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ABSTRACT 
 
In this paper, we consider the problem of fusion of multi-
polarization radar images and develop a new greedy 
algorithm referred to as hybrid matching pursuit (HMP). By 
combining the strengths of the orthogonal matching pursuit 
algorithm and the subspace pursuit algorithm, HMP can 
enhance target reflections and attenuate background clutter. 
Experimental results based on measured radar data 
demonstrate that HMP offers better image quality with 
higher target-clutter-ratio compared to some popular greedy 
algorithms.  

Index Terms—polarimetric radar, compressive sensing, 
joint sparsity pattern, microwave imaging, image fusion 
 

1. INTRODUCTION   
 
Polarization diversity has been successfully utilized to 
improve the performance of radar target detection and 
classification [1]-[9]. Since a target has different scattering 
behavior for different polarizations, multi-polarization 
sensing contains more valuable information that single 
polarization does not provide. A typical example is the 
fusion of multi-polarization radar images [10]-[12], in 
which the source images acquired from different 
polarimetric channels are combined into one single image to 
obtain a clearer and less cluttered interpretation of the 
observed scene.    

The traditional methods for radar image formation such 
as back-projection (BP) or delay-and-sum beamforming are 
based on matched filtering of all the spatial and temporal 
measurements, in which high down-range resolution is 
obtained by employing ultra-wideband waveforms and high 
cross-range resolution comes from a large antenna aperture. 
Regarding the fusion of source images, commonly used 
techniques include pixel-wise arithmetic fusion such as 
additive [13] and multiplicative [14] operations, principal 
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component analysis (PCA) fusion [15], wavelet transform 
fusion [16], and fuzzy fusion [11][12]. The fusion methods 
based on multiplication, PCA and the wavelet transform 
may suffer from performance loss in multi-polarization 
radar image fusion scenarios, since the source images from 
different polarimetric channels may provide inconsistent 
scattering representations of the observed targets. The above 
traditional methods require a large number of measurements 
to preserve the qualities of the source images from all the 
polarimetric channels.  

Recently, the compressive sensing (CS) technique has 
been applied to radar image formation. From the viewpoint 
of CS, the task of radar image fusion can be naturally 
formulated as the problem of jointly sparse signal recovery 
under the multiple measurement vectors (MMV) model. 
MMV enforces a common sparsity pattern for all the source 
images and, therefore, promotes the consistency of content 
in the source images. The combination of MMV with the 
fusion of radar images has been investigated in [17]-[20], 
where linear programing and Bayesian learning are used to 
form the sparse images from each channel.  

In this paper, we consider the problem of fusion of 
multi-polarization radar images via greedy algorithms. 
Generally speaking, greedy algorithms are more 
computationally efficient than methods based on linear 
programing and Bayesian learning. We develop a new 
greedy algorithm, hybrid matching pursuit (HMP), by 
combining the strengths of the orthogonal matching pursuit 
(OMP) algorithm [23] and the subspace pursuit (SP) 
algorithm [22] for fusion of multi-polarization radar images. 
The source images are generated by independently 
performing OMP on the local data from each polarimetric 
channel. By following the backtracking strategy of SP, the 
fusion of all the local sparse solutions is carried out to 
obtain the global estimate of the common support set. 
Experimental results show that, compared to some popular 
greedy algorithms including simultaneous OMP (SOMP) 
[21], joint OMP (JOMP) [24] and simultaneous subspace 
pursuit (SSP) [25], HMP offers better quality of fusion of 
multi-polarization radar images with higher target-to-clutter 
ratio (TCR).  
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2. SIGNAL MODEL 
 
Assume that the observed scene occupies a volume V. The 
location of a voxel is denoted by the displacement vector 
from the origin to the voxel r . Suppose that the radar data 
are collected by an antenna at M positions 1{ , , , }m Mr r r   

and at L frequency points 1{ , , , , }l Lf f f  . Using the Born 

model, the signal of the q-th polarimetric channel received 
at the m-th position and at the l-th frequency point can be 
expressed as  

 4 /( ) ( )( ) ( ) l mj f r r cq q
m

V

s l r e dV    ,                (1) 

where ( ) ( )q r  is the radar reflectivity of the voxel r  from 

the q-th polarimetric channel, and c is the propagation speed. 
The down-range amplitude spread of each scatterer and the 
antenna pattern have been included in ( ) ( )q r . The 

frequency response characteristic of each scatterer in the 
scene is assumed to be constant over the frequency band. 
For full-polarization radar, the measurement data at four 
polarizations are available, i.e., the values of q from 1 to 4 
correspond to HH, VV, HV and VH polarizations, 
respectively. It is worth mentioning that the value of 

( ) ( )q r  may vary with different values of q, i.e., a target 

may show quite different scattering characteristics at 
different polarizations.  

