performance.

Most of the work on MIMO radars assumes the transmis-
sion of uncorrelated waveforms from the transmit antennas.
However, for MIMO radars operating in tracking mode, that
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considers correlated transmit waveforms [10] [11]. For exam-
ple, in [10], the transmit waveforms correlation is designed
so that a desired transmit beampattern is achieved. In [11],
the authors proposed a phased-MIMO radar approach by di-
viding the transmit array into multiple sub-arrays, with each
sub-array coherently transmitting a waveform which is or-
thogonal to waveforms transmitted by other sub-arrays. Thus,
in each sub-array, beamforming is achieved. A multi-rank
beamformer for MIMO radars has been recently proposed in
[12], which, unlike [10] does not require solving a compli-
cated optimization problem. The multi-rank beamformer is
taken as the combination of rank-1 beamformers with the cor-
responding multiple waveforms chosen to be orthogonal.

In this paper we consider the same MIMO radar trans-
mit beamforming framework as in [12]. When the number of
illuminated targets is much smaller than the size of receive
array, the data matrix formulated by the fusion center based
on Nyquist-rate samples at the receive antennas is low-rank.
Therefore, Nyquist sampling is not required at each receive
antenna. Instead, the antenna can uniformly at random select
samples and forward them to the fusion center, thus partially
filling the data matrix. By applying MC, the fusion center can
recover the full matrix. Based on the recovered data matrix,
various methods, e.g., MUSIC [13], can be employed for tar-
get estimation. The advantages of sending fewer samples to
the fusion center include power and bandwidth savings. The
focus of this paper is to determine the suitability of MC in
this scenario. For this purpose, we conduct matrix coherence
analysis and derive the optimal waveform conditions for both
rank-1 and multi-rank beamformers.

2. BACKGROUND

Consider a rank-K matrix X ∈ CMr×N , with the singular
value decomposition X = UΛVH .

Let U be the subspace spanned by the set singular vec-
tors

{
ui ∈ CMr

}
i=1,...,K

, PU the orthogonal projection onto
U , i.e., PU =

∑
1≤i≤K

uiu
H
i , and ei the standard basis vector

whose i-th element is 1. The coherence of U is defined as
µ (U) = Mr

K max
1≤i≤Mr

∥PUei∥2 ∈
[
1, Mr

K

]
. The coherence

µ (V ) is defined in a similar way. The lower the coherence,
the fewer entries of X are required to reconstruct it [1].

In the following, we consider a colocated MIMO radar
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system be based on uniform linear arrays (ULA) with Mt and
Mr transmit/receive antennas, as well as dt = λ/2 and dr =
Mtλ/2, inter-antenna spacing, respectively, where λ denotes
the waveform length.

3. ON THE RANK-1 BEAMFORMING

Let s ∈ CN×1 be the waveform sequence transmitted by each
of the Mt antennas over one pulse. Let w ∈ CMt×1 denote
the transmit beamformer. Then, according to [14], the rank-
1 beamformer equals w = a (θ)/∥a (θ)∥, where a (θ) de-
notes the transmit steering vector corresponding to direction
θ. High angle resolution can be achieved under the rank-1
beamformer [12] by doing joint transmit and receive beam-
forming, which shows great advantage of MIMO radar over
phased-array radar for single target tracking.

Under the narrow-band assumption, the noise free receive
data matrix collected at the fusion center that contains the
samples of target reflections equals X = b (θ)βζa(θ)

T
S̃,

where b (θ) is the receive steering vector w.r.t. direction θ.
The transmit signal matrix equals S̃ = wsT . In addition, β
and ζ are the target reflection coefficient and Doppler shift,
respectively.

The matrix X is low rank, and as long as its left and right
subspaces coherence is low, it can be recovered from a small
number of its entries, selected uniformly at random.

In the following theorem we state the conditions so that
the coherence of X achieves it smallest possible value of 1.

Theorem 1. Under a ULA configuration, when the MIMO
radar antennas transmit the same waveform and a rank-1
beamformer is used, i.e., w = a (θ)/∥a (θ)∥, the coherence of
the matrix X achieves its lowest value, i.e., µ (U) = µ (V ) ≡
1 if and only if the waveform sequence is unimodular.

