
MISMATCHED FILTER DESIGN FOR RADAR WAVEFORMS BY SEMIDEFINITE
RELAXATION
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ABSTRACT

Radar systems commonly require use of waveforms with low
sidelobes and also low cross-correlation if multiple wave-
forms are being used. It is possible to decrease the apparent
peak sidelobe and cross-correlation levels at the receiver by
employing a mismatched filter. In this paper, we propose mis-
matched filter design method that minimizes the peak side-
lobe and cross-correlation levels for all Doppler frequencies.
The proposed design method is formulated as an optimization
problem employing sum of squares representation of nonneg-
ative polynomials and solved using semidefinite relaxation.

Index Terms— radar, MIMO radar, mismatched filter, fil-
ter design, semidefinite relaxation, trigonometric polynomial
constraint

1. INTRODUCTION

Efficient operation of a radar system typically requires that the
transmitted waveform has low sidelobes. If multiple wave-
forms are being used as in a MIMO radar, for example, it
is also necessary that the cross-correlation of the waveforms
is low. While it is well-known that using a matched filter at
the receiver is optimal in additive white Gaussian noise, once
the waveforms are fixed, nothing can be done to reduce the
peak sidelobe (PSL) and peak cross-correlation (PCC) levels.
However, if a mismatched filter [1] is used, it is possible to
decrease the PSL and PCC levels. Naturally, the improved
PSL and PCC levels of a mismatched filter come at the cost
of a decrease in SNR. Thus, it is essential that this SNR loss
is constrained when designing mismatched filters.

Mismatched filtering can be especially beneficial in MIMO
radars, in which multiple waveforms are transmitted simul-
taneously [2]. Optimal target detection and parameter esti-
mation in a MIMO radar requires that the waveforms can be
separated at the receiver, which typically requires that the
waveforms are orthogonal. However, it is not possible to
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have waveforms that are orthogonal for all time delays and
Doppler shifts [3]. Using mismatched filters at the receiver
end, it is possible to improve the PSL and the PCC of the
waveforms so that they would be closer to being orthogonal.

Previously, clutter rejection with mismatched filtering for
binary sequences was proposed in [4]. Mismatched filter with
Pareto-optimal integrated sidelobe level and the peak sidelobe
level was developed in [5]. Mismatched filterbank design for
MIMO radars was considered in [6] for limiting the peak au-
tocorrelation sidelobe and cross-correlation levels. Interfer-
ence and jamming power was minimized in [7] while main-
taining desired autocorrelation sidelobe and cross-correlation
levels. However, these studies did not take Doppler shift into
account. In this paper, we develop a mismatched filter design
that minimizes the peak sidelobe and cross-correlation levels
while keeping SNR loss below a desired value. Furthermore,
power of jamming and interfering signals can also be con-
trolled if the second order statistics of the interference can be
estimated.

The mismatched filter design method proposed in this
paper is based on converting trigonometric polynomial con-
straints into positive-semidefinite matrix constraints. This
conversion, presented in [8], relies on the sum-of-squares
representation of nonnegative polynomials and can be ap-
plied in various signal processing problems. It was used in
radar waveform design for optimizing the worst case SNR
with respect to the received Doppler in [9] and in [10] for
detecting signals with uncertainty in the angle of arrival, for
example.

The problem formulation using the positive-semidefinite
matrix constraints includes nonconvex quadratic equality con-
straints. We convert this problem into a convex one by ap-
plying semidefinite relaxation [11]. If the solution of the re-
laxed problem is a rank-one matrix, the filter coefficient are
obtained from the eigenvector of the solution. Otherwise, ran-
domization can be used to find the actual filter coefficients
[11]. We propose a projection method to obtain randomized
filter coefficients that meet the unit response and maximum
SNR loss constraints.
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This paper is organized as follows: The filter design prob-
lem is described in Section 2. The proposed method to solve
the filter design problem is explained in Section 3. Numerical
results are be provided in Section 4, and Section 5 gives the
concluding remarks.

2. PROBLEM FORMULATION

The goal in the filter design for a radar receiver is a filter that
would minimize the peak sidelobe (PSL) and the peak cross-
correlation (PCC) levels for the transmitted waveforms while
adhering to constraints on SNR loss and interference power.
The receiver filter for each waveform can be optimized inde-
pendent of the other filters. The design method is applicable
to conventional radars as well as both distributed and colo-
cated MIMO radar configurations.

Let w denote theL×1 column vector of filter coefficients.
It is assumed that the waveforms are modulated pulse trains,
where the baseband samples of the modulating symbols of
the ith waveform at delaym are given in L×1 vectors si(m).
Without loss of generality, we can scale the vectors contain-
ing the symbols at zero delay to have unit norm such that
‖si(0)‖ = 1. Each received waveform can be written as

aisi(m)� u(f) + v, (1)

where ai is a complex amplitude parameter that takes into
account propagation losses, scattering, antenna gains etc., m
is the delay, � denotes element-wise multiplication, u is a
Doppler phase vector, and v is a vector of random noise and
interference. The Doppler phase vector is defined as

u(f) =
[
1 e−j2πf . . . e−j2π(L−1)f

]T
, (2)

where j is the imaginary unit and f is the normalized Doppler
frequency.

