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ABSTRACT

Traditional passive radar systems with a noisy referengeasiuse
the cross-correlation statistic for detection. Howevering to the
composite nature of this hypothesis testing problem, nionglazan
be made about the optimality of this detector. In this papercon-
sider digital illuminators such that the transmitted signaa pro-
cessing interval is a weighted periodic summation of sévdemn-

tical pulses. The target reflectivity is assumed to chandepan-
dently from one pulse to another within a processing inferia-

spired by random matrix theory, we propose a singular vadwewh-
position (SVD) and Eigen detector for this model that sigaifitly
outperforms the conventional cross-correlation detedterdemon-
strate this performance improvement through extensiveenical
simulations across various surveillance and referencabig-noise
ratio (SNR) regimes.

of the same pulse several times in a processing interval. nidse
sage symbols riding on the pulse vary randomly from one symbo
duration to another. Secondly, the target model in [4] agsuthat
the target reflectivity is constant over the entire processgiterval.
This assumption is seldom valid in practice. In anothermepa-
per [7], the authors considered a random model for the tratesin
signal but never consider scintillating targets in the pssing in-
terval. Furthermore, they ignore the underlying periodi¢une of
digital illuminators.

Contributions: In stark contrast to the aforementioned unreal-
istic assumptions, in this paper, we consider a composjtethgsis
testing detection problem for a passive bistatic radar.tidresmitted
signal in a processing interval is assumed to be periodigrsation
of several identical pulses, and the target reflectivitysisumed to
change independently from one pulse to another within agasing
interval. Inspired by results from random matrix theory, prepose

Index Terms— Passive radar, Random matrix theory, Phasea simple detector by computing the SVD of the data matrix fmm

transition, Singular value decomposition, Kolmogoroviiov,
Detection

1. INTRODUCTION

Passive coherent location systems have been studied flastreev-
eral decades due to the unique benefits they offer over ctomeh
active radars by facilitating covert operation and for thaiv cost of
implementation [1]- [3]. Passive radar systems do not [zssger-
fect knowledge of the transmitted signal but have accesstmisy
replica obtained through a dedicated reference channestottiti
cally, passive radar detection has been performed by congpatest
statistic that is a cross correlation between receivecetasgrveil-
lance signal and the noisy reference signal. However, rimslaan
be made with regards to the optimality of such a detector dleet
noisy nature of the reference.

Recent Literature: Recently, [4] studied this problem and de-
rived the GLRT detector. The model proposed in [4] has twoomaj
limitations. First, it considers the entire transmittedvefarm to
be deterministic unknown without any structure. In practice, this is
never the case, as signals from terrestrial or space basehwo-
cation systems are inherently periodic. In fact, for all coumica-
tion systems [5], [6], the transmitted waveform containsyaetition
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by concatenating the measurements from multiple pulses der
tector exploits the inherent low rank structure presenthin peri-
odic transmitted signal from a digital illuminator. Sindeetprob-
ability distributions of the test statistic are complicht® derive,
we use the Kolmogorov-Smirnov tests to analyze the disoaini
ing (between the two hypotheses) ability of the detectois #een
subsequently that the proposed detector outperforms ¢a@éntly
used traditional cross correlation based detector. Thetsire of
data arising from our model lends itself to an interestingshold
behavior which is predicted by random matrix theory.

2. SIGNAL MODEL

We consider the hypothesis testing problem for the deteaifoa
target at a given range and Doppler. In order to perform #gt the
received data is shifted back by the appropriate delay amp@oto
arrive at the following testing problem

;= Mgy,
HO . {ysz (1)
Y,i = Hrih + Nri,y
H, - {ysi = WsiW + Nsi, (2)
Yri = Hril + Nri,
wherei € {1,..., N} is the pulse index (we refer to this hereafter

as snapshot) and the subscrigtand r represent the surveillance
and reference channels, respectively. We assume the comiple
tenuation terms to be statistically independent from onsepto the
other. Without loss of generality (w.l.0.9)s; andy,; are zero mean
complex Gaussian distributed with varianceando?, respectively,
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where we assume a single unit norm deterministic unknowrsinét

wherev, v, denote the dominant left singular vectors of the random

pulsewu to contain} samples. The attenuation varies from pulse tomatricesY s andY ., respectively.Ss denotes the leading singular

pulse due to target fluctuations and also due to the randorsages
modulations in the transmitted symbols from pulse to puldete
that formulating the detection problem in the above manyetis-
tinguishing between the different pulses is possible ortigmthere
is perfect time synchronization. Most commercial illuntiorg af-
ford perfect synchronization between the transmitter acdiver.