Proof. The data matrix X ∈ CMr×N as defined above is
rank-1. Let its compact singular value decomposition (SVD)
be X = uσvH , where u ∈ CMr×1, v ∈ CN×1 with uHu =
1,vHv = 1 and σ the corresponding singular value. Con-
sider the QR decomposition of b (θ) given by b (θ) = qrrr,
where

qr =
1√
Mr

[
1 ej

2π
λ dr sin θ · · · ej

2π
λ (Mr−1)dr sin θ

]T
such that qH

r qr = 1 and rr =
√
Mr where λ denotes the

wavelength. Similarly, we consider the QR decomposition
of S̃Ta (θ) given by S̃Ta (θ) = sa(θ)T a(θ)

∥a(θ)∥ = qsrs, where
qs ∈ CN×1 such that qH

s qs = 1, and rs is a real num-
ber. Then, X = qrrrβζrsq

T
s . The SVD of the complex

number rrβζrs can be written as rrβζrs = q1ρq
∗
2 , where

|q1| = |q2| = 1 and ρ is a real number. Therefore, X =

qrq1ρq
∗
2q

T
s = qrq1ρ(q

∗
sq2)

H , which is a valid SVD of X

since (qrq1)
H
qrq1 = 1, (q∗

sq2)
H
q∗
sq2 = 1. By the unique-

ness of singular values of a matrix, it holds that σ ≡ ρ. There-
fore, we can set u = qrq1,v = q∗

sq2.

Let q(i)
r denote the i-th element of qr. The coherence of

the column space of X is

µ (U) =
Mr

1
sup

i∈N+
Mr

∣∣∣q(i)
r q1

∣∣∣2 = Mr sup
i∈N+

Mr

∣∣∣q(i)
r

∣∣∣2 ≡ 1. (1)

Let q∗(i)
s , si denote the i-th element of q∗

s and s, respectively.
The coherence of the row space of X is

µ (V ) =
N

1
sup
i∈N+

N

∣∣∣q∗(i)
s q2

∣∣∣2 = N sup
i∈N+

N

∣∣∣q(i)
s

∣∣∣2
= N sup

i∈N+
N

∣∣∣∣∣sia(θ)Ta (θ)∥a (θ)∥ rs

∣∣∣∣∣
2

= N sup
i∈N+

N

a(θ)
H
a(θ)

∗|si|2a(θ)Ta (θ)
∥a (θ)∥2r2s

. (2)

Here, it holds that

r2s = rsq
H
s qsrs = (qsrs)

H
qsrs

=
a(θ)

H
a(θ)

∗
sHsa(θ)

T
a (θ)

∥a (θ)∥2
. (3)

Consequently,

µ (V ) = N sup
i∈N+

N

|si|2

sHs
. (4)

Since
N∑
i=1

|si|2 = sHs and |si|2 ≥ 0, the minimum possi-

ble value of µ (V ) could achieve the minimum value, i.e., 1,
if and only if |si|2 = 1

N sHs for any i ∈ N+
N . This condi-

tion suggests that the transmit power in each snapshot, i.e.,
|si|2, should equal the total transmit power sHs divided by
N . In other words, the transmit waveform should be unimod-
ular. Consequently, it holds that µ (U) = µ (V ) ≡ 1, which
completes the proof.

It is interesting to note that the coherence is optimal inde-
pendent of the the beamforming vector.

4. ON THE MULTI-RANK BEAMFORMING

According to [12], to track multiple targets at directions
{θk}k∈N+

K
, a rank-K beamformer W = [w1 · · ·wK ] ∈

CMt×K can be used, where wk = a(θk)
∥a(θk)∥ is the beamformer

focussing on direction θk. The sampled transmitted signal

matrix equals S̃ =
√

Mt

K WST , where
√

Mt

K is a factor to

satisfy that the total transmit energy is Mt; S ∈ CN×K con-
tains sampled orthogonal waveforms so that SHS = IK . The
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transmit beampattern in direction ϕ is the sum of K rank-1
beampatterns, i.e.,

PT (ϕ) =
Mt

K
a(ϕ)

H
WWHa (ϕ)

=
Mt

K

K∑
k=1

a(ϕ)
H
wkw

H
k a (ϕ) . (5)

Under the narrow-band assumption, the noise free receive
data matrix is [4]

X = BDAT S̃, (6)

where A ∈ CMt×K is the transmit steering matrix defined as
A = [a (θ1) · · ·a (θK)]; B ∈ CMr×K is the receive steering
matrix, and D ∈ CK×K is a diagonal matrix containing target
reflection coefficients and Doppler shifts. It can be shown
that X is a low-rank matrix. Thus, depending on how low its
coherence is, it can be recovered based on a small, uniformly
sampled subset of its elements. On the coherence of X, we
have the following theorem.