We discretize the observed volume V as x y zN N N   

voxels and assume that ( )qM  positions and ( )qL  frequency 
points are available at the q-th polarimetric channel. Then, 
(1) can be rewritten as the MMV model:  
 ( ) ( ) ( ) ( )q q q q s Φ σ w ,                             (2) 

where 
( ) ( )

( )

( ) ( ) ( ) ( ) 1
1[ (1), , ( )]

q q

q

q q q q T M L

M
s s L  s    includes the 

measurements of the q-th polarimetric channel collected at 
M(q) positions and L(q) frequency points, ( )T denotes 

transpose operation, 1( ) x y zN N Nq σ  is the discrete version 
of the reflectivity density function of the observed volume 

at the q-th polarimetric channel, and 
( ) ( )( ) 1q qq M L w  is 

additive noise and the scattering contributions from outside 
V at the q-th polarimetric channel. The dictionary matrix is 

( ) ( )
( )

q q
x y zM L N N Nq Φ   and its elements are given by,  
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Φ
,   (3) 

where , ,x y zn n nr represents the position of the voxel with 

coordinates ( , , )x y zn n n , =1,2 ,x xn N， , =1,2 ,y yn N， , and 

=1,2 ,z zn N， . Since we take the same rule of discretization 

of the observed volume at different polarimetric channels, 
( ){ , 1,2,3,4}q q σ  have the same sparsity pattern. The set 

consisting of the indices corresponding to non-zero 
coefficients is defined as the common support set, i.e, 

( ){ : ( ) 0, 1,2, , }q
x y zi i i N N N   σ  . Denote K as the 

common sparsity, i.e., | | K  . Without loss of generality, 

we assume ( ) ( )2 q q
x y zK M L N N N  , for q=1,2,3,4. The 

fusion of multi-polarization radar images can be carried out 
by first estimating  and then taking average over 

( ){ ( ), 1,2,3,4}q q σ .  

 
3. ALGORITHM DESCRIPTION 

 
The HMP algorithm is summarized in Algorithm 1. Similar 
to existing greedy algorithms, the HMP algorithm also aims 
to recover the common support set in an iterative fashion. In 
the initialization phase, the sparse solution is obtained by 
independently applying the standard OMP algorithm at each 
polarimetric channel. This progress is denoted by 

( ) ( ) ( )ˆ OMP( , , )q q q
omp Kσ s Φ , where 1( )ˆ x y zN N Nq

omp

σ   and its K 

nonzero entries correspond to the spatial positions with 
dominant reflectivities in the observe scene, q=1,2,3,4. We 
refer readers to [23] for the detailed steps of the standard 
OMP algorithm. Due to the polarization diversity among the 
channels, the dominant coefficients at different polarimetric 
channels may not refer to the same spatial positions in the 
observed scene. Therefore, to obtain a more consistent 
interpretation of the observed scene, it is necessary to fuse 
the sparse solutions at all the polarimetric channels. Here 
the fusion is carried out by first accumulating pixel-wise all 
the sparse solutions across all the channels and then 
selecting K indices corresponding to the largest magnitudes, 
as expressed in (4).  Using the global estimate of the support 
set, all the local residuals are updated in (5). At each 
iteration, in (6) the local support set is enlarged by adding K 
indices selected by OMP based on the local residual, and 
then in (7) the fusion across all the channels is carried out to 
select K indices corresponding to the largest projection 
coefficients. The operations in  (6) and (7) are inspired by 
the backtracking strategy of SP, which aims to find the K-
dimensional subspace that the measurement data most likely 
lie in.  In (8), the local residuals are updated by using the 
global estimate of the support set. When the global recovery 
error is no longer decreased, iterations over all the 
polarimetric channels are terminated.    
———————————————————————— 
Algorithm 1 The HMP algorithm 
Input: {s(q), ( )qΦ , for q=1,2,3,4} and K.  
Initialization: Let  

                     ( )

1
max_ ind ,

Q q
old ompq

K


   σ ,                  (4) 

where ( ) ( ) ( )OMP( , , )q q q
omp K σ s Φ  is the output of the 

standard OMP algorithm at the q-th polarimetric channel, 
and the residual vectors 

          
1

( ) ( ) ( ) ( ) ( ) ( ) ( )

old old old old

H Hq q q q q q q
old



   
     

r s Φ Φ Φ Φ s ,      (5) 
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for q=1,2,3,4.  
Iteration:  
1) Let  

             ( )

1
max_ ind ,

Q q
temp old ompq

K


    σ ,             (6) 

where ( ) ( ) ( )OMP( , , )q q q
omp old K σ r Φ . 

2) Let 

   
1

( ) ( ) ( ) ( )

1
max_ ind ,

temp temp temp

H HQ q q q q
new q

K


  

         
 Φ Φ Φ s .  

                                                                                         (7) 
3) Update the residual vectors as 

         
1

( ) ( ) ( ) ( ) ( ) ( ) ( )

new new new new

H Hq q q q q q q
new



   
     

r s Φ Φ Φ Φ s       (8) 

for q=1,2,3,4.  