Stacking the measurement vecto®,: = (Y., " ,Y.n]
andY, = [y,, - ,Y,y]. Similarly, defineM x N ma-
tix U = [u, -+ ,u] and p, = diag{ps1,...,4sn}, B, =
diag {fr1, - - ., urn }. Therefore, we have

Ys - N57

Hy : (3)
Y'r‘ :UIJ/T"‘NM
Ys =U .+ N37

H Hs 4)
Y,=Up, + N,.

value computed fronY ;. We expect the SVD detector to perform
better than the cross correlation detector because thsitgftlar
vector acts like a joint estimate of the unit-norm transnuisp that
is riding inside the measurements from all the snapshotsicéle
we compute this joint estimate froid snapshots before performing
the cross correlation operation instead of doing it on the data
from each snapshot separately. WHERR.. is very low, the esti-
mate of the transmit pulse is very poor and hence it is of little
use to perform the cross correlation. However, due to theemee
of the leading Eigenvalue from the surveillance channet, @o-
posed detector can still distinguish between the two hygseh by
functioning as an energy based discriminator. Furthemfrandom
matrix theory [8]- [11], SVD of these matrices have an irgére
threshold behavior that can be used for asymptotic perfoceare-
diction. We will focus on this in more detail later in the pape

For performance comparison, we consider the ideal case when
all the parameters including the deterministic pulsare known.

We assume addmve noise samples to be independent zero medider this scenario, the test statistics reduc&l4¢p_gigen =

Gaussian with variance?. The definition of SNR is separate under

both the channels

SNRs = 20 log dB,

g

SNR, = 20log dB.
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Fig. 2. Kolmogorov-Smirnov Statistic for SVD-Eigen Detectorfle
and CC Detector (right), Reference Channel SN, M = 11.

3. DETECTORS
The classical and frequently used approach is to form a tesstic
by computing the cross correlation

N

TCC:Z

1=1

2

v, (5)

Yri

Unlike an active radar system, no claims can be made abouwipthe
timality of this test statistic due to the noisy nature of théerence
measurements. In particular, we observe that this detpetdorms
a correlation on the raw data across both the channels farafabhe
N snapshots. It does not exploit the fact that the unit-noemsimit
pulse inside each of these snapshots is the same. In othds wee
would like to exploit the common ranksignal structure inherent to
this problem. In particular, we propose

H
Ur

2
; (6)

TsvD—Eigen =

|S§.vS u| andTcc = Zz‘:l |yM u| . In this scenario, the CC
detector is optimal and is equivalent to the matched filtaeae
tor in active radar systems. We see this from the analysieabel
When the transmit pulsa and the additive thermal noise variance
o? are known, essentially the reference signal does not caryy a
information that is useful for the detection problem. Tliere, the
hypothesis testing problem

Hy N

Hy

Yy ~CN(0,0°T),i=1,...,
Y wCJ\/'(0703.11,11,1’{—&—021)71':1,...7

@)

N. (8)

The optimal likelihood ratio test (Clairvoyant detecto@tsstic

N
TLrT = Z

=1

-1
(0’2y5ysz— —yll (o2uu" +o°1) y) O
Using Woodbury matrix identity, it can be easily shown that

N
Tirr o< E
i—1

yﬁu’2 (20)

4. STATICTICAL TECHNIQUES

In this section we describe statistical techniques useddtyae the
performance of the detectors in the previous section. Tbbatnil-
ity distributions of the test statistic are complicated &ide both
analytically and numerically. Hence, we use Kolmogorovi@ov
(KS) test as a measure of separability between the two hgpegh
in (1), for the detectors in the previous section. Howeverclaims
can be made with regards to the probabilities of detecti@hfalse
alarm.