Theorem 2. Consider an ULA configuration and a MIMO
radar applying the rank-K beamformer W = [w1 · · ·wK ] ∈
CMt×K to K orthogonal waveforms S ∈ CN×K .

The coherence of the row space of X is optimal, i.e.,
µ (V ) ≡ 1, if and only if

S(i)
(
S(i)

)H
=

K

N
, ∀ i ∈ N+

N , (7)

where S(i) ∈ C1×K denotes the i-th row of S.

Proof. The compact SVD of X can be expressed as X =
UΛVH , where U ∈ CMr×K , V ∈ CN×K such that
UUH = IK ,VVH = IK , and Λ ∈ RK×K is a di-
agonal matrix containing the singular values of X. Con-
sider the QR decomposition of B, i.e., B = QrRr, where
Qr ∈ CMr×K such that QH

r Qr = IK , and Rr ∈ CK×K

is an upper triangular matrix. Similarly, we consider the
QR decomposition of S̃TA given by S̃TA = QsRs, where
Qs ∈ CN×K such that QH

s Qs = IK and Rs ∈ CK×K

is an upper triangular matrix. Then, X = QrRrDRT
s Q

T
s

and the matrix RrDRT
s ∈ CK×K is rank-K whose SVD is

given as RrDRT
s = Q1∆QH

2 . Here, Q1 ∈ CK×K is such
that Q1Q

H
1 = QH

1 Q1 = IK (the same holds for Q2) and
∆ ∈ RK×K is non-zero diagonal, containing the singular
values of RrDRT

s . Therefore,

X = QrQ1∆QH
2 QT

s = QrQ1∆(Q∗
sQ2)

H
, (8)

which is a valid SVD of X since (QrQ1)
H
QrQ1 = IK and

(Q∗
sQ2)

H
Q∗

sQ2 = IK . By the uniqueness of the singular
values of a matrix, it holds that Λ ≡ ∆. Therefore, we can
set U = QrQ1 and V = Q∗

sQ2.

Let Q∗(i)
s ,S(i) ∈ C1×K denote the i-th row of Q∗

s and S,
respectively. Regarding the coherence of the row space of X,
we have

µ (V ) =
N

K
sup
i∈N+

N

∥∥∥Q∗(i)
s Q2

∥∥∥2 =
N

K
sup
i∈N+

N

∥∥∥Q(i)
s

∥∥∥2
=

N

K
sup
i∈N+

N

∥∥∥∥∥
√

Mt

K
S(i)WTAR−1

s

∥∥∥∥∥
2

=
N

K
sup
i∈N+

N

Mt

K
S(i)WTAR−1

s

(
R−1

s

)H
AHW∗

(
S(i)

)H
.

Here, since the waveforms are orthogonal, i.e., SHS = IK , it
holds that

R−1
s

(
R−1

s

)H
=
(
RH

s Rs

)−1
=
(
RH

s QH
s QsRs

)−1

=
K

Mt

(
AHW∗SHSWTA

)−1

=
K

Mt

(
AHW∗WTA

)−1

=
K

Mt

(
WTA

)−1(
AHW∗)−1

. (9)

Consequently, µ (V ) = N
K sup

i∈N+
N

S(i)
(
S(i)

)H
. In addition, it

holds that
N∑
i=1

S(i)
(
S(i)

)H
= K for orthogonal waveforms.

Therefore, to find the lowest possible value of µ (V ), we solve
the following optimization problem

min
i∈N+

N

(
max
i∈N+

N

S(i)
(
S(i)

)H)

s.t.

N∑
i=1

S(i)
(
S(i)

)H
= K. (10)

Since S(i)
(
S(i)

)H ≥ 0, the solutions of the above problem

are S(i)
(
S(i)

)H
= K

N , ∀i ∈ N+
N . Consequently, the lowest

possible value of row space of X is achieved as µ (V ) ≡ 1,
which completes the proof.