The peak sidelobe and the peak cross-correlation that need
to be minimized are defined for the kth waveform as

PSL = max
f,m

∣∣wH [sk(m)� u(f)]
∣∣2, |f | ≥ δ0mf0 (3)

PCC = max
f,i,m

∣∣wH [si(m)� u(f)]
∣∣2, i 6= k, (4)

where δij is the Kronecker delta notation, f0 is the half-width
of the main peak in frequency, m = −L + 1, . . . , L − 1 and
f ∈ [− 1

2 ,
1
2 ]. We have assumed without loss of generality

that the main peak of the autocorrelation function is scaled to
one, which is equivalent to the assumption ‖si(0)‖ = 1 stated
previously. The SNR loss of the filter is given by

|wHsk(0)|2

|sHk (0)sk(0)|2
= ‖w‖2. (5)

The interference plus noise power at the filter output is given
by

E[|wHv|2] = wHRvw, (6)

where Rv is the covariance matrix of interference plus noise.
The filter design problem minimizing the PSL and PCC

can now be formulated as

min
w,α

α (7a)

s.t |wH [si(m)� u(f)]|2 ≤ α, |f | ≥ δikδ0mf0 (7b)

wHw ≤ β, (7c)

wHRvw ≤ γ, (7d)

wHsk(0) = 1, (7e)

where α is the PSL and PCC level, β is the maximum allowed
SNR loss in linear scale, and γ is the maximum interference
plus noise power of the output. Equation (7e) is needed to
maintain the unit gain to the waveform of interest at zero de-
lay.

Due to the continuous nature of the Doppler frequency
f , we cannot solve the filter design problem as an ordinary
quadratically constrained program, as infinite number of con-
straints would be required to satisfy (7b). The method pro-
posed in this paper for solving this problem type is explained
in the next section.

3. RELAXED PROBLEM

In order to tackle the receiver filter design problem in (7), we
first note that

|wH [si(m)�u(f)]|2 = uH(f)[wwH � s∗i (m)sTi (m)]u(f).
(8)

This is in fact a real-valued trigonometric polynomial that can
be written as

p(ω) = x0 + 2Re
{ L−1∑
n=1

xne
−jωn

}
. (9)

In this particular case,

xk =

L−k∑
n=1

wk+nw
∗
n(si(m))∗k+n(si(m))n (10)

and ω = 2πf .
Next, we leverage Theorem 1 of [8], which states that a

trigonometric polynomial of the form given in (9) is nonneg-
ative on the interval [0, 2π] if and only if there is an L × L
positive-semidefinite matrix X such that

x = FHdiag(FXFH), (11)

where x =
[
x0 . . . xL−1

]T
, diag(·) denotes a vector con-

sisting of the elements of the main diagonal of a matrix, F is
a matrix consisting of the L first columns of an M ×M DFT
matrix, i.e.

(F)mn = e−j2π(m−1)(n−1)/M ,m = 1 . . .M, n = 1 . . . L,
(12)

2740



and M ≥ 2L− 1.
In order to deal with the main peak, we apply Theorem 2

provided in [8] stating that a trigonometric polynomial of the
form given in (9) is nonnegative on the interval [ω0−∆, ω0 +
∆] if and only if there are an L×L positive-semidefinite ma-
trix X and an (L− 1)× (L− 1) positive-semidefinite matrix
Y such that

x = FH [diag(FXFH) + c� diag(F1YFH1 )], (13)

where the elements of the vector c are

cn = cos(2π(n− 1)/M − ω0)− cos(∆), n = 1, . . . ,M.
(14)

The matrix F1 consists of the L− 1 first columns of an M ×
M DFT matrix. Letting ω0 = π and ∆ = π − 2πf0 we
achieve the desired interval. Since the ambiguity function is
periodic in f with a period of one, the same result is achieved
regardless of doing the optimization on [− 1

2 ,
1
2 ] or [0, 1].

Equation (10) is a quadratic equality constraint, which is
nonconvex. In order to obtain a convex problem, we apply
semidefinite relaxation and replace (10) with

xk =

L−k∑
n=1

(W)k+n,n(si(m))∗k+n(si(m))n, (15)

where W is an L× L positive-semidefinite matrix that is the
new optimization variable in place of w. Consequently, we
obtain a semidefinite problem

min α (16a)

s.t (xi,m)j = δ0jα−
L−j∑
n=1

(W)j+n,n(si(m))∗j+n(si(m))n

(16b)

xk,0 = FH [diag(FXk,0F
H) + c� diag(F1Y0F

H
1 )],

(16c)

xi,m = FHdiag(FXi,mFH), (i,m) 6= (k, 0) (16d)
tr(W) ≤ β (16e)
tr(WRv) ≤ γ (16f)

tr(Wsk(0)sHk (0)) = 1 (16g)
W � 0,Xi,m � 0,Y0 � 0, (16h)

where X � 0 means that matrix X is positive semidefinite
and c, F as well as F1 have been defined previously. This is
a convex optimization problem so the global optimum can be
found efficiently.