4) If 
2 2( ) ( )

1 12 2

Q Qq q
old newq q 

 r r , let ( ) ( )q q
old newr r  for q=1,2,3,4 

and old new   , and return to Step 1; otherwise, stop the 

iteration and define the sparse solution 1x y zN N N σ  , whose 
nonzero entries are located at the indices indicated by 

old with the coefficients  

           
1

( ) ( ) ( ) ( )

1old old old old

H HQ q q q q

q



   
    σ Φ Φ Φ s .         (9) 

Output: The sparse solution σ .  
——————————————————— 

In what follows, we discuss the relationship between 
HMP and existing greedy algorithms. The strategy of local 
index selection in HMP follows the standard OMP 
algorithm, i.e., the basis-signals are selected one by one. 
This helps to guarantee the orthogonality among all the 
selected basis-signals and, therefore, the capability of 
distinguishing closely spaced components with a Fourier-
like dictionary in (3). The backtracking operations in HMP 
are similar to that in SP, i.e., at each iteration of HMP, the 
support set estimate is first enlarged by adding K new 
candidates and then refined by finding K largest projection 
coefficients. This makes it possible to remove poor indices 
chosen at past iterations and add new potential index 
candidates to the support set estimate. From the above 
observations, the performance of HMP is expected to be 
better than that of existing greedy algorithms based on OMP 
or SP, which is consistent with the experimental results in 
Section 4.  
 

4. EXPERIMENTAL RESULTS 
 
Radar measurements are collected in the Radar Imaging Lab 
of the Center for Advanced Communications at Villanova 
University. A stepped-frequency radar of 1GHz bandwidth 
centered at 2.5GHz with a frequency step size of 5MHz is 
used to acquire the full-polarization data. We refer readers 
to [26] for a detailed description of the experimental setup. 
In our experiments, the full-polarization data collected at 

S11 (HH), S12 (HV), S21 (VH), and S22 (VV) channels in 
the free-space scenario are used to evaluate the proposed 
HMP algorithm. For each polarization channel, 201 
frequency points and 69 azimuth positions are available to 
acquire data. At the height of 0.73m above the floor, the 
observed range-azimuth plane is discretized as 121  81 
pixels. The results of performing BP on the full data are 
shown in Fig. 1, where we can see the diversity of the 
scattering coefficients for different polarimetric channels 
and the gain of the fusion.  

In the following experiment, we randomly select 25 
azimuth positions and 30 frequency points from each 
polarimetric channel and perform different greedy 
algorithms for fusion of multi-polarization radar images. 
Thus, the size of ( )qΦ in (2) is 750  9801, for q=1,2,3,4. 
The sparsity K is set to 70 for all the greedy algorithms. 
More accurate approaches of choosing the value of K can be 
found in [21]. Here the methods based on linear programing 
and Bayesian learning are not considered due to their high 
computational complexity. The fused images generated by 
different greedy algorithms are compared in Fig. 2. Each 
image in Fig. 2 is obtained by randomly selecting subsets of 
frequency points and azimuth positions and averaging over 
50 trials.  

From Fig. 2 we can see that HMP outperforms SOMP, 
SSP and JOMP in the following two aspects: 1) the 
dominant coefficients in the fused image are more 
concentrated around the positions of the true targets; and 2) 
the sizes of the targets are correctly represented in the fused 
image. The reason why HMP is better than JOMP is that, 
the accuracy of the majority-vote-based fusion in JOMP 
may degenerate due to the insufficient number of source 
images in the scenario of polarimetric radar imaging. To 
quantitatively evaluate the performances of these algorithms, 
TCR is used as a measure of quality of the fused images. 
The definition of TCR is given by  

1 2

1 2

2

( , )

2

( , )

( , )

( , )
P

P

x y R R R

x y R R R

I x y
TCR

I x y









 

 

,               (10) 

where 
2

( , )I x y is the magnitude squared of pixel (x, y) of 

the fused image, P is the number of targets in the observed 
scene, Ri is the i-th target area consisting of 5  5 pixels 
around the strongest scatterer of the i-th target. The 
definition in (10) indicates that a large value of TCR occurs 
when the targets are accurately located and the clutter and 
the artifacts outside the target areas are well suppressed.  

The values of the TCR of the four algorithms are given 
in Table 1. As seen in Fig. 2(b), SSP trends to only 
highlight the two strongest targets and ignores the others. 
Since the image generated by SSP cannot correctly reflect 
the true scene, we do not analyze its TCR in Table 1. 
Compared to SOMP and JOMP, HMP offers better 
concentration of the dominant coefficients in the fused 
image and, therefore, a larger value of TCR.  
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Fig. 1 Multi-polarization images formed by BP: (a) HH, (b) VV, (c) HV/VH, (d) fusion result. 

 

 
Fig. 2 Fusion results: (a) by SOMP, (b) by SSP, (c) by JOMP, (d) by HMP.  

 
Table 1 TCR of four greedy algorithms 

Algorithm SOMP SSP JOMP HMP 
TCR 20.3677 - 28.0066 38.4584

 
5. CONCLUSION  

 
In this paper, we have developed the HMP algorithm for 
fusion of multi-polarization radar images by combining the 
strengths of OMP and SP. Experimental results based on 
real measured radar data show that HMP can significantly 
enhance the target reflections and suppress the background 
clutter. Compared to some popular greedy algorithms, HMP 
provides better image quality with higher TCR. Future work 
includes the extension of HMP for target detection and 
classification with multi-polarization radar.  
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