4.1. Kolmogorov-Smirnov test: Not just a goodness of fitness
test

Typically, the two sample KS [12]- [14] tests whether the t@on-
ples belong to a particular distribution against the aliéwe that
they belong to different distributions. The two sample K&istic is
expressed as,

G ()]

KS = sup |Fy(z) — (11)
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Not Discriminated 1 Slightly Discriminated 1 Well Discriminated 1
-

Fig. 1. lllustrative example of the discriminating capabilitytbe KS test statistic in (11).

where F (), G1(x) are the empirical (cumulative) distributions 4.2. Phase transition thresholds
corresponding to the unspecified (cumulative) distrimgiB(z), G(x),

respectively. The empirical distributions are defined as From random matrix theory [8]- [11], below a critical threthre-
gion, the dominant eigenvalue and eigenvectors are notigudtiy
0 ifz<Tyoy representative of their true counterparts. The objecte® lis to
Fi(z) = £ ifTop <z <Topt1y,p=1,2,...,P—1 providg insights.on this thr(?shold since our.proposed uthEthis
1 z>Top paper is a function of the eigenvalue and eigenvectors. iGenee-
- alizations of a random vectok:, xs, . . ., xy Wherex; € CV =
0 if x < T11) a;u+n;. Assume thaty; is a zero mean, unit variance random vari-
Gi(z) = L Ty <2<Tapsn,p=12,...,P—1 able not necessarily normally distributed but has a finitetfoorder
1 z>Tap moment. The noise vecton; is zero mean, normally distributed

with covariance matrix equal te>I, and statistically uncorrelated

whereinT(, ,y,T(1,,),» = 1,2,..., P denote the two (ascending) from the other noise vectorsy;,j = 1,2,...,N,j # i. Denote

ordered samples under test, and is explained subsequdfrityn  v; andv; as the true and estimated dominant eigenvectors, derived

(11), we notice immediately that if the empirical distrilomts are  from the true covariance matrisu’” + oI, and sample covariance

well discriminated (separated) the test statistic asswméy, and

when the distributions are not well separated the teststitatis- =

sumes smaller positive values. An illustrative exampleniss in  timated dominant eigenvalue estimated from the samplerizmee

Fig. 1. matrix. Then we recall the following theorem from random rixat
In our problem, for analyzing how the detectors discrimgnat theory [11].

between the null and alternate in (1), we first genertenea-

surements of the test statistic under the nL_JII as in (1), and order Thegrem 1. Inthejoint limit M, N — oo, we have,

them asT{o,1),T{0,2),---,2L(0,p) a@nd likewise generatéd® mea-

surements under the alternate hypothesis in (1) and orden #s

N a
matrix, % Z x;x!?, respectively. Likewise, denotk, as the es-

Ta,1),T,2)s - - Ta,py. The test statistic]” could be from any S o?(1+4/0)2, it 3 < 1oy (12)
one of the detectors mentioned in the previous section. ,Nest ! 2 2 M o2 s N ot
. (Ivl"+o )(1+ N HVH2)’ if 57 = B
perform the KS test on these two samples as described above to
analyze the discriminating (between the hypotheses irefi)ity of
the detectordcc andTsyp. Note that this approach is employed
because the probability distributions’Bf - andTsv p are compli- 0 if Ny o o
cated to derive undeff, and H; in (1), and is not the main crux of  |[¥{'v,|? = { VIl /Mty -1 A1)
this paper. However, computing these probability distidns is a (NTIVIA/MaDyF(([vI[2/o2) it 57 > \\3\\4
topic of our ongoing research as they are essential in cangptite
thresholds for target detection. Theorem.1, (12) states that in the joint limit, the estirdagigen-
value is deterministic, and similarly, from (13) the squhreagni-
e . il . tude of the inner products are deterministic. The thresholabth
« os os (12),(13) are identical and are given in blue. We note a sdméw
o o o surprisingly result from (13). FaW /M below this threshold, the es-
2. g o timated eigenvector is completely orthogonal to its truenterpart,
: | N which implies that it offers no representative statistichbrmation
: "3 about the true dominant eigenvector. Although Theorem. viitis
59 . 2 . regard to the dominant eigenvector of the sample covariaratex,
* - . it is readily applicable in a straightforward manner to tleenthant
o o1 left singular vectors of matrice€g . andY s in equation (3), as well.
10, o = - In Section V, the threshold will be shown in the simulatioosdom-

-0 -5 0 5 -0 -5 0 5
Surveillance SNR (in dB) Surveillance SNR (in dB)

parisons. In Section V, we observe the threshold behavien &or
finite N and M.
Fig. 3. Kolmogorov-Smirnov Statistic for SVD-Eigen Detectorf(je Remark:In a passive radar problem, both the reference and
and CC Detector (right), Reference Channel SNRIB, M = 11.  gyrveillance SNRs must be above the threshold for the quones
ing left singular vectors to not be orthogonal to each other.
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Fig. 4. Kolmogorov-Smirnov Statistic for SVD-Eigen Detectorf{le
and CC Detector (right), Reference Channel SNR.dB, M = 11.

5. NUMERICAL EXAMPLES

A useful measure to compare the detectors is to employ thedawn
ple Kolmogorov-Smirnov (KS) test by generating samplesftmth
the hypotheses for varying values 8%, SNRs, andSNR... The KS
test statistic has values varying frdirto 1 with higher values im-
plying greater separability between the distributionseuritie null
and alternative hypotheses. From Figures 2 to 4, we plot ekt
statistic as a function av and SNR; for a fixed referenc€NR,.
For these simulations, we chose transmitted pulse to benonin
root-raised cosine pulse to mimic a third generation wigleom-
munications standard [6]. However, the transmit pulsectbel any
other unit-norm waveform. We observe that the SVD-Eigeretlas
detector clearly outperforms the cross correlation basgelctor for
all values of N andSNR, when the referenceNR,. is both mod-
erate and high. Even for very lo8NR,., CC detector outperforms
SVD-Eigen only for a few values aV andSNR; in Fig. 4. This is
attributed to the numerical stability issues in MATLAB wditom-
puting the SVD aSNR, = —14dB, and therefore this improvement
can be discounted.
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—¥— SVD-Eigen |
—©— Cross Correlation
—— Clairvoyant

[
3

°
S

Kolmogorov-Smirnov Test Statistic

o
o 0

“10 0 10 20
Reference SNR (in dB)
Fig. 5. Kolmogorov-Smirnov Statistic as a function 8NR,. for
SNR; = —10dB, N = 50, M = 11. (Clairvoyant detector does

not depend 0i$NR,- sincew is known)

In Fig. 5, we fix the number of snapsha® = 50 and the
surveillanceSNR, = —10dB. We plot the KS test statistic as
a function of SNR,. We clearly observe the significant improve-
ment in performance offered by the SVD-Eigen detector olier t
CC detector for alENR,. above—20dB. Moreover we also notice
that the SVD-Eigen performance is close to the clairvoyatect
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Fig. 6. Kolmogorov-Smirnov Statistic as a function 8NR, for
SNR, = —10dB, N = 50, M = 11.

tor (known transmit pulse) for SNR,. above—5dB. Note that the
performance of the clairvoyant detector does not depenti@net-
erence SNR since the transmit pulse is already known. Nexfixv
SNR.,. —10dB and plot as a function d3NR; in Fig. 6. We
notice significant improvement in performance for the SVigeh
detector when compared with the CC detector. Furthermbee,
SVD-Eigen detector is also very close to its clairvoyantradetpart
even for a relatively smalV = 50, M = 11. In Fig. 7 we plot the
theoretical phase transition threshold computed from ouél3),
shown as a solid white line. We observe from that even fotively
small value ofM = 11, the asymptotic thresholds f8&NR, com-
puted using (12) and (13) very accurately capture the pedace
transition atSNR,. = 0dB which is above the reference phase tran-
sition threshold.
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Fig. 7. Kolmogorov-Smirnov Statistic of the SVD-Eigen detector
for SNR, = 0dB, M =11, K = 1.

6. CONCLUDING REMARKS

To test the presence of a fluctuating target at a given rang@p&r
cell, we formulated a composite hypothesis test under thenag-
tion that the reference channel is noisy. Inspired by redemelop-
ments in random matrix theory, and exploiting the inheremtiank
common transmitted signal in the radar processing inteavsimple
but powerful SVD detector was proposed. It was shown usistisst
tical techniques and extensive Monte-Carlo testing thatdbtector
outperforms the frequently used cross correlation detecto
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