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ABSTRACT

Traditional passive radar systems with a noisy reference signal use
the cross-correlation statistic for detection. However, owing to the
composite nature of this hypothesis testing problem, no claims can
be made about the optimality of this detector. In this paper,we con-
sider digital illuminators such that the transmitted signal in a pro-
cessing interval is a weighted periodic summation of several iden-
tical pulses. The target reflectivity is assumed to change indepen-
dently from one pulse to another within a processing interval. In-
spired by random matrix theory, we propose a singular value decom-
position (SVD) and Eigen detector for this model that significantly
outperforms the conventional cross-correlation detector. We demon-
strate this performance improvement through extensive numerical
simulations across various surveillance and reference signal-to-noise
ratio (SNR) regimes.

Index Terms— Passive radar, Random matrix theory, Phase
transition, Singular value decomposition, Kolmogorov-Smirnov,
Detection

1. INTRODUCTION

Passive coherent location systems have been studied for thelast sev-
eral decades due to the unique benefits they offer over conventional
active radars by facilitating covert operation and for their low cost of
implementation [1]– [3]. Passive radar systems do not possess per-
fect knowledge of the transmitted signal but have access to anoisy
replica obtained through a dedicated reference channel. Histori-
cally, passive radar detection has been performed by computing a test
statistic that is a cross correlation between received target surveil-
lance signal and the noisy reference signal. However, no claims can
be made with regards to the optimality of such a detector due to the
noisy nature of the reference.

Recent Literature: Recently, [4] studied this problem and de-
rived the GLRT detector. The model proposed in [4] has two major
limitations. First, it considers the entire transmitted waveform to
bedeterministic unknown without any structure. In practice, this is
never the case, as signals from terrestrial or space based communi-
cation systems are inherently periodic. In fact, for all communica-
tion systems [5], [6], the transmitted waveform contains a repetition
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of the same pulse several times in a processing interval. Themes-
sage symbols riding on the pulse vary randomly from one symbol
duration to another. Secondly, the target model in [4] assumes that
the target reflectivity is constant over the entire processing interval.
This assumption is seldom valid in practice. In another recent pa-
per [7], the authors considered a random model for the transmitted
signal but never consider scintillating targets in the processing in-
terval. Furthermore, they ignore the underlying periodic nature of
digital illuminators.

Contributions: In stark contrast to the aforementioned unreal-
istic assumptions, in this paper, we consider a composite hypothesis
testing detection problem for a passive bistatic radar. Thetransmitted
signal in a processing interval is assumed to be periodic summation
of several identical pulses, and the target reflectivity is assumed to
change independently from one pulse to another within a processing
interval. Inspired by results from random matrix theory, wepropose
a simple detector by computing the SVD of the data matrix formed
by concatenating the measurements from multiple pulses. This de-
tector exploits the inherent low rank structure present in the peri-
odic transmitted signal from a digital illuminator. Since the prob-
ability distributions of the test statistic are complicated to derive,
we use the Kolmogorov-Smirnov tests to analyze the discriminat-
ing (between the two hypotheses) ability of the detector. Itis seen
subsequently that the proposed detector outperforms the frequently
used traditional cross correlation based detector. The structure of
data arising from our model lends itself to an interesting threshold
behavior which is predicted by random matrix theory.

2. SIGNAL MODEL

We consider the hypothesis testing problem for the detection of a
target at a given range and Doppler. In order to perform this test, the
received data is shifted back by the appropriate delay and Doppler to
arrive at the following testing problem

H0 :

{

ysi = nsi,

yri = µriu+ nri,
(1)

H1 :

{

ysi = µsiu+nsi,

yri = µriu+ nri,
(2)

wherei ∈ {1, . . . , N} is the pulse index (we refer to this hereafter
as snapshot) and the subscriptss and r represent the surveillance
and reference channels, respectively. We assume the complex at-
tenuation terms to be statistically independent from one pulse to the
other. Without loss of generality (w.l.o.g),µsi andµri are zero mean
complex Gaussian distributed with varianceσ2

s andσ2
r , respectively,
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where we assume a single unit norm deterministic unknown transmit
pulseu to containM samples. The attenuation varies from pulse to
pulse due to target fluctuations and also due to the random message
modulations in the transmitted symbols from pulse to pulse.Note
that formulating the detection problem in the above manner by dis-
tinguishing between the different pulses is possible only when there
is perfect time synchronization. Most commercial illuminators af-
ford perfect synchronization between the transmitter and receiver.