Theorem 2 indicates that the energy of the K orthogonal
waveforms should be constant during each snapshot. It is in-
teresting to note that the coherence of the row space of X
is independent of the multi-rank beamformer. Therefore, the
analysis results hold for all kinds of multi-rank beamformers
obtained via different methods, e.g., multi-rank beamformer
for the approximation of a desired beampattern, proposed in
[15]. It should be noted that the coherence of the column
space of X, i.e., µ (U) coincides with the results in MIMO-
MC radar and interested readers can refer to [7] for detail dis-
cussions.
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Fig. 1: Simulations: (a) Transmit beampattern under rank-2 beamformer with Mt = 30 for directions [−11◦, 2◦]; (b) RMSE
versus SNR with Mr = 60,Mt = 30; (c) Probability of target resolution with Mr = 60,Mt = 20 and SNR = 25dB. In
figures (b) (c), the proposed approach is based on subsampling by 50%.

5. DOA ESTIMATION BASED ON MC

At the fusion center, for each pulse, the data matrix X is re-
covered via MC using a small portion of samples collected
uniformly at random. Let X̃ denote the recovered data matrix.
Subsequently, matched filtering is applied on X̃ to obtain

Yq = X̃S∗ =

√
Mt

K
BDATW + Zq, (11)

where q is the pulse index and Zq represents noise. Stacking
the matrix (11) into a KMr × 1 vector, we get

yq = vec (Yq) =

√
Mt

K

K∑
k=1

dk
(
WTa (θk)

)
⊗b (θk) + zq,

where dk denotes the reflection coefficient and Doppler shift
w.r.t. the k-th target; zq = vec (Zq). With Q pulses data, the

sample covariance matrix is obtained as R = 1
Q

Q∑
q=1

yqy
H
q .

The pseudo-spectrum of MUSIC estimator is [13]

P (θ) =
1

cH (θ)EnEH
n c (θ)

, (12)

where c (θ) =
(
WTa (θ)

)
⊗b (θ) and En ∈ CKMr×(KMr−K)

is a matrix containing the eigenvectors of the noise subspace
of R. The angle of the targets can be obtained by the finding
the peak locations of the pseudo-spectrum (12).

In the following, we use simulation to test the perfor-
mance of the proposed approach. Throughout the simula-
tions, the transmit/receive arrays are configured as ULA with
dt = λ/2 and dr = Mtλ/2. The first K waveforms of the
Hadamard sequences are used for transmit beamforming. The
number of pulses is set to Q = 3. The number of Nyquist
samples in one pulse is N = 128. The data matrix X is re-
covered via the SVT algorithm [16] using only p = 50% of
its entries. The obtained results are averaged over 100 inde-
pendent runs. First, a rank-2 beamformer with Mt = 30 is

applied to illuminate K = 2 targets at angles θ1 = −11◦

and θ2 = 2◦. The transmit beampattern of the beamformer
is shown in Fig. 1 (a). The root mean square error (RMSE)
of the direction of arrival (DOA) estimation for these two tar-
gets is plotted in Fig. 1(b) for Mr = 60. It can be found that
the RMSE of DOA estimation using MC or Nyquist sampling
decreases as the signal-to-noise ratio (SNR) becomes larger
(the SNR is defined at the fusion center before the matched
filtering operation). Interestingly, as SNR ≥ 25dB, these two
RMSE curves become almost identical. This is because the
recovery error of X introduced by MC is quite small when
the SNR is high [3]. Next, we access the capability of the
proposed scheme to resolve two closely located targets. We
take the first target to be in direction θ1 = 10◦ and the second
in θ2 = θ1 +∆θ. The targets are considered to be resolved if∣∣∣θ̂k − θk

∣∣∣ ≤ ∆θ/2, k = 1, 2, where θ̂k denotes the estimation
of the k-th target [13]. The probability of resolution under
Mr = 60,Mt = 20 and SNR = 25dB is plotted in Fig. 1(c).
It can be found that the proposed MC based scheme has the
same resolution of ∆θ = 0.02◦ as the method with Nyquist
sampling. Therefore, a comparable DOA estimation perfor-
mance is achieved under the proposed scheme as the method
that uses Nyquist sampling.

6. CONCLUSIONS

In this paper, we have proposed a MIMO-MC radar approach
with transmit beamforming. Each receive antenna performs
sub-Nyquist sampling and the full data matrix is recovered at
the fusion center via MC. Analysis results have shown that the
matrix coherence is independent of the beamformer. The row
space coherence of data matrix is optimal if and only if the
transmit orthogonal waveforms have constant power during
all snapshots. The simulation results show that the proposed
scheme could achieve super resolution at a low sub-Nyquist
sampling rate.
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