Let the global optimum of the relaxed problem (16) be
Wo. If the rank of Wo is equal to one, we can write Wo =
wwH , where the filter coefficient vector w is in fact the glob-
ally optimal solution to the non-relaxed problem [11]. If the
rank of the solution to the relaxed problem is larger than one,
we can use the randomization approach in order to obtain the

filter coefficient vector w. This is done by generating random
solution candidates from the complex normal distribution,

w̃ ∼ CN (0,Wo). (17)

However, the randomized candidates will never satisfy the
unit gain constraint to the waveform of interest in (7e). There-
fore, we project w̃ to the space orthogonal to sk(0) such that

z = [I− sk(0)sHk (0)]w̃. (18)

We can also satisfy the SNR loss constraint (7c) by scaling
z so that its norm does not exceed

√
β − 1. Thus, a filter

coefficient vector

w = sk(0) + min

(
1,

√
β − 1

‖z‖

)
z (19)

will satisfy both (7c) and (7e). This filter consists of the mis-
matched filter and a orthogonal projection z of the random-
ized solution modifying the mismatched filter for decreasing
the PSL and PCC. Once the SDR problem in (16) has been
solved, producing the filter coefficients in (19) is computa-
tionally simple. We can generate multiple such coefficient
vectors and choose the one that provides the lowest PSL and
PCC levels.

4. NUMERICAL EXAMPLES

In this section, we show numerical results of the filter design
using the proposed design method. The waveforms are two
randomly generated amplitude-only modulated signals with
twenty symbols drawn from the normal distribution indepen-
dently. The resulting waveforms suffered from high sidelobes
and cross-correlation with the PSL approximately −4.92dB
for the first and −5.82dB for the second sequence, while the
PCC is approximately −6.28dB.

The goal was then to design mismatched filters minimiz-
ing the peak sidelobe level and cross-correlation with thirty
complex-valued filter coefficients for both waveforms. The
maximum allowed SNR loss was 2dB and no interference or
jamming was present in addition to additive white Gaussian
noise. The semidefinite relaxation of the filter design prob-
lem in (16) was then solved for both waveforms separately
with CVX, a package for solving convex programs [12, 13],
using SeDuMi [14] as the solver. The obtained solutions were
rank-one matrices for both filters, so the globally optimum fil-
ters in the original, non-relaxed problem were obtained. The
PSL and PCC were approximately−7.84 dB for the first filter
and −8.04 dB for the second. The SNR losses were approxi-
mately 1.25 dB and 1.17 dB, respectively.

Figure 1 shows the maximum of the ambiguity function
of the first waveform over all delays for the matched filter
and the proposed mismatched filter design. To be precise, the
quantity maxm 20 log10

∣∣wH [s1(m)�u(f)]
∣∣, wherem is the
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Fig. 1. Maximum of the ambiguity function of the first
waveform. The proposed mismatched filter has significantly
lower peak sidelobe and there is less variation in the sidelobe
heights.
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Fig. 2. Maximum of the ambiguity function of the second
waveform. The proposed mismatched filter has significantly
lower peak sidelobe and there is less variation in the sidelobe
heights.

delay, is plotted as a function of the normalized Doppler fre-
quency f . The proposed mismatched filter has significantly
lower peak sidelobe level and there is less variation in the
sidelobe heights. The maximum ambiguity for the second
waveform in Fig.2 shows similar results.

The maximum cross-ambiguity functions are shown in
Fig.3. Since there are only two waveforms, there is only
one cross-ambiguity function for the matched filter. The mis-
matched filters are generally distinct, so the cross-ambiguity
functions are shown for both filters. The cross-ambiguity
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Fig. 3. Maximum of the cross-ambiguity function for the
matched and the proposed mismatched filter designs. The
mismatched filters provide much lower PCC than the matched
filter.

functions of the mismatched filters display yet again being
smoother and having lower peak level than the counterpart of
the matched filter.

5. CONCLUSIONS

We proposed a method for designing mismatched filters for
radar systems. The design method minimizes the peak side-
lobe and cross-correlation levels over all delays and Doppler
frequencies while satisfying the constraint on maximum SNR
loss. The method works by replacing quadratic inequality
constraints on a continuous interval with positive-semidefinite
matrix constraints. Semidefinite relaxation can then be used
to obtain a convex optimization problem that can be solved to
global optimality. If the solution is not of rank-one, a random-
ization method can be applied to find the filter coefficients.
We proposed a projection method that guarantees that the ran-
domized filter coefficients fulfill the unit response and SNR
loss constraints. The semidefinite program forming the mis-
matched filter design problem can be solved with any general-
purpose SDP solver, but the solution could be obtained faster
with a specific solver.
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