Stacking the measurement vectors,Y s = [ys1, · · · ,ysN ]
and Y r = [yr1, · · · ,yrN ]. Similarly, defineM × N ma-
trix U = [u, · · · ,u] and µs = diag {µs1, . . . , µsN}, µr =
diag {µr1, . . . , µrN}. Therefore, we have

H0 :

{

Y s = Ns,

Y r = Uµr +Nr,
(3)

H1 :

{

Y s = Uµs +Ns,

Y r = Uµr +Nr.
(4)

We assume additive noise samples to be independent zero mean
Gaussian with varianceσ2. The definition of SNR is separate under
both the channels

SNRs = 20 log
σs√
Mσ

dB,

SNRr = 20 log
σr√
Mσ

dB.
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Fig. 2. Kolmogorov-Smirnov Statistic for SVD-Eigen Detector (left)
and CC Detector (right), Reference Channel SNR6dB, M = 11.

3. DETECTORS

The classical and frequently used approach is to form a test statistic
by computing the cross correlation

TCC =
N
∑

i=1

∣

∣

∣
ysi

H
yri

∣

∣

∣

2

. (5)

Unlike an active radar system, no claims can be made about theop-
timality of this test statistic due to the noisy nature of thereference
measurements. In particular, we observe that this detectorperforms
a correlation on the raw data across both the channels for each of the
N snapshots. It does not exploit the fact that the unit-norm transmit
pulse inside each of these snapshots is the same. In other words, we
would like to exploit the common rank1 signal structure inherent to
this problem. In particular, we propose

TSVD−Eigen =
∣

∣

∣
S2
svs

H
vr

∣

∣

∣

2

, (6)

wherevs, vr denote the dominant left singular vectors of the random
matricesY s andY r, respectively.Ss denotes the leading singular
value computed fromY s. We expect the SVD detector to perform
better than the cross correlation detector because the leftsingular
vector acts like a joint estimate of the unit-norm transmit pulse that
is riding inside the measurements from all the snapshots. Hence,
we compute this joint estimate fromN snapshots before performing
the cross correlation operation instead of doing it on the raw data
from each snapshot separately. WhenSNRr is very low, the esti-
mate of the transmit pulseu is very poor and hence it is of little
use to perform the cross correlation. However, due to the presence
of the leading Eigenvalue from the surveillance channel, our pro-
posed detector can still distinguish between the two hypotheses by
functioning as an energy based discriminator. Further, from random
matrix theory [8]– [11], SVD of these matrices have an interesting
threshold behavior that can be used for asymptotic performance pre-
diction. We will focus on this in more detail later in the paper.

For performance comparison, we consider the ideal case when
all the parameters including the deterministic pulseu are known.
Under this scenario, the test statistics reduce toTSVD−Eigen =
∣

∣S2
svs

Hu
∣

∣

2
andTCC =

∑N
i=1

∣

∣ysi
Hu

∣

∣

2
. In this scenario, the CC

detector is optimal and is equivalent to the matched filter detec-
tor in active radar systems. We see this from the analysis below.
When the transmit pulseu and the additive thermal noise variance
σ2 are known, essentially the reference signal does not carry any
information that is useful for the detection problem. Therefore, the
hypothesis testing problem

H0 : ysi ∼ CN
(

0, σ2
I
)

, i = 1, . . . , N (7)

H1 : ysi ∼ CN
(

0, σ2
suu

H + σ2
I
)

, i = 1, . . . , N. (8)

The optimal likelihood ratio test (Clairvoyant detector) statistic

TLRT =
N
∑

i=1

(

σ−2
y
H
siysi − y

H
si

(

σ2
suu

H + σ2
I
)−1

ysi

)

. (9)

Using Woodbury matrix identity, it can be easily shown that

TLRT ∝
N
∑

i=1

∣

∣

∣
y
H
siu

∣

∣

∣

2

. (10)

4. STATICTICAL TECHNIQUES

In this section we describe statistical techniques used to analyze the
performance of the detectors in the previous section. The probabil-
ity distributions of the test statistic are complicated to derive both
analytically and numerically. Hence, we use Kolmogorov-Smirnov
(KS) test as a measure of separability between the two hypotheses
in (1), for the detectors in the previous section. However, no claims
can be made with regards to the probabilities of detection and false
alarm.

4.1. Kolmogorov-Smirnov test: Not just a goodness of fitness
test

Typically, the two sample KS [12]– [14] tests whether the twosam-
ples belong to a particular distribution against the alternative that
they belong to different distributions. The two sample KS statistic is
expressed as,

KS = sup
x

|F̂1(x)− Ĝ1(x)| (11)
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Fig. 1. Illustrative example of the discriminating capability ofthe KS test statistic in (11).

where F̂1(x), Ĝ1(x) are the empirical (cumulative) distributions
corresponding to the unspecified (cumulative) distributionsF (x),G(x),
respectively. The empirical distributions are defined as

F̂1(x) =











0 if x < T(0,1)
p
P

if T(0,p) ≤ x < T(0,p+1), p = 1, 2, . . . , P − 1

1 x ≥ T(0,P )

Ĝ1(x) =











0 if x < T(1,1)
p
P

if T(1,p) ≤ x < T(1,p+1), p = 1, 2, . . . , P − 1

1 x ≥ T(1,P )

whereinT(o,p), T(1,p), p = 1, 2, . . . , P denote the two (ascending)
ordered samples under test, and is explained subsequently.From
(11), we notice immediately that if the empirical distributions are
well discriminated (separated) the test statistic assumesunity, and
when the distributions are not well separated the test statistic as-
sumes smaller positive values. An illustrative example is shown in
Fig. 1.

In our problem, for analyzing how the detectors discriminate
between the null and alternate in (1), we first generateP mea-
surements of the test statisticT under the null as in (1), and order
them asT(0,1), T(0,2), . . . , T(0,P ) and likewise generateP mea-
surements under the alternate hypothesis in (1) and order them as
T(1,1), T(1,2), . . . , T(1,P ). The test statistic,T could be from any
one of the detectors mentioned in the previous section. Next, we
perform the KS test on these two samples as described above to
analyze the discriminating (between the hypotheses in (1))ability of
the detectorsTCC andTSVD . Note that this approach is employed
because the probability distributions ofTCC andTSV D are compli-
cated to derive underH0 andH1 in (1), and is not the main crux of
this paper. However, computing these probability distributions is a
topic of our ongoing research as they are essential in computing the
thresholds for target detection.
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Fig. 3. Kolmogorov-Smirnov Statistic for SVD-Eigen Detector (left)
and CC Detector (right), Reference Channel SNR−6dB, M = 11.

4.2. Phase transition thresholds

From random matrix theory [8]– [11], below a critical threshold re-
gion, the dominant eigenvalue and eigenvectors are not sufficiently
representative of their true counterparts. The objective here is to
provide insights on this threshold since our proposed detector in this
paper is a function of the eigenvalue and eigenvectors. Consider re-
alizations of a random vector,x1,x2, . . . ,xN wherexi ∈ CM =
αiu+ni. Assume thatαi is a zero mean, unit variance random vari-
able not necessarily normally distributed but has a finite fourth order
moment. The noise vector,ni is zero mean, normally distributed
with covariance matrix equal toσ2

I, and statistically uncorrelated
from the other noise vectors,nj , j = 1, 2, . . . , N, j 6= i. Denote
v1 andv̂1 as the true and estimated dominant eigenvectors, derived
from the true covariance matrix,uuH +σ2

I, and sample covariance

matrix, 1
N

N
∑

i=1

xix
H
i , respectively. Likewise, denotêλ1 as the es-

timated dominant eigenvalue estimated from the sample covariance
matrix. Then we recall the following theorem from random matrix
theory [11].

Theorem 1. In the joint limit M,N → ∞, we have,

λ̂1 =







σ2
(

1 +
√

M
N

)2
, if N

M
< σ4

||v||4

(||v||2 + σ2)
(

1 + M
N

σ2

||v||2

)

, if N
M

≥ σ4

||v||4

(12)

|v̂H
1 v1|2 =

{

0, if N
M

< σ4

||v||4

(N||v||4/Mσ4)−1

(N||v||4/Mσ4)+(||v||2/σ2)
, if N

M
≥ σ4

||v||4

(13)

Theorem.1, (12) states that in the joint limit, the estimated eigen-
value is deterministic, and similarly, from (13) the squared magni-
tude of the inner products are deterministic. The thresholdin both
(12),(13) are identical and are given in blue. We note a somewhat
surprisingly result from (13). ForN/M below this threshold, the es-
timated eigenvector is completely orthogonal to its true counterpart,
which implies that it offers no representative statisticalinformation
about the true dominant eigenvector. Although Theorem. 1 iswith
regard to the dominant eigenvector of the sample covariancematrix,
it is readily applicable in a straightforward manner to the dominant
left singular vectors of matricesY r andY s in equation (3), as well.
In Section V, the threshold will be shown in the simulations for com-
parisons. In Section V, we observe the threshold behavior even for
finiteN andM .

Remark:In a passive radar problem, both the reference and
surveillance SNRs must be above the threshold for the correspond-
ing left singular vectors to not be orthogonal to each other.
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Fig. 4. Kolmogorov-Smirnov Statistic for SVD-Eigen Detector (left)
and CC Detector (right), Reference Channel SNR−14dB,M = 11.

5. NUMERICAL EXAMPLES

A useful measure to compare the detectors is to employ the twosam-
ple Kolmogorov-Smirnov (KS) test by generating samples from both
the hypotheses for varying values ofN , SNRs, andSNRr. The KS
test statistic has values varying from0 to 1 with higher values im-
plying greater separability between the distributions under the null
and alternative hypotheses. From Figures 2 to 4, we plot the KS test
statistic as a function ofN andSNRs for a fixed referenceSNRr.
For these simulations, we chose transmitted pulse to be unit-norm
root-raised cosine pulse to mimic a third generation wireless com-
munications standard [6]. However, the transmit pulse could be any
other unit-norm waveform. We observe that the SVD-Eigen based
detector clearly outperforms the cross correlation based detector for
all values ofN andSNRs when the referenceSNRr is both mod-
erate and high. Even for very lowSNRr, CC detector outperforms
SVD-Eigen only for a few values ofN andSNRs in Fig. 4. This is
attributed to the numerical stability issues in MATLAB while com-
puting the SVD atSNRr = −14dB, and therefore this improvement
can be discounted.
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Fig. 5. Kolmogorov-Smirnov Statistic as a function ofSNRr for
SNRs = −10dB, N = 50, M = 11. (Clairvoyant detector does
not depend onSNRr sinceu is known)

In Fig. 5, we fix the number of snapshotsN = 50 and the
surveillanceSNRs = −10dB. We plot the KS test statistic as
a function ofSNRr. We clearly observe the significant improve-
ment in performance offered by the SVD-Eigen detector over the
CC detector for allSNRr above−20dB. Moreover we also notice
that the SVD-Eigen performance is close to the clairvoyant detec-
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Fig. 6. Kolmogorov-Smirnov Statistic as a function ofSNRs for
SNRr = −10dB, N = 50, M = 11.

tor (known transmit pulseu) for SNRr above−5dB. Note that the
performance of the clairvoyant detector does not depend on the ref-
erence SNR since the transmit pulse is already known. Next, we fix
SNRr = −10dB and plot as a function ofSNRs in Fig. 6. We
notice significant improvement in performance for the SVD-Eigen
detector when compared with the CC detector. Furthermore, the
SVD-Eigen detector is also very close to its clairvoyant counterpart
even for a relatively smallN = 50,M = 11. In Fig. 7 we plot the
theoretical phase transition threshold computed from equation (13),
shown as a solid white line. We observe from that even for relatively
small value ofM = 11, the asymptotic thresholds forSNRs com-
puted using (12) and (13) very accurately capture the performance
transition atSNRr = 0dB which is above the reference phase tran-
sition threshold.

Surveillance SNR (in dB)

N
um

be
r 

of
 S

na
ps

ho
ts

 (
N

)

Reference SNR 0dB, M=11

 

 

−60 −40 −20 0 20 40

200

400

600

800

1000

0.2

0.4

0.6

0.8

1

Fig. 7. Kolmogorov-Smirnov Statistic of the SVD-Eigen detector
for SNRr = 0dB, M = 11, K = 1.

6. CONCLUDING REMARKS

To test the presence of a fluctuating target at a given range / Dopper
cell, we formulated a composite hypothesis test under the assump-
tion that the reference channel is noisy. Inspired by recentdevelop-
ments in random matrix theory, and exploiting the inherent low rank
common transmitted signal in the radar processing interval, a simple
but powerful SVD detector was proposed. It was shown using statis-
tical techniques and extensive Monte-Carlo testing that this detector
outperforms the frequently used cross correlation detector